Supplement to "Optimal Iterative Sketching Methods with the Subsampled Randomized Hadamard Transform"

Contents

A Proofs of main theorems 1
A. 1 Calculations of $\theta_{1, h}$ and $\theta_{2, h}$ for Haar sketch. 1
A.1.1 Proof of Lemma|3.2 2
A. 2 Proof of Theorem 3.1 4
A. 3 Calculations of $\theta_{1, h}$ and $\theta_{2, h}$ for SRHT 6
A. 4 Proof of Theorem/4.1 and/4.2 7
B Proofs of the auxiliary results 8
B. 1 Proof of the bounds on the support of F_{h} (Lemma|A.2p 8
B. 2 Characterization of the e.s.d. of C_{n} 9
B. 3 Proof of Lemma|A. 3 10
B. 4 Proof of the identity (25) 10

A Proofs of main theorems

A. 1 Calculations of $\theta_{1, h}$ and $\theta_{2, h}$ for Haar sketch

We first prove some lemmas and provide the proof of 3.2 in Section A.1.1.
This lemma characterizes the Stieltjes transform of the l.s.d. of $S_{n} U_{n}$.
Lemma A. 1 (Stieltjes transform of 1.s.d. of $S_{n} U_{n}$). We set $S_{1, n}=S_{n} U_{n}$. Then the matrix $S_{1, n}^{\top} S_{1, n}$ admits a l.s.d. whose Stieltjes transform m_{h} is given by

$$
\begin{equation*}
m_{h}(z)=\frac{z(2 \gamma-1)+\xi-\gamma-\sqrt{(\gamma+\xi-2+z)^{2}+4(z-1)(1-\gamma)(1-\xi)}}{2 \gamma z(1-z)} \tag{1}
\end{equation*}
$$

for any $z \in \mathbb{C} \backslash \mathbb{R}_{+}$.
Proof. First, observe that since both S_{n} and U_{n} are rectangular orthogonal matrices, we can embed them into full orthogonal matrices as $\mathbb{S}_{n}=\binom{S_{n}}{S_{n}^{\perp}}$ and $\mathbb{U}_{n}=\left(\begin{array}{cc}U_{n} & U_{n}^{\perp}\end{array}\right)$. Then, we can write

$$
S_{1, n}=\left(\begin{array}{cc}
I_{m} & 0 \tag{2}
\end{array}\right) \mathbb{S}_{n} \mathbb{U}_{n}\binom{I_{d}}{0}
$$

Let $\mathbb{W}_{n}=\mathbb{S}_{n} \mathbb{U}_{n}$, which is an $n \times n$ Haar matrix due to the orthogonal invariance of the Haar distribution. Then, we define

$$
C_{n}:=\left(\begin{array}{cc}
S_{1, n} S_{1, n}^{\top} & 0 \tag{3}\\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) \mathbb{W}_{n}\left(\begin{array}{cc}
I_{d} & 0 \\
0 & 0
\end{array}\right) \mathbb{W}_{n}^{\top}\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right)
$$

The matrix C_{n} is related to our matrix of interest $S_{1, n}^{\top} S_{1, n}$, as they have exactly the same non-zero eigenvalues. Thus, as a first step to establish Lemma A.1, we characterize the 1.s.d. of C_{n}.

The matrix C_{n} admits a 1.s.d. F_{C}, whose Stieltjes transform m_{C} is given by

$$
\begin{equation*}
m_{C}(z)=\frac{z+\gamma+\xi-2-\sqrt{(\gamma+\xi-2+z)^{2}+4(z-1)(1-\gamma)(1-\xi)}}{2 z(1-z)} \tag{4}
\end{equation*}
$$

for any $z \in \mathbb{C} \backslash \mathbb{R}_{+}$. The above expression (3) of the matrix C_{n} has the required form to apply Theorem 4.11 by [2], and hence characterize the e.s.d. of C_{n} through its η-transform which has to satisfy a fixed-point equation. We defer details of the proof to Section B. 2 Now, we use the fact that the matrices $S_{1, n}^{\top} S_{1, n}$ and C_{n} have the same non-zero eigenvalues. Almost surely, there are exactly d of them, which we denote $\lambda_{1}, \ldots, \lambda_{d}$. Then, the e.s.d. $F_{C_{n}}$ of C_{n} can be decomposed as

$$
\begin{equation*}
F_{C_{n}}(x)=\left(1-\frac{d}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{1}{n} \sum_{i=1}^{d} \mathbf{1}_{\left\{x \geqslant \lambda_{i}\right\}}=\left(1-\frac{d}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{d}{n} F_{h, n}(x) \tag{5}
\end{equation*}
$$

where $F_{h, n}$ is the e.s.d. of $S_{1, n}^{\top} S_{1, n}$. Taking the limit $n \rightarrow \infty$, we find that $F_{1, n}$ converges weakly almost surely to

$$
\begin{equation*}
F_{h}(x)=\frac{1}{\gamma}\left(F_{C}(x)-(1-\gamma) \mathbf{1}_{\{x \geqslant 0\}}\right) \tag{6}
\end{equation*}
$$

By definition of m_{h} and using (6), it follows that for $z \in \mathbb{C} \backslash \mathbb{R}_{+}$

$$
\begin{align*}
m_{h}(z)=\int \frac{1}{x-z} \mathrm{~d} F_{h}(x) & =\frac{1}{\gamma} \int \frac{1}{x-z} \mathrm{~d} F_{C}(x)-\frac{1-\gamma}{\gamma} \int \frac{1}{x-z} \delta_{0}(x) \mathrm{d} x \tag{7}\\
& =\frac{1}{\gamma} m_{C}(z)+\frac{1-\gamma}{\gamma z} \tag{8}
\end{align*}
$$

Plugging-in the expression of m_{C}, we obtain the claimed formula (1) for m_{h}.

