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Abstract

Visual and audio modalities are highly correlated, yet they contain different infor-
mation. Their strong correlation makes it possible to predict the semantics of one
from the other with good accuracy. Their intrinsic differences make cross-modal
prediction a potentially more rewarding pretext task for self-supervised learning
of video and audio representations compared to within-modality learning. Based
on this intuition, we propose Cross-Modal Deep Clustering (XDC), a novel self-
supervised method that leverages unsupervised clustering in one modality (e.g.,
audio) as a supervisory signal for the other modality (e.g., video). This cross-modal
supervision helps XDC utilize the semantic correlation and the differences between
the two modalities. Our experiments show that XDC outperforms single-modality
clustering and other multi-modal variants. XDC achieves state-of-the-art accuracy
among self-supervised methods on multiple video and audio benchmarks. Most
importantly, our video model pretrained on large-scale unlabeled data significantly
outperforms the same model pretrained with full-supervision on ImageNet and
Kinetics for action recognition on HMDB51 and UCF101. To the best of our knowl-
edge, XDC is the first self-supervised learning method that outperforms large-scale
fully-supervised pretraining for action recognition on the same architecture.

1 Introduction

Do we need to explicitly name the actions of “laughing” or “sneezing” in order to recognize them? Or
can we learn to visually classify them without labels by associating characteristic sounds with these
actions? Indeed, a wide literature in perceptual studies provides evidence that we rely heavily on
hearing sounds to make sense of actions and dynamic events in the visual world. For example, objects
moving together are perceived as bouncing off each other when the visual stimulus is accompanied
by a brief sound [55], and the location and timing of sounds are leveraged as important cues to direct
our spatiotemporal visual attention [19, 42]. The influence of hearing sounds in visual perception is
also suggested by perceptual studies showing that individuals affected by profound deafness exhibit
poorer visual perceptual performance compared to age-matched hearing controls [11, 39].

In this work, we investigate the hypothesis that spatiotemporal models for action recognition can
be reliably pretrained from unlabeled videos by capturing cross-modal information from audio and
video. The motivation for our study stems from two fundamental challenges facing a fully-supervised
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line of attack to learning video models. The first challenge is the exorbitant cost of scaling up
the size of manually-labeled video datasets. The recent creation of large-scale action recognition
datasets [5, 15, 25, 26] has undoubtedly enabled a major leap forward in video models accuracies.
However, it may be argued that additional significant gains by dataset growth would require scaling up
existing labeled datasets by several orders of magnitude. The second challenge is posed by the unclear
definition of suitable label spaces for action recognition. Recent video datasets differ substantially in
their label spaces, which range from sports actions [25] to verb-noun pairs for kitchen activities [7].
This suggests that the definition of the “right” label space for action recognition, and more generally
for video understanding, is still very much up for debate. It also implies that finetuning models
pretrained on large-scale labeled datasets is a suboptimal proxy for learning models for small- or
medium-size datasets due to the label-space gap often encountered between source and target datasets.
In this paper, we present three approaches for training video models from self-supervised audio-visual
information. At a high-level, the idea behind all three frameworks is to leverage one modality
(say, audio) as a supervisory signal for the other (say, video). We posit that this is a promising
avenue because of the simultaneous synergy and complementarity of audio and video: correlations
between these two modalities make it possible to perform prediction from one to the other, while
their intrinsic differences make cross-modal prediction an enriching self-supervised task compared to
within-modality learning. Specifically, we adapt the single-modality DeepCluster work of Caron et
al. [6] to our multi-modal setting. DeepCluster was introduced as a self-supervised procedure for
learning image representation. It alternates between unsupervised clustering of image features and
using these cluster assignments as pseudo-labels to revise the image representation. In our work,
the clusters learned from one modality are used as pseudo-labels to refine the representation for the
other modality. In two of our approaches—Multi-Head Deep Clustering (MDC) and Concatenation
Deep Clustering (CDC)—the pseudo-labels from the second modality are supplementary, i.e., they
complement the pseudo-labels generated in the first modality. The third approach—Cross-Modal
Deep Clustering (XDC)—instead uses the pseudo-labels from the other modality as an exclusive
supervisory signal. This means that in XDC, the audio clusters drive the learning of the video
representation and vice versa. Our experiments support several interesting conclusions:
• All three of our cross-modal methods yield representations that generalize better to the downstream

tasks of action recognition and audio classification, compared to their within-modality counterparts.
• XDC (i.e., the cross-modal deep clustering relying on the other modality as an exclusive supervi-

sory signal) outperforms all the other approaches. This underscores the complementarity of audio
and video and the benefits of learning label-spaces across modalities.