We will need the following result regarding the support of F_{h}, which is proved in Appendix B. 1 .
Lemma A.2. The support of F_{h} satisfies

$$
\begin{equation*}
\inf \operatorname{supp}\left(F_{h}\right) \geqslant \frac{\left(1-\sqrt{\rho_{g}}\right)^{2}}{\left(1+\frac{1}{\sqrt{\xi}}\right)^{2}} \tag{9}
\end{equation*}
$$

Thus, the support of F_{h} is bounded away from 0 , so is the intersection of the support of F_{C} and \mathbb{R}^{*}. Further, the distribution F_{C} has a point mass at 0 equal to $1-\gamma$. We now turn to the trace calculations in Lemma 3.2

A.1.1 Proof of Lemma 3.2

1. Computing $\theta_{1, h}$

Using the facts that F_{C} has support within $[0,+\infty)$ and a point mass equal to $(1-\gamma)$ at 0 , its η-transform η_{C} is well-defined on $\{z \in \mathbb{R} \mid z>0\}$, and, for $z>0$, it can be decomposed as

$$
\begin{equation*}
\eta_{C}(z)=1-\gamma+\int_{x \neq 0} \frac{1}{1+z x} \mathrm{~d} F_{C}(x) \tag{10}
\end{equation*}
$$

The function $\frac{1}{x}$ is integrable on the set $\{x>0\}$ with respect to F_{C}, since the support of F_{C} on \mathbb{R}^{*} is bounded away from 0 . Since $\left|\frac{z}{1+x z}\right|<\frac{1}{x}$ when $z>0, x>0$, it follows by the dominated convergence theorem that

$$
\begin{equation*}
\lim _{z \rightarrow \infty} \int_{x \neq 0} \frac{z}{1+x z} \mathrm{~d} F_{C}(x)=\int_{x \neq 0} \lim _{z \rightarrow \infty} \frac{z}{1+x z} \mathrm{~d} F_{C}(x)=\int_{x \neq 0} \frac{1}{x} \mathrm{~d} F_{C}(x) \tag{11}
\end{equation*}
$$

Using (10), it follows that

$$
\begin{equation*}
\lim _{z \rightarrow \infty} z\left(\eta_{C}(z)-(1-\gamma)\right)=\int_{x \neq 0} \frac{1}{x} \mathrm{~d} F_{C}(x) \tag{12}
\end{equation*}
$$

On the other hand, we have that

$$
\begin{align*}
\lim _{z \rightarrow \infty} \eta_{C}(z) & =(1-\gamma)+\lim _{z \rightarrow \infty} \int_{x \neq 0} \frac{1}{1+z x} \mathrm{~d} F_{C}(t) \tag{13}\\
& =(1-\gamma)+\int_{x \neq 0} \lim _{z \rightarrow \infty} \frac{1}{1+z x} \mathrm{~d} F_{C}(x) \tag{14}\\
& =1-\gamma . \tag{15}
\end{align*}
$$

where the second equality is again justified by the dominated convergence theorem. Subtracting $1-\gamma$ from both sides of (33), multiplying by $z\left(1+\frac{\xi-1}{\eta_{C}(z)}\right)$ and letting $z \rightarrow \infty$, we obtain

$$
\lim _{z \rightarrow \infty} z\left(1+\frac{\xi-1}{\eta_{C}(z)}\right)\left(\eta_{C}(z)-(1-\gamma)\right)=\lim _{z \rightarrow \infty} z\left(1+\frac{\xi-1}{\eta_{C}(z)}\right)\left(\frac{\gamma}{1+z\left(1+\frac{\xi-1}{\eta_{C}(z)}\right)}\right)
$$

Note that the right-hand side of the above equation is equal to γ, and the left-hand side satisfies

$$
\begin{aligned}
\lim _{z \rightarrow \infty} z\left(1+\frac{\xi-1}{\eta_{C}(z)}\right)\left(\eta_{C}(z)-(1-\gamma)\right) & =\lim _{z \rightarrow \infty} z\left(\eta_{C}(z)-(1-\gamma)\right)\left(1+\frac{\xi-1}{1-\gamma}\right) \\
& =\frac{\xi-\gamma}{1-\gamma} \cdot \int_{x \neq 0} \frac{1}{x} \mathrm{~d} F_{C}(x)
\end{aligned}
$$

where we used (12) and (15). This shows that $\gamma=\frac{\xi-\gamma}{1-\gamma} \int_{x \neq 0} \frac{1}{x} \mathrm{~d} F_{C}(x)$. We conclude by observing that

$$
\theta_{1, h}=\lim _{n \rightarrow \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[\left(S_{1, n}^{\top} S_{1, n}\right)^{-1}\right]=\frac{1}{\gamma} \cdot \lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{d} \frac{1}{\lambda_{i}}\right]=\frac{1}{\gamma} \int_{x \neq 0} \frac{1}{x} \mathrm{~d} F_{C}(x)
$$

and consequently, $\theta_{1, h}=\frac{1-\gamma}{\xi-\gamma}$, which is the claimed result.
2. Computing $\theta_{2, h}$