• Self-supervised cross-modal learning with XDC on a large-scale video dataset yields an action
recognition model that achieves higher accuracy when finetuned on HMDB51 or UCF101, com-
pared to that produced by fully-supervised pretraining on Kinetics. To the best of our knowledge,
this is the first method to demonstrate that self-supervised video representation learning outper-
forms large-scale fully-supervised pretraining for action recognition. Moreover, unlike previous
self-supervised methods that are only pretrained on curated data (e.g., Kinetics [26] without action
labels), we also report results of XDC pretrained on a large-scale uncurated video dataset.

2 Related work
Early unsupervised representation learning. Pioneering works include deep belief networks [20],
autoencoders [21, 64], shift-invariant decoders [51], sparse coding algorithms [32], and stacked
ISAs [31]. While these approaches learn by reconstructing the input, our approach learns from a
self-supervised pretext task by generating pseudo-labels for supervised learning from unlabeled data.
Self-supervised representation learning from images and videos. Several pretext tasks exploit
image spatial context, e.g., by predicting the relative position of patches [8] or solving jigsaw
puzzles [40]. Others include creating image classification pseudo-labels (e.g., through artificial
rotations [13] or clustering features [6]), colorization [77], inpainting [46], motion segmentation [45],
and instance counting [41]. Some works have extended image pretext tasks to video [27, 68, 75].
Other video pretext tasks include frame ordering [9, 33, 38, 74], predicting flow or colors [30, 67],
exploiting region correspondences across frames [22, 23, 71, 72], future frame prediction [35, 36, 57,
65, 66], and tracking [73]. Unlike this prior work, our model uses two modalities: video and audio.
Cross-modal learning and distillation. Several works [2, 16] train a fully-supervised encoder on
one modality and distill its discriminative knowledge to an encoder of a different modality. Other
works learn from unlabeled data for a specific target task [78, 53]. Unlike these methods, our work
is purely self-supervised and aims at learning representations that transfer well to a wide range
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Figure 1: Overview of our framework. We present Single-Modality Deep Clustering (SDC) baseline vs. our
three multi-modal deep clustering models: Multi-Head Deep Clustering (MDC), Concatenation Deep Clustering
(CDC), and Cross-Modal Deep Clustering (XDC). The video and audio encoders (Ev and Ea) map unlabeled
videos to visual and audio features (fv and fa). These features, or their concatenations, are clustered using
k-means. The cluster assignments are then used as pseudo-labels to train the encoders. We start with randomly-
initialized encoders, then alternates between clustering to generate pseudo-labels and training to improve the
encoders. The four models employ different ways to cluster features and generate self-supervision signals.
Illustration video is from [60].

of downstream tasks. Previous cross-modal self-supervised methods most relevant to our work
include audio-visual correspondence [1], deep aligned representations [3], audio-visual temporal
synchronization [28, 43], contrastive multiview coding [62], and learning image representations using
ambient sound [44]. While [1, 3, 44, 62] use only a single frame, we use a video clip. Unlike our
method, [44] clusters handcrafted audio features and does not iterate on the pseudo-labels. [28, 43]
require constructing positive/negative examples for in-sync and out-of-sync video-audio pairs. This
sampling strategy makes these approaches more difficult to scale compared to ours, as many potential
out-of-sync pairs can be generated, yielding largely different results depending on the sampling
choice [28]. Recent works, such as MIL-NCE [37] and CBT [61], learn from unlabeled instructional
videos using text from ASR, while our approach makes use of the audio signal instead.

3 Technical approach

Here, we briefly discuss previous work on single-modality deep clustering in images [6]. Then, we
introduce our three multi-modal deep clustering frameworks for representation learning (Figure 1).

3.1 Single-modality deep clustering

Caron et al. [6] proposed DeepCluster for self-supervised representation learning from images.
DeepCluster iteratively clusters deep features from a single-modality encoder, and then uses the cluster
assignments to train the same encoder to improve its representation. Inspired by the simplicity of this
work, our paper studies deep clustering in the large-scale multi-modal setting. For completeness, we
summarize DeepCluster details. Let X be the set of unlabeled inputs (e.g., images), E be an encoder
that maps an input x ∈ X to a deep feature vector f ∈ Rd. DeepCluster iterates between clustering
the features F = {f = E(x) | x ∈ X} and discriminative training to improve E using the clustering
assignments as pseudo-labels. The process starts with a randomly-initialized E, and only the weights
of the classification fc-layer are reset between clustering iterations when the supervision-taxonomy
is switched. DeepCluster uses a 2D CNN (e.g. ResNet-50) for E and clusters the features after each
epoch using k-means. We refer to DeepCluster as Single-Modality Deep Clustering (SDC).

3.2 Multi-modal deep clustering

Contrary to the single-modality case, there exist multiple encoders in a multi-modal setting, each
of which encodes a different modality of the input. In our paper, we consider two modalities, the
visual and the audio modalities from the unlabeled training video clips. In particular, let X be the
set of unlabeled video clips, and Ev and Ea be the visual and audio encoders, respectively. Let
Fv = {fv = Ev(x) ∈ Rdv | x ∈ X} and Fa = {fa = Ea(x) ∈ Rda | x ∈ X} be the set of visual
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and audio deep features produced by the two encoders, respectively. There are different ways we
can adapt the deep clustering framework to a multi-modal input. We describe three approaches
(MDC, CDC, and XDC) by detailing the steps taken at each deep clustering iteration. Refer to the
supplementary material for the implementation differences between SDC and our three approaches.

Multi-Head Deep Clustering (MDC). This model builds on SDC by adding a second classification
head supervised by the other modality. Thus, in this model, each encoder has two classification heads.
At each deep clustering iteration, MDC uses the cluster assignments of Fv as pseudo-labels for one
head and that of Fa as pseudo-labels for the other head. Thus, each encoder needs to predict the
cluster assignments of its own modality (as in SDC), but also those generated by the other modality.

Concatenation Deep Clustering (CDC). This model performs clustering of joint visual and audio
features. Specifically, at each deep clustering iteration, CDC clusters vectors obtained by concatenat-
ing the visual and audio feature vectors, separately l2-normalized. Then, it uses the resulting cluster
assignments as pseudo-labels to update the weights of both Ev and Ea.

Cross-Modal Deep Clustering (XDC). Each encoder in this model relies exclusively on the clusters
learned from the other modality as the supervisory signal. At each deep clustering iteration, XDC
clusters the audio deep features, Fa, and uses their cluster assignments as pseudo-labels to train the
visual encoder, Ev . Vice versa, XDC supervises Ea with the cluster assignments of Fv .

4 Experiments

4.1 Experimental setup

Pretraining datasets. We use four datasets: Kinetics [26], AudioSet [10], IG-Kinetics [12], and
IG-Random, which have 240K, 2M, 65M, and 65M training videos, respectively. As our approach is
self-supervised, thus the labels from the first three datasets are not used during pretraining. While
Kinetics and AudioSet are supervised benchmarks for action recognition and audio classification,
IG-Kinetics is a weakly-supervised dataset collected from a social media website using tags related
to Kinetics actions. IG-Random is an uncurated dataset of random videos from the same website.
Videos are 10-second long in Kinetics and AudioSet and 10-to-60-second long in IG-Kinetics and
IG-Random. We filter out around 7K Kinetics videos that have no audio. Furthermore, we randomly
sample 240K videos from AudioSet and denote this subset as AudioSet-240K. We generate this
subset to have AudioSet data of the same size as Kinetics, in order to study the effects of pretraining
with the same data size but on a different data distribution and domain.

Downstream datasets. We evaluate our pretraining performance on three downstream benchmarks:
UCF101 [56], HMBD51 [29], and ESC50 [48], which have 13K, 7K, and 2K examples from 101, 51,
and 50 classes, respectively. UCF101 and HMDB51 are action recognition datasets, while ESC50 is a
sound classification dataset. UCF101 and HMDB51 have 3 official train/test splits, while ESC50 has
5 splits. We conduct our ablation study (Subsection 4.2) using split-1 of each dataset. We also report
our average performance over all splits when we compare with state-of-the-art methods in Section 6.

Baselines. We consider two baselines: Scratch and Supervised Pretraining (Superv). The first is a
randomly-initialized model trained from scratch directly on the downstream task, while the second is
a model pretrained in a supervised fashion on a large labeled dataset (e.g., Kinetics) and then finetuned
on the downstream task. We note that these two baselines are commonly regarded as the lower and
upper bounds to gauge the quality of self-supervised representation learning methods [1, 28].

Backbone architectures. We employ R(2+1)D [63] and ResNet [18] as Ev and Ea, respectively.
Ev’s input is a 3×L×H×W clip, where 3 refers to the RGB channels, L is the number of frames,
and H and W are the frame height and width. Ea’s input is a Q×P spectrogram image extracted
from the audio signal, where Q is the number of MEL filters and P is the number of audio frames.