Unrolling its definition, we have that

$$
\theta_{2, h}=\lim _{n \rightarrow \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[\left(S_{1, n}^{\top} S_{1, n}\right)^{-2}\right]=\frac{1}{\gamma} \cdot \lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{d} \frac{1}{\lambda_{i}^{2}}\right]=\frac{1}{\gamma} \int_{\{x \neq 0\}} \frac{1}{x^{2}} \mathrm{~d} F_{C}(x)
$$

where the limit in the third equation holds and is finite since F_{C} has support bounded away from 0 on \mathbb{R}^{*}. By definition of m_{C} and using the fact that F_{C} has point mass $1-\gamma$ at 0 , we get that

$$
\frac{\mathrm{d} m_{C}(z)}{\mathrm{d} z}=\int \frac{1}{(x-z)^{2}} \mathrm{~d} F_{C}(x)=\frac{1-\gamma}{z^{2}}+\int_{\{x \neq 0\}} \frac{1}{(x-z)^{2}} \mathrm{~d} F_{C}(x) .
$$

Using again the fact that F_{C} has support bounded away from 0 on \mathbb{R}^{*} and the dominated convergence theorem, we have that $\gamma \theta_{2, h}=\lim _{z \rightarrow 0} \int_{x \neq 0} \frac{1}{(x-z)^{2}} \mathrm{~d} F_{C}(x)$, and thus,

$$
\gamma \theta_{2, h}=\lim _{z \rightarrow 0}\left\{\frac{\mathrm{~d} m_{C}(z)}{\mathrm{d} z}-\frac{1-\gamma}{z^{2}}\right\} .
$$

We denote

$$
\begin{aligned}
& \triangle:=(\gamma+\xi-2+z)^{2}+4(z-1)(1-\gamma)(1-\xi) \\
& \triangle^{\prime}:=\frac{\mathrm{d} \triangle}{\mathrm{~d} z}=2(z+\gamma+\xi-2)+4(1-\gamma)(1-\xi)
\end{aligned}
$$

Then, using the expression (4) of m_{C} and taking the derivative, it follows that

$$
\begin{align*}
\frac{\mathrm{d} m_{C}(z)}{\mathrm{d} z}-\frac{1-\gamma}{z^{2}}= & \frac{1-\frac{1}{2 \sqrt{\triangle}}(2(z+\gamma+\xi-2)+4(1-\gamma)(1-\xi))}{2 z(1-z)} \tag{16}\\
& +\frac{(z+\gamma+\xi-2-\sqrt{\triangle})(2 z-1)}{2 z^{2}(z-1)^{2}}+\frac{\gamma-1}{z^{2}} \tag{17}\\
= & \frac{1}{2 z^{2}(z-1)^{2}}\left[\triangle_{1}+(2 \gamma \xi-\gamma-\xi) \triangle_{2}-\triangle_{3}+\triangle_{4}\right] \tag{18}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\triangle_{1}=\frac{z^{2}(z-1)}{\sqrt{\triangle}} \\
\triangle_{2}=\frac{z(z-1)}{\sqrt{\triangle}} \\
\triangle_{3}=(2 z-1) \sqrt{\triangle} \\
\triangle_{4}=z(1-z)+(z+\gamma+\xi-2)(2 z-1)+2(\gamma-1)(z-1)^{2}
\end{array}\right.
$$

According to L'Hospital rule,

$$
\begin{equation*}
\gamma \theta_{2, h}=\lim _{z \rightarrow 0} \frac{\triangle_{1}^{\prime \prime}+(2 \gamma \xi-\gamma-\xi) \triangle_{2}^{\prime \prime}-\triangle_{3}^{\prime \prime}+\triangle_{4}^{\prime \prime}}{2\left(12 z^{2}-12 z+2\right)}=\lim _{z \rightarrow 0} \frac{\triangle_{1}^{\prime \prime}+(2 \gamma \xi-\gamma-\xi) \triangle_{2}^{\prime \prime}-\triangle_{3}^{\prime \prime}+\triangle_{4}^{\prime \prime}}{4} \tag{19}
\end{equation*}
$$

where $\triangle_{i}^{\prime \prime}$ denotes the second derivative of \triangle_{i} with respect to z. After some calculations, we find that

$$
\begin{aligned}
\left.\triangle_{1}^{\prime \prime}\right|_{z=0} & =-\frac{2}{\xi-\gamma} \\
\left.\triangle_{2}^{\prime \prime}\right|_{z=0} & =\frac{2}{\xi-\gamma}+\frac{4 \gamma \xi-2 \gamma-2 \xi}{(\xi-\gamma)^{3}} \\
\left.\triangle_{3}^{\prime \prime}\right|_{z=0} & =\frac{4(2 \gamma \xi-\gamma-\xi)-1}{\xi-\gamma}+\frac{(2 \gamma \xi-\gamma-\xi)^{2}}{(\xi-\gamma)^{3}} \\
\left.\triangle_{4}^{\prime \prime}\right|_{z=0} & =2(2 \gamma-1)
\end{aligned}
$$

Using (19), it follows that

$$
\gamma \theta_{2, h}=\frac{1}{4}\left(\frac{-(2 \gamma-1)^{2}}{\xi-\gamma}+\frac{(2 \gamma \xi-\gamma-\xi)^{2}}{(\xi-\gamma)^{3}}\right)=\frac{\gamma(1-\gamma)\left(\gamma^{2}+\xi-2 \gamma \xi\right)}{(\xi-\gamma)^{3}}
$$

and finally, we obtain the claimed expression, that is, $\theta_{2, h}=\frac{(1-\gamma)\left(\gamma^{2}+\xi-2 \gamma \xi\right)}{(\xi-\gamma)^{3}}$.