Pretraining and evaluation details. We choose the 18-layer variants of R(2+1)D and ResNet
encoders. We use clips of L=8 frames for pretraining and finetuning our visual encoder Ev . We scale
frames such that the smallest dimension is 256 pixels and then random crop images of size 224×224.
We extract video clips at 30 fps and employ temporal jittering during training. For the audio input,
we sample 2 seconds and use Q=40 MEL filters and P=100 audio frames. For inference on the
downstream tasks, we uniformly sample 10 clips per testing example and average their predictions to
make a video-level prediction. We use only one crop per clip: the center 8×224×224 crop for video
and the full 40×100 crop for audio. We provide more details in the supplementary material.
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Table 1: Single-modality vs. multi-modal deep clustering. We compare the four self-supervised deep
clustering models (Section 3) and the three baselines: Scratch, Supervised Pretraining (Superv), and same-
modality-XDC (XDC with two encoders defined on the same modality). Models are pretrained via self-
supervision on Kinetics and fully finetuned on each downstream dataset. We report the top-1 accuracy on split-1
of each dataset. All multi-modal models significantly outperform the single-modality deep clustering model. We
mark in bold the best and underline the second-best models.

same-modality-XDC
Dataset Scratch Superv SDC MDC CDC XDC 2 visual encoders 2 audio encoders
UCF101 54.5 90.9 61.8 68.4 72.9 74.2 61.3 N/A
HMDB51 24.1 58.0 31.4 37.1 37.5 39.0 30.5 N/A
ESC50 54.3 82.3 66.5 70.3 74.8 78.0 N/A 66.0

4.2 Ablation study

Study 1: Single-modality vs. multi-modal deep clustering. This experiment compares the four
models presented in Section 3. We pretrain SDC, MDC, CDC, and XDC on Kinetics and report their
performance on the downstream tasks in Table 1. To better understand XDC, we also conduct a new
set of baselines, called same-modality-XDC, where XDC is trained with two encoders defined on
the same modality (either visual or audio). Note that all models in this ablation study use the same
visual and audio encoders and only differ in the way they use self-supervision. It takes on average
5 to 6 deep clustering iterations for these models to converge. Observations: (I) The four self-
supervised deep clustering models outperform the Scratch baseline on all downstream benchmarks.
This shows that our self-supervised pretraining is effective and generalizes well to multiple tasks.
(II) All multi-modal models (MDC, CDC, and XDC) significantly outperform SDC by up to 12.4%,
7.6%, and 11.5% on UCF101, HMDB51, and ESC50, respectively. This validates the importance
of multi-modal modeling compared to single-modality. (III) XDC achieves the best performance
across all tasks. What distinguishes XDC from the other models is that each modality encoder in
XDC is self-supervised purely by the signal from the other modality. The encoders in CDC, MDC,
and SDC all employ a self-supervision signal coming from the same modality. Thus, this suggests
that encoders learn better when purely supervised by a different modality. We provide the following
intuition on why XDC is better than CDC and MDC. XDC groups samples together when they are
similar in one of the two modalities (video to supervise the audio encoder, audio to supervise the
visual encoder). Instead, CDC groups samples together only if they are similar according to both
the audio and the video modality (to supervise both encoders). Thus, XDC visual and audio clusters
allow for more diversity than those of CDC. We hypothesize that this diversity allows XDC to learn
richer representations, which translates into better performance on the downstream tasks. Also, recent
work [70] has shown that models trained on different modalities learn and generalize at different
speeds, and that training them jointly (as done in MDC which uses two-modality heads) is sub-optimal.
We believe that this could contribute to MDC performing worse than XDC, which optimizes for each
modality independently. (IV) The same-modality-XDC baselines perform similarly to SDC and are 8-
12% worse than multi-modal-XDC. This suggests that cross-modality provides a superior supervisory
signal for self-supervised learning and that multi-modal-XDC is the best model not because of its
optimization strategy but rather because of the use of the other modality for pseudo-labeling. Given
the results of this study, we opt to use only XDC in the rest of the experiments. Finally, to show that
XDC works for different backbones, we re-do Study 1 with ResNet3D in the supplementary material.

Study 2: The number of k-means clusters. This study explores the effects of changing the
hyperparameter k in k-means clustering. We pretrain XDC on three datasets, Kinetics, AudioSet-
240K, and AudioSet, using k=64, 128, 256, 512, and 1024 clusters (Table 2). Observations: (I) The
best k value is not sensitive to the number of semantic labels in the downstream datasets. For example,
HMDB51 and ESC50 have about the same number of labels but different best k value. (II) Similarly,
the best k value seems uncorrelated with the number of original semantic labels of the pretraining
dataset, e.g. 400 in Kinetics. We reiterate here that our approach is self-supervised and does not
use the labels of the pretraining dataset. (III) The best k value tends to get larger as the pretraining
data size increases. For example, the best k for HMDB51 shifts from 128 to 256 when moving from
pretraining on AudioSet-240K to the full AudioSet. We hypothesize that there is a more diverse
sample set to cluster when the pretraining data size increases. Thus, we can have more fine-grained
clusters (higher k) and make our self-supervised classification problem harder. This aligns with
previous self-supervised works [14, 28] that showed benefits from making the pretext task harder.
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Table 2: The number of clusters (k). We show the effect of the number of k-means clusters on XDC
performance. XDC is pretrained on three large datasets, and then fully finetuned on three downstream tasks. We
report the top-1 accuracy on split-1. The best k value increases as the size of the pretraining dataset increases.