A. 2 Proof of Theorem 3.1

Proof. Let $\left\{S_{t}\right\}$ be a sequence of independent $m \times n$ Haar matrices, and let $\left\{x_{t}\right\}$ be the sequence of iterates generated by the update 2] with $\mu_{t}=\theta_{1, h} / \theta_{2, h}$ and $\beta_{t}=0$. Recall that we denote $\Delta_{t}=U^{\top} A\left(x_{t}-x^{*}\right)$, where $A=U \Sigma V^{\top}$ is a thin singular value decomposition of A. For $t \geqslant 0$, we have that

$$
\begin{aligned}
A\left(A^{\top} S^{\top} S A\right)^{-1} A^{\top} & =U \Sigma V^{\top}\left(V \Sigma U^{\top} S^{\top} S U \Sigma V^{\top}\right)^{-1} V \Sigma U^{\top} \\
& =U \Sigma V^{\top} V \Sigma^{-1}\left(U^{\top} S^{\top} S U\right)^{-1} \Sigma^{-1} V V^{\top} \Sigma U^{\top} \\
& =U\left(U^{\top} S^{\top} S U\right)^{-1} U^{\top}
\end{aligned}
$$

Multiplying both sides of the update formula (2) by A, subtracting $A x^{*}$ and using the normal equation $A^{\top} A x^{*}=A^{\top} b$, we find that

$$
\begin{equation*}
A\left(x_{t+1}-x^{*}\right)=\left(I_{n}-\mu_{t} U\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1} U^{\top}\right) A\left(x_{t}-x^{*}\right) \tag{20}
\end{equation*}
$$

Multiplying both sides of 20) by U^{\top}, using the definition of Δ_{t} and the fact that $U^{\top} U=I_{d}$, it follows that

$$
\begin{aligned}
\Delta_{t+1} & =U^{\top}\left(I_{n}-\mu_{t} U\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1} U^{\top}\right) A\left(x_{t}-x^{*}\right) \\
& =\left(U^{\top}-\mu_{t} U^{\top} U\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1} U^{\top}\right)\left(A x_{t}-x^{*}\right) \\
& =\left(I_{d}-\mu_{t}\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1}\right) \Delta_{t}
\end{aligned}
$$

and then, taking the squared norm,

$$
\left\|\Delta_{t+1}\right\|^{2}=\Delta_{t}^{\top}\left(I_{d}-\mu_{t}\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1}\right)^{2} \Delta_{t}
$$

Taking the expectation with respect to S_{t} and using the independence of S_{t} with respect to S_{0}, \ldots, S_{t-1}, we obtain that

$$
\begin{align*}
\mathbb{E}_{S_{t}}\left[\left\|\Delta_{t+1}\right\|^{2}\right] & =\Delta_{t}^{\top} \mathbb{E}\left[\left(I_{d}-\mu_{t}\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1}\right)^{2}\right] \Delta_{t} \tag{21}\\
& =\Delta_{t}^{\top}\left(I_{d}-2 \mu_{t} \mathbb{E}\left[\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1}\right]+\mu_{t}^{2} \mathbb{E}\left[\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-2}\right]\right) \Delta_{t} \tag{22}
\end{align*}
$$

We write the spectral decomposition $U^{\top} S_{t}^{\top} S_{t} U=V \Sigma V^{\top}$ where Σ is diagonal with positive entries $\lambda_{1}, \ldots, \lambda_{d}$ and $V_{t}=\left[v_{1}, \ldots, v_{d}\right]$ is a $d \times d$ orthogonal matrix. The matrix $S_{t} U$ is distributed as the $m \times d$ upper-left block of an $n \times n$ Haar matrix. Therefore, $S_{t} U$ is right rotationally invariant, and so is the matrix V. It follows that $\lambda_{i} v_{i k} v_{i \ell} \stackrel{\mathrm{~d}}{=}-\lambda_{i} v_{i k} v_{i \ell}$ for any index i and any indices $k \neq \ell$. Then, for any $p \in\{1,2\}$ and any $k \neq \ell$, we have

$$
\mathbb{E}\left[\left(\left(U^{\top} S^{\top} S U\right)^{-p}\right)_{k \ell}\right]=\sum_{i=1}^{d} \mathbb{E}\left[\lambda_{i}^{-p} v_{i k} v_{i \ell}\right]=-\sum_{i=1}^{d} \mathbb{E}\left[\lambda_{i}^{-p} v_{i k} v_{i \ell}\right]
$$

which implies that the off-diagonal term $\mathbb{E}\left[\left(\left(U^{\top} S^{\top} S U\right)^{-p}\right)_{k \ell}\right]$ is equal to 0 . Further, by permutation invariance of the matrix V, we get that for any k,

$$
\mathbb{E}\left[\left(\left(U^{\top} S^{\top} S U\right)^{-p}\right)_{k k}\right]=\frac{1}{d} \operatorname{trace} \mathbb{E}\left[\left(U^{\top} S^{\top} S U\right)^{-p}\right]
$$

or equivalently, $\mathbb{E}\left[\left(U^{\top} S^{\top} S U\right)^{-p}\right]=\theta_{p, n} I_{d}$ where $\theta_{p, n}:=d^{-1}$ trace $\mathbb{E}\left[\left(U^{\top} S^{\top} S U\right)^{-p}\right]$. Then, using (22), it follows that

$$
\begin{aligned}
\mathbb{E}_{S_{t}}\left[\left\|\Delta_{t+1}\right\|^{2}\right] & =\Delta_{t}^{\top}\left(I_{d}-2 \mu_{t} \theta_{1, n} I_{d}+\mu_{t}^{2} \theta_{2, n} I_{d}\right) \Delta_{t} \\
& =\left(1-2 \mu_{t} \theta_{1, n}+\mu_{t}^{2} \theta_{2, n}\right) \cdot\left\|\Delta_{t}\right\|^{2} \\
& =\left(1-\frac{\theta_{1, n}^{2}}{\theta_{2, n}}+\left(\frac{\theta_{1, n}}{\sqrt{\theta_{2, n}}}-\mu_{t} \sqrt{\theta_{2, n}}\right)^{2}\right) \cdot\left\|\Delta_{t}\right\|^{2}
\end{aligned}
$$

By induction, we further obtain

$$
\frac{\mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right]}{\left\|\Delta_{0}\right\|^{2}}=\prod_{j=0}^{t-1}\left(1-\frac{\theta_{1, n}{ }^{2}}{\theta_{2, n}}+\left(\frac{\theta_{1, n}}{\sqrt{\theta_{2, n}}}-\mu_{j} \sqrt{\theta_{2, n}}\right)^{2}\right)
$$

Taking the limit $n \rightarrow \infty$ and using the definition $\theta_{h, p}=\lim _{n \rightarrow \infty} \theta_{p, n}$ for $p \in\{1,2\}$, we find that

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right]}{\left\|\Delta_{0}\right\|^{2}}=\prod_{j=0}^{t-1}\left(1-\frac{\theta_{1, h}^{2}}{\theta_{2, h}}+\left(\frac{\theta_{1, h}}{\sqrt{\theta_{2, h}}}-\mu_{j} \sqrt{\theta_{2, h}}\right)^{2}\right)
$$

The above right-hand side is minimized at $\mu_{j}=\theta_{1, h} / \theta_{2, h}$ for all times steps $j \geqslant 0$, which yields the error formula

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right]}{\left\|\Delta_{0}\right\|^{2}}=\left(1-\frac{\theta_{1, h}^{2}}{\theta_{2, h}}\right)^{t} .
$$

Plugging-in the expressions of $\theta_{1, h}$ and $\theta_{2, h}$, we obtain the claimed convergence rate ρ_{h}.
It remains to prove that ρ_{h} is the best rate one may achieve with the update (2) along with Haar embeddings. It is actually an immediate consequence of Theorem 2 in [4] whose assumptions (precisely, Assumption 1 in [4]) are trivially satisfied by Haar embeddings.

A. 3 Calculations of $\theta_{1, h}$ and $\theta_{2, h}$ for SRHT

Our analysis proceeds in a way similar to the analysis of the Haar case, and we describe in this paragraph the main steps. Denote by F_{S} the 1.s.d. of $U^{\top} S^{\top} S U$ and by $F_{S, n}$ its e.s.d. As we did for the Haar case with the matrix C_{n}, we introduce here an auxiliary matrix G_{n} whose e.s.d. is related to $F_{S, n}$. Then, we characterize the η-transform η_{G} of its l.s.d. F_{G}. Our analysis for η_{G} uses recent results on asymptotically liberating sequences from free probability [1]. This technique has also been used in the prior work [3]. Finally, we show that η_{G} is equal to the η-transform η_{C} of F_{C}, and we conclude that $F_{S}=F_{h}$.

Let $S=B H_{n} D P$ be the $n \times n$ SRHT matrix (before discarding the rows) as defined in Section 4 in the paper, and U be an $n \times d$ deterministic matrix with orthonormal columns. Note that whether we consider the zero rows or not in the matrix S, the matrix $U^{\top} S^{\top} S U$ remains the same, and so does its l.s.d. The matrices B, H_{n} and D are all symmetric matrices, and they respectively satisfy $B^{2}=B, H_{n}^{2}=I_{n}$ and $D^{2}=I_{n}$, and P is also an orthogonal matrix. Then, we have that $S^{\top} S=P^{\top} D H_{n} B H_{n} D P$, and further,

$$
\left(S^{\top} S\right)^{2}=P^{\top} D H_{n} B H_{n} D P P^{\top} D H_{n} B H_{n} D P=P^{\top} D H_{n} B H_{n} D P=S^{\top} S
$$

We first have the following observation, whose proof is deferred to Appendix B. 3
Lemma A.3. For P, B, D, H_{n} and U defined as above, we have the following equality in distribution

$$
\begin{equation*}
U^{\top}\left(P^{\top} D H_{n}\right) B(H D P) U \stackrel{\mathrm{~d}}{=} U^{\top}\left(P^{\top} D H_{n} D P\right) B\left(P^{\top} D H_{n} D P\right) U \tag{23}
\end{equation*}
$$

We now proceed with asymptotic statements, and we introduce the subscript n to all matrices. We set $W_{n}:=$ $P_{n}^{\top} D_{n} H_{n} D_{n} P_{n}$. It holds that the matrix $U_{n}^{\top} W_{n} B_{n} W_{n} U_{n}$ has the same nonzero eigenvalues as $G_{n}:=B_{n} W_{n} U_{n} U_{n}^{\top} W_{n} B_{n}$, so that we first find the l.s.d. of the matrix G_{n}. The reader may notice that G_{n} plays a similar role in the analysis of the SRHT case, to that of the matrix C_{n} in the analysis of the Haar case.

The following result states the asymptotic freeness of the matrices B_{n} and $W_{n} U_{n} U_{n}^{\top} W_{n}$. Its proof follows directly from Corollaries 3.5 and 3.7 by [1].