Pretraining
Dataset

Downstream
Dataset

k
64 128 256 512 1024

Kinetics
(240K videos)

UCF101 73.8 73.1 74.2 74.0 72.6
HMDB51 36.5 39.0 38.3 37.7 37.7
ESC50 78.0 76.3 75.0 74.5 71.5

AudioSet-240K
(240K videos)

UCF101 77.4 77.2 76.7 77.1 75.3
HMDB51 41.3 42.6 41.6 40.6 40.7
ESC50 78.5 77.8 77.3 76.8 73.5

AudioSet
(2M videos)

UCF101 84.1 84.3 84.9 84.4 84.2
HMDB51 47.4 47.6 48.8 48.5 48.4
ESC50 84.8 85.8 85.0 84.5 83.0

Table 3: Pretraining data type and size. We compare XDC pretrained on five datasets vs. fully-supervised
pretrained baselines (Superv). XDC significantly outperforms fully-supervised pretraining on HMDB51.

Pretraining Downstream Dataset
Method Dataset Size UCF101 HMDB51 ESC50
Scratch None 0 54.5 24.1 54.3
Superv ImageNet 1.2M 79.9 44.5 NA
Superv Kinetics 240K 90.9 58.0 82.3
Superv AudioSet-240K 240K 76.6 40.8 78.3
Superv AudioSet 2M 84.0 53.5 90.3
XDC Kinetics 240K 74.2 39.0 78.0
XDC AudioSet-240K 240K 77.4 42.6 78.5
XDC AudioSet 2M 84.9 48.8 85.8
XDC IG-Random 65M 88.8 61.2 86.3
XDC IG-Kinetics 65M 91.5 63.1 84.8

Study 3: Pretraining data type and size. Here, we investigate the effects of two pretraining
characteristics: data size and type. To this end, we pretrain XDC on Kinetics (240K examples),
AudioSet-240K (240K examples), AudioSet (2M examples), IG-Kinetics (65M examples), and
IG-Random (65M examples). Kinetics and IG-Kinetics videos are collected originally for activity
recognition, while AudioSet videos are aimed for audio event classification. IG-Random is an
uncurated/unsupervised dataset. In addition to video datasets, we also experiment with ImageNet to
understand how much action recognition benefits from supervised pretraining on object classification.
For ImageNet, we inflate the images into static video clips (repeating the same frame) and pretrain
our video model on this dataset. Table 3 presents the results of this study. Observations: (I) XDC
improves across all three downstream tasks as the pretraining data size increases. For example, XDC
on HMDB51 improves by 9.8%, 22.2%, and 24.1% when pretrained on AudioSet, IG-Random, and
IG-Kinetics, respectively, compared to the results when pretrained on Kinetics. (II) XDC outperforms
Kinetics fully-supervised pretraining by 5.1% on HMDB51 and by 0.6% on UCF101. To the best
of our knowledge, XDC is the first method to demonstrate that self-supervision can outperform
large-scale full-supervision in representation learning for action recognition. (III) The performance
of the fully-supervised pretrained model is influenced by the taxonomy of the pretraining data more
than the size. For example, supervised-pretraining on Kinetics gives better performance on both
UCF101 and HMDB51 compared to supervised-pretraining on AudioSet (which is 8 times larger
than Kinetics) and ImageNet. One the other hand, XDC performance is less sensitive to the data type,
as it implicitly learns the label space rather than depend on a space manually defined by annotators.

Study 4: Curated vs. uncurated pretraining data. The overarching goal of self-supervised
representation learning is to learn from the massive amounts of unlabeled data. Previous self-
supervised methods have pretrained on videos from supervised (curated) datasets (e.g., Kinetics)
without using the labels. However, even without using labels, those videos are still biased due to the
sampling distribution (e.g., taxonomy of the curated dataset). To this end, we study the effects of
self-supervised representation learning from uncurated data. Table 4 compares XDC pretrained on
IG-Kinetics (curated, as videos were tag-retrieved) vs. IG-Random (uncurated) using 1M, 16M, and
65M videos. Observations: (I) Curated pretraining gives better results on UCF101 and HMDB51,
while uncurated pretraining is better on ESC50 at large scale. We hypothesize that the bias of
IG-Kinetics towards semantics of human actions is the reason behind the positive effect of curation on
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Table 4: Curated vs. uncurated pretraining data. XDC pretrained on IG-Kinetics (curated) vs. IG-Random
(uncurated) using different training set sizes. Uncurated pretraining has better results on ESC at large scale. On
UCF and HMDB, the accuracy gap between curated and uncurated pretraining decreases as data size increases.