Lemma A.4. Let B_{n}, W_{n}, U_{n} be defined as above. Then, the matrices $\left\{B_{n}, W_{n} U_{n} U_{n}^{\top} W_{n}\right\}$ are asymptotically free in the limit of the non-commutative probability spaces of random matrices. Consequently, the e.s.d. of the matrix $G_{n}=B_{n} W_{n} U_{n} U_{n}^{\top} W_{n} B_{n}$ converges to the freely multiplicative convolution of the l.s.d. F_{B} of B_{n} and the l.s.d. F_{U} of $U_{n} U_{n}^{\top}$, that is, G_{n} has l.s.d. given by $F_{G}=F_{B} \boxtimes F_{U}$.

Since the density of the l.s.d. F_{B} is $f_{B}=\xi \delta_{1}+(1-\xi) \delta_{0}$ and and the density of F_{U} is $f_{U}=\gamma \delta_{1}+(1-\gamma) \delta_{0}$, we have that the S-transforms S_{B} of F_{B} and S_{U} of F_{U} are respectively equal to $S_{B}(y)=\frac{y+1}{y+\xi}$ and $S_{U}(y)=\frac{y+1}{y+\gamma}$. From Lemma A.4, it follows that the S-transform S_{G} of F_{G} is the product of S_{B} and S_{U}, i.e.,

$$
\begin{equation*}
S_{G}(y)=S_{U}(y) S_{B}(y)=\frac{(y+1)^{2}}{(y+\xi)(y+\gamma)} . \tag{24}
\end{equation*}
$$

First, note that using their respective definitions, the S-transform of F_{G} and its η-transform η_{G} are related by the equation $\eta_{G}\left(-\frac{y}{y+1} S_{G}(y)\right)=y+1$. Plugging-in the expression 24$)$ of $S_{G}(y)$ into the latter equation, we obtain that

$$
\eta_{G}\left(-\frac{y(y+1)}{(y+\gamma)(y+\xi)}\right)=y+1
$$

Letting $z=-\frac{(y+\gamma)(y+\xi)}{y(y+1)}$ and using the relationship (8) between the Stieltjes and η-transforms, we find that the Stieltjes transform m_{G} of G is equal to

$$
m_{G}(z)=\frac{z+\gamma+\xi-2-\sqrt{g(z)}}{2 z(1-z)}
$$

where $g(z)=(\gamma+\xi-2+z)^{2}+4(z-1)(1-\gamma)(1-\xi)$. Hence, we get that $m_{G}(z)=m_{C}(z)$, that is, $F_{G}=F_{C}$.
Further, the matrix G_{n} has the same non-zero eigenvalues as the matrix $U_{n}^{\top} W_{n} B_{n} W_{n} U_{n}$ which, according to Lemma A.3. is equal in distribution to $U_{n}^{\top} S_{n}^{\top} S_{n} U_{n}$. Denote by $\lambda_{1}, \ldots, \lambda_{\tilde{d}}$ the non-zero eigenvalues of $U_{n}^{\top} S_{n}^{\top} S_{n} U_{n}$, where \widetilde{d} is itself a random number due to the randomness of non-zero rows \widetilde{m}. Hence, the e.s.d $F_{G, n}$ of G_{n} and the e.s.d. $F_{S, n}$ of $U_{n}^{\top} S_{n}^{\top} S_{n} U_{n}$ satisfy (see Appendix B.4

$$
\begin{equation*}
F_{G_{n}}(x) \stackrel{\mathrm{d}}{=}\left(1-\frac{d}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{d}{n} F_{S, n}(x) \tag{25}
\end{equation*}
$$

Thus, we obtain that $F_{S, n}$ converges weakly almost surely to the distribution

$$
\begin{equation*}
F_{S}(x):=\frac{1}{\gamma}\left(F_{G}(x)-(1-\gamma) \mathbf{1}_{\{x \geqslant 0\}}\right)=\frac{1}{\gamma}\left(F_{C}(x)-(1-\gamma) \mathbf{1}_{\{x \geqslant 0\}}\right) . \tag{26}
\end{equation*}
$$

The latter expression is equal to $F_{h}(x)$ according to (6), so that $F_{S}(x)=F_{h}(x)$. The analysis of the traces of the expected first and second inverse moments only involves the limiting distribution (we refer the reader to the proof of the expressions of $\theta_{1, h}$ and $\theta_{2, h}$, in Section A.1). Due to the equality $F_{h}=F_{S}$, they remain the same with SRHT matrices, which concludes the proof of Lemma 4.3

A. 4 Proof of Theorem 4.1 and 4.2

Let $\left\{S_{t}\right\}$ be a sequence of independent $m \times n$ SRHT matrices, and let $\left\{x_{t}\right\}$ be the sequence of iterates generated by the update (2) with $\mu_{t}=\theta_{1, h} / \theta_{2, h}$ and $\beta_{t}=0$. Denote $\Delta_{t}=U^{\top} A\left(x_{t}-x^{*}\right)$ the sequence of error vectors. The proof follows exactly the same lines as for Theorem 4.1 up to the relationship 22, which we recall here,

$$
\begin{equation*}
\mathbb{E}_{S_{t}}\left[\left\|\Delta_{t+1}\right\|^{2}\right]=\mathbb{E}_{S_{t}}\left[\Delta_{t}^{\top}\left(I_{d}-\mu_{t}\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1}\right)^{2} \Delta_{t}\right] \tag{27}
\end{equation*}
$$

Denote $Q_{t}=I_{d}-\mu_{t}\left(U^{\top} S_{t}^{\top} S_{t} U\right)^{-1}$. It holds that $\Delta_{t+1}=Q_{t} \Delta_{t}$ as previously shown. Hence, by induction, we obtain that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right]=\operatorname{trace} \mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0} \Delta_{0} \Delta_{0}^{\top}\right] \tag{28}
\end{equation*}
$$