Downstream
Dataset

Pretraining Size
1M 16M 65M

IG-Random IG-Kinetics ∆ IG-Random IG-Kinetics ∆ IG-Random IG-Kinetics ∆
UCF101 79.6 84.2 -4.6 84.1 87.6 -3.5 88.8 91.5 -2.7
HMDB51 45.1 50.3 -5.2 55.2 57.3 -2.1 61.2 63.1 -1.9
ESC50 77.8 79.5 -1.7 84.3 82.5 +1.8 86.3 84.8 +1.5

Table 5: Full finetuning vs. learning fc-only. We compare XDC against the supervised pretrained models
(Superv) under two transfer-learning schemes: when models are used as features extractor (‘fc’ column) or as a
finetuning initialization (‘all’ column). XDC fixed features outperform several fully-finetuned Superv models.

Method Pretraining
Dataset

UCF101 HMDB51 ESC50
fc all fc all fc all

Random None 6.0±1.0 54.5 7.5±0.6 24.1 61.3±2.5 54.3
Superv ImageNet 74.5 79.9 42.8 44.5 NA NA
Superv Kinetics 89.7 90.9 61.5 58.0 79.5 82.3
Superv AudioSet 80.2 84.0 51.6 53.5 88.5 90.3
XDC IG-Random 80.7 88.8 49.9 61.2 84.5 86.3
XDC IG-Kinetics 85.3 91.5 56.0 63.1 84.3 84.8

UCF101 and HMDB51. However, such bias negatively impacts the performance on ESC50. (II) The
performance gap between the curated and uncurated pretraining shrinks significantly as we increase
the data size. For example, the performance gap on HMDB51 drops from 5.2% to 2.1% and 1.9%
when the pretraining size increases from 1M to 16M and 65M videos, respectively. This implies that
XDC can learn meaningful representations from truly uncurated data. To the best of our knowledge,
XDC is the first self-supervised method to study pretraining on large-scale uncurated video data.

Study 5: Full finetuning vs. learning fc-only. Here, we study two approaches for transferring
XDC to downstream tasks. Full finetuning: we finetune all parameters of the pretrained encoder on
the downstream task. Learning fc-only: we fix the pretrained encoder and learn a linear classifier for
the downstream task, i.e., a fully-connected (fc) layer on top of the frozen features. Table 5 compares
XDC with the supervised pretrained approaches under these two transfer-learning schemes. Obser-
vations: (I) The accuracy of most pretrained models (fully-supervised or self-supervised) degrades,
when used as a fixed feature extractor compared to when they are fully-finetuned on the downstream
tasks. Nonetheless, the relative performance of XDC compared to supervised pretrained models stays
generally the same when fully vs. fc-only finetuned on the downstream task. This suggests that XDC
pretraining is useful both as a fixed feature extractor and as a pretraining initialization. (II) XDC as a
fixed feature extractor outperforms many fully-finetuned supervised models. For example, fc-only
XDC outperforms, by significant margins, the fully-finetuned supervised AudioSet- and ImageNet-
pretrained models on both UCF101 and HMDB51. (III) We observe that fully-supervised pretraining,
followed by fc-only finetuning performs well when the pretraining taxonomy is well aligned with
that of the downstream task. For example, pretraining on Kinetics by learning fc-only on HMDB51
and UCF101 gives the best performance. This is expected as the label spaces of HMBD51 and
UCF101 overlap largely with that of Kinetics. This suggests that fully-supervised pretraining is more
taxonomy/downstream-task dependent, while our self-supervised XDC is taxonomy-independent.

5 Understanding XDC

What does XDC actually learn? What semantic signals does the algorithm use to train its encoders?
Here, we try to answer these questions by inspecting the k-means clustering results produced by the
last iteration of XDC. Figure 2 visualizes some audio and video clusters learned by XDC when trained
on Kinetics. These clusters are the top 2 audio clusters (left) and the top 2 video clusters (right)
ranked by purity w.r.t. Kinetics action labels. More clusters are presented in Table 6. We observe that
the top-purity clusters learned from both modalities exhibit strong semantic coherence. For example,
the audio 1st and 8th ranked clusters include concepts related to playing musical instruments that
have similar sounds, while the 1st ranked video cluster also groups playing-instrument concepts,
but mainly because of their appearance, as the cluster is all about guitars. Other interesting clusters
include: grouping by motor-engine sounds (audio #10), by different swimming strokes (video #4), by
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Figure 2: Visualization of XDC clusters on Kinetics videos. The top-2 audio clusters (left) and video clusters
(right) in terms of purity w.r.t. the Kinetics labels. Clusters are represented by the 10 closest videos (shown as
frames) to their centroid. Interestingly, XDC learned to group “scuba diving” with “snorkeling” (second left,
cluster #105) based on audio features and “scuba diving” with “feeding fish” (rightmost, cluster #27) based on
visual features. Please refer to our project website for an interactive visualization of all XDC clusters.

Table 6: XDC clusters. Top and bottom audio (left) and video (right) XDC clusters ranked by clustering purity
w.r.t. Kinetics labels. For each cluster, we list the three concepts with the highest purity (given in parentheses).

# Kinetics concepts
1 play bagpipes(0.70), play harmonica(0.04), play violin(0.03)
2 scuba diving(0.33), snorkeling(0.27), feeding fish(0.11)
8 play cello(0.15), play trombone(0.11), play accordion(0.09)
10 mowing lawn(0.14), driving tractor(0.09), motorcycling(0.06)
127 abseiling(0.01), grooming horse(0.01), milking cow(0.01)
128 washing feet(0.01), motorcycling(0.01), headbanging(0.01)

# Kinetics concepts
1 play bass guitar(0.37), play guitar(0.16), tap guitar(0.15)
4 swim backstroke(0.21), breast stroke(0.16), butterfly stroke(0.1)
5 golf putting(0.18), golf chipping(0.11), golf driving(0.05)
10 cook chicken(0.11), barbeque(0.07), fry vegetables(0.06)
63 pull ups(0.01), gymnastics tumbling(0.01), punching bag(0.01)
64 capoeira(0.01), riding elephant(0.01), feeding goats(0.01)

different golf shots (video #5), and different cooking activities (video #10). In the bottom-ranked
clusters, although the purity w.r.t. Kinetics concepts is low, we still find some coherence, mostly at
the scene level: a farm setting in audio #127 (“grooming horse”, “milking cow”) and gym activities in
video #63 (“pull ups”, “punching bag”). Many other bottom-ranked clusters appear to lack semantic
coherence when viewed through the lens of Kinetics labels. However, one of the motivations behind
the design of self-supervised methods is precisely to bypass the hand-design of label spaces, which
may not be the optimal ones for general representation learning. Our experiments suggest that the
label space learned by XDC yields strong and general audio and video features even though it does
not align perfectly with the taxonomies of existing datasets.

6 State-of-the-art self-supervised learning comparison

Experimental setup. Here, training is similar to our ablations except that we re-train our video
encoder on the last clustering assignment using 32-frame clips. Then following [28, 63], we finetune
on UCF101 and HMDB51 using 32-frame clips for both XDC and the fully-supervised baselines.
Inference is similar to our ablations except for using 32-frame clips. For the audio event classification
dataset DCASE [59], we follow [28] and extract conv_5 features for 60 uniformly-sampled clips per
audio sample and learn a linear SVM. We report the average top-1 accuracy over all splits.

Video action recognition. Table 7(a) compares XDC pretrained on four large-scale datasets against
state-of-the-art self-supervised methods, after finetuning on the UCF101 and HMDB51 benchmarks2.
We also compare against two fully-supervised methods pretrained on ImageNet and Kinetics. Results:
(I) XDC pretrained on IG-Kinetics sets new state-of-the-art performance for self-supervised methods
on both benchmarks, outperforming Elo [49] by 1.7% on UCF101 and 1.5% on HMDB51. Moreover,
XDC significantly outperforms fully-supervised pretraining on Kinetics: by 1.3% on UCF101 and
by 3.8% on HMDB51. (II) When directly compared on the same R(2+1)D-18 architecture, XDC
pretrained on Kinetics slightly outperforms AVTS [28] by 0.6% on UCF101 and 0.3% on HMDB51.
However, when both methods are pretrained on AudioSet, XDC outperforms AVTS with larger
margins: by 3.9% on UCF101 and 5.6% on HMDB51. This shows that XDC scales better than AVTS.
To further verify that XDC scales better, we pretrained AVTS on AudioSet-240K using R(2+1)D-18
and got 76.9% and 40.7% for UCF101 and HMDB51 on split-1, showing a smaller margin between
XDC and AVTS than when both are pretrained on the full AudioSet (cf. Table 3).

Audio event classification. Table 7(b) compares XDC pretrained on AudioSet and IG-Random
against the state-of-the-art self-supervised methods for audio classification. XDC achieves state-of-
the-art performance on DCASE and competitive results on ESC50 with only a 1.1% gap with [54].