Using the independence of Δ_{0} and the Q_{i}, and the assumption $\mathbb{E}\left[\Delta_{0} \Delta_{0}^{\top}\right]=I_{d} / d$, it follows that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right]=\frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{1} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}^{2}\right] \tag{29}
\end{equation*}
$$

It holds that the matrix Q_{0}^{2} is asymptotically free from $Q_{t-1} \ldots Q_{1}$. Therefore, using the trace decoupling relation (7), we have that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right] & =\lim _{n \rightarrow \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{1} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}^{2}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{0}^{2}\right] \cdot \lim _{n \rightarrow \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{2} \ldots Q_{t-1} Q_{t-1} \cdots Q_{1}^{2}\right]
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty} \frac{1}{d}$ trace $\mathbb{E}\left[Q_{0}^{2}\right]=\left(1-2 \mu_{0} \theta_{1, h}+\mu_{0}^{2} \theta_{2, h}\right)$. Repeating the same asymptotic freeness argument between Q_{1}^{2} and $Q_{t-1} \ldots Q_{2}$ and plugging-in $\mu_{j}=\theta_{1, h} / \theta_{2, h}$, we finally obtain the claimed result,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left\|\Delta_{t+1}\right\|^{2}\right] & =\prod_{j=0}^{t-1}\left(1-\mu_{j} \theta_{1, h}+\mu_{j}^{2} \theta_{2, h}\right) \\
& =\left(1-\frac{\theta_{1, h}^{2}}{\theta_{2, h}}\right)^{t}
\end{aligned}
$$

The proof of Theorem 4.2 immediately follows from an alternative upper-bound on the expression (28) for the norm of the error. In particular, we note that

$$
\begin{aligned}
\mathbb{E}\left[\left\|\Delta_{t}\right\|^{2}\right] & =\operatorname{trace} \mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0} \Delta_{0} \Delta_{0}^{\top}\right] \\
& \leq\left\|\Delta_{0} \Delta_{0}^{\top}\right\|_{2} \operatorname{trace} \mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}\right] \\
& =d\left\|\Delta_{0}\right\|_{2}^{2} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}\right]
\end{aligned}
$$

We then combine the earlier expression (29) with the above upper-bound and complete the proof.
Remark A.1. In view of equations (4-6) in [1], one can show that asymptotic freeness between $U^{\top} S^{\top} S U$ and a rank-one matrix $v v^{\top}$ holds provided that $\|v\|_{2}<\infty$ as the dimensions grow to infinity. One could then wonder whether such a result can be applied to our setting, in order to remove the assumption $\mathbb{E} \Delta_{0} \Delta_{0}^{\top}=\frac{1}{d} \cdot I_{d}$. Using (28), dividing by $\mathbb{E}\left\|\Delta_{0}\right\|^{2}$ and denoting $\widetilde{\Delta}_{0}=\frac{\Delta_{0}}{\sqrt{\mathbb{E}\left\|\Delta_{0}\right\|^{2} / d}}$, we get

$$
\frac{\mathbb{E}\left\|\Delta_{t}\right\|^{2}}{\mathbb{E}\left\|\Delta_{0}\right\|^{2}}=\frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0} \widetilde{\Delta}_{0} \widetilde{\Delta}_{0}^{\top}\right]
$$

Provided we have asymptotic freeness between $\widetilde{\Delta}_{0} \widetilde{\Delta}_{0}^{\top}$ and $Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left\|\Delta_{t}\right\|^{2}}{\mathbb{E}\left\|\Delta_{0}\right\|^{2}}=\lim _{n \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}\right] \cdot \lim _{n \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[\widetilde{\Delta}_{0} \widetilde{\Delta}_{0}^{\top}\right]
$$

According to our previous analysis, the term $\lim _{n \infty} \frac{1}{d}$ trace $\mathbb{E}\left[Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}\right]$ is equal to $\left(1-\frac{\theta_{1, h}^{2}}{\theta_{2, h}}\right)^{t}$. On the other hand, the term $\lim _{n \infty} \frac{1}{d}$ trace $\mathbb{E}\left[\widetilde{\Delta}_{0} \widetilde{\Delta}_{0}^{\top}\right]$ is equal to 1 , so that we would get the claimed result. But, for asymptotic freeness to hold between $\widetilde{\Delta}_{0} \widetilde{\Delta}_{0}^{\top}$ and $Q_{0} \ldots Q_{t-1} Q_{t-1} \ldots Q_{0}$, we need $\left\|\widetilde{\Delta}_{0}\right\|<\infty$, and this assumption seems too strong: for instance, if Δ_{0} is deterministic, then $\left\|\widetilde{\Delta}_{0}\right\|=\sqrt{d}$ which is unbounded as the dimensions grow to infinity.