2All XDC pretrained models are publicly released on our project website.
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Table 7: State-of-the-art comparison. We report the average top-1 accuracy over the official splits for
all benchmarks. (a) Video action recognition: Comparison between XDC with self-supervised and fully-
supervised methods on UCF101 and HMDB51. Not only does XDC set new state-of-the-art performance for
self-supervised methods, it also outperforms fully-supervised Kinetics and ImageNet pretraining. ∗ For fair
comparison with XDC, we report AVTS performance without dense prediction, i.e., we average the predictions
of 10 uniformly-sampled clips at inference. † For direct comparison with XDC, we evaluate AVTS using
R(2+1)D-18 and 10 uniformly-sampled clips at inference. (b) Audio event classification: We compare XDC
with self-supervised methods on ESC50 and DCASE. XDC achieves state-of-the-art performance on DCASE.

(a) Video action recognition.
Pretraining Evaluation

Method Architecture Dataset UCF101 HMDB51
ClipOrder [75] R(2+1)D-18 UCF101 72.4 30.9
MotionPred [68] C3D Kinetics 61.2 33.4
ST-Puzzle [27] 3D-ResNet18 Kinetics 65.8 33.7
DPC [17] 3D-ResNet34 Kinetics 75.7 35.7
CBT [61] S3D Kinetics 79.5 44.6
SpeedNet [4] S3D Kinetics 81.1 48.8
AVTS [28]∗ MC3-18 Kinetics 84.1 52.5
AVTS [28]† R(2+1)D-18 Kinetics 86.2 52.3
XDC (ours) R(2+1)D-18 Kinetics 86.8 52.6
AVTS [28]∗ MC3-18 AudioSet 87.7 57.3
AVTS [28]† R(2+1)D-18 AudioSet 89.1 58.1
XDC (ours) R(2+1)D-18 AudioSet 93.0 63.7
MIL-NCE [37] S3D HowTo100M 91.3 61.0
ELo [49] R(2+1)D-50 YouTube-8M 93.8 67.4
XDC (ours) R(2+1)D-18 IG-Random 94.6 66.5
XDC (ours) R(2+1)D-18 IG-Kinetics 95.5 68.9
Fully supervised R(2+1)D-18 ImageNet 84.0 48.1
Fully supervised R(2+1)D-18 Kinetics 94.2 65.1

(b) Audio event classification.
Method ESC50
Random Forest [48] 44.3
Piczak ConvNet [47] 64.5
SoundNet [2] 74.2
L3-Net [1] 79.3
AVTS [28] 82.3
ConvRBM [54] 86.5
XDC (AudioSet) 84.8
XDC (IG-Random) 85.4

Method DCASE
RG [50] 69
LTT [34] 72
RNH [52] 77
Ensemble [58] 78
SoundNet [2] 88
L3-Net [1] 93
AVTS [28] 94
XDC (AudioSet) 95
XDC (IG-Random) 95

7 XDC for temporal action localization

In this section, we further demonstrate that XDC can be useful beyond video and audio classification.
In particular, we employ the recent G-TAD [76] action localization algorithm, where we replace the
clip features (originally extracted from a TSN [69] model pretrained on Kinetics) with our XDC
features from the R(2+1)D-18 model pretrained on IG-Kinetics or IG-Random. We compare against
the features from the R(2+1)D-18 model fully-supervised pretrained on Kinetics. We emphasize
that we do not finetune any of the feature extractors used in this experiment. We follow the default
hyperparameters setting of G-TAD. Table 8 shows temporal action localization results of G-TAD with
different features on THUMOS14 [24] dataset. It reports the mean Average Precision (mAP) results
at different temporal Intersection over Union (tIoU) thresholds. Both XDC variants outperform the
fully-supervised features across all tIoU thresholds. This confirms the same trend observed in tasks
presented in Section 6 and suggests that XDC can be used for other tasks.

Table 8: Temporal action localization on THUMOS14. We compare G-TAD algorithm using our XDC
features vs. using the fully-supervised Kinetics-pretrained (Superv) features. We report the mean Average
Precision (mAP) results at different temporal Intersection over Union (tIoU) thresholds. Both XDC variants
outperform the fully-supervised features across all tIoU thresholds.

mAP @ tIoU
Features Type 0.3 0.4 0.5 0.6 0.7
Superv (Kinetics) 50.9 44.4 36.6 28.4 19.8
XDC (IG-Random) 51.5 44.8 36.9 28.6 20.0
XDC (IG-Kinetics) 51.5 44.9 37.2 28.7 20.0

8 Conclusion
We presented Cross-Modal Deep Clustering (XDC), a novel self-supervised model for video and audio.
XDC outperforms not only existing self-supervised methods but also fully-supervised ImageNet- and
Kinetics-pretraining for action recognition. To the best of our knowledge, XDC is the first to show
self-supervision outperforming large-scale full-supervision pretraining for action recognition when
pretrained on the same architecture and a larger number of uncurated videos.
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