B Proofs of the auxiliary results

B. 1 Proof of the bounds on the support of F_{h} (Lemma A.2)

Proof. We show that the support of F_{h} satisfies

$$
\inf \operatorname{supp}\left(F_{h}\right) \geqslant \frac{\left(1-\sqrt{\rho_{g}}\right)^{2}}{\left(1+\frac{1}{\sqrt{\xi}}\right)^{2}}
$$

Let S be an $m \times n$ Haar matrix, U an $n \times d$ deterministic matrix with orthonormal columns, and S_{g} be an $m \times n$ matrix independent of S, with i.i.d. entries $\mathcal{N}(0,1 / m)$. Write $S_{g}=\Omega_{\ell} \Sigma \Omega_{r}$ a singular value decomposition of S_{g}. It
holds that Ω_{ℓ} is an $m \times m$ Haar matrix, independent of the $m \times m$ diagonal matrix of singular values Σ, and $\Omega_{r} \stackrel{\text { d }}{=} S$, so that $\Omega_{\ell} \Sigma S \stackrel{\text { d }}{=} S_{g}$. Further, the operator norm of Σ satisfies $\lim _{n \rightarrow \infty}\|\Sigma\|_{2}=\left(1+\frac{1}{\sqrt{\xi}}\right)$ almost surely. Then,

$$
\begin{aligned}
\sigma_{\min }(S U)=\min _{\|x\|=1}\|S U x\| & \geqslant \min _{\|x\|=1} \frac{\|\Sigma S U x\|}{\|\Sigma\|_{2}} \\
& =\frac{1}{\|\Sigma\|_{2}} \cdot \min _{\|x\|=1}\left\|\Omega_{\ell} \Sigma S U x\right\|
\end{aligned}
$$

Almost surely, $\min _{\|x\|=1}\left\|\Omega_{\ell} \Sigma S x\right\| \rightarrow\left(1-\sqrt{\rho_{g}}\right)$ as $n \rightarrow \infty$. Thus, almost surely, $\liminf _{n \rightarrow \infty} \sigma_{\min }(S U) \geqslant \frac{\left(1-\sqrt{\rho_{g}}\right)}{\left(1+\frac{1}{\sqrt{\xi}}\right)}$, which yields the claimed lower bound on the support of F_{h}.

B. 2 Characterization of the e.s.d. of C_{n}

Recall the definition (3) of the matrix C_{n},

$$
C_{n}=\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) \mathbb{W}_{n}\left(\begin{array}{cc}
I_{d} & 0 \\
0 & 0
\end{array}\right) \mathbb{W}_{n}^{\top}\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) .
$$

We leverage Theorem 4.11 from [2], which we recall for the sake of completeness.
Theorem B. 1 (Theorem 4.11, [2]). Let $D_{n} \in \mathbb{R}^{n \times n}$ and $T_{n} \in \mathbb{R}^{n \times n}$ be diagonal non-negative matrices, and $\mathbb{W}_{n} \in \mathbb{R}^{n \times n}$ be a Haar matrix. Denote F_{D} and F_{T} the respective l.s.d. of D_{n} and T_{n}. Denote C_{n} the matrix $C_{n}:=D_{n}^{\frac{1}{2}} \mathbb{W}_{n} T_{n} \mathbb{W}_{n}^{\top} D_{n}^{\frac{1}{2}}$. Then, as n tends to infinity, the e.s.d. of C_{n} converges to F whose η-transform η_{F} satisfies

$$
\begin{aligned}
\eta_{F}(z) & =\int \frac{1}{z \gamma(z) x+1} \mathrm{~d} F_{D}(x) \\
\gamma(z) & =\int \frac{x}{\eta_{F}(z)+z \delta(z) x} \mathrm{~d} F_{T}(x) \\
\delta(z) & =\int \frac{x}{z \gamma(z) x+1} \mathrm{~d} F_{D}(x) .
\end{aligned}
$$

The e.s.d. of $\left(\begin{array}{cc}I_{d} & 0 \\ 0 & 0\end{array}\right)$ converges to the distribution F_{γ} with density $\gamma \delta_{1}+(1-\gamma) \delta_{0}$, and the e.s.d. of $\left(\begin{array}{cc}I_{m} & 0 \\ 0 & 0\end{array}\right)$ converges to the distribution F_{ξ} with density $\xi \delta_{1}+(1-\xi) \delta_{0}$. Then, according to Theorem B.1 the e.s.d. of C_{n} converges to a distribution F_{C}, whose η-transform η_{C} is solution of the following system of equations,

$$
\begin{align*}
\eta_{C}(z) & =\int \frac{1}{z \gamma(z) x+1} \mathrm{~d} F_{\xi}(x) \tag{30}\\
\gamma(z) & =\int \frac{x}{\eta_{C}(z)+z \delta(z) x} \mathrm{~d} F_{\gamma}(x) \tag{31}\\
\delta(z) & =\int \frac{x}{z \gamma(z) x+1} \mathrm{~d} F_{\xi}(x) \tag{32}
\end{align*}
$$

Plugging the above expressions of F_{ξ} and F_{γ} into the above equations, and after simplification, we obtain that η_{C} is solution of the following second-order equation

$$
\begin{equation*}
\eta_{C}(z)=(1-\gamma)+\frac{\gamma}{1+z\left(1+\frac{\xi-1}{\eta_{C}(z)}\right)} \tag{33}
\end{equation*}
$$

Plugging the relationship (8) between the Stieltjes and η-transforms into (33), we find that

$$
\begin{equation*}
m_{C}(z)=\frac{z+\gamma+\xi-2-\sqrt{g(z)}}{2 z(1-z)} \tag{34}
\end{equation*}
$$

where $g(z)=(\gamma+\xi-2+z)^{2}+4(z-1)(1-\gamma)(1-\xi)$, and we choose the branch of the square-root such that $m_{C}(z) \in \mathbb{C}^{+}$for $z \in \mathbb{C}^{+}, m_{C}(z) \in \mathbb{C}^{-}$for $z \in \mathbb{C}^{-}$and $m_{C}(z)>0$ for $z<0$.

B. 3 Proof of Lemma A. 3

Proof. Note that both B and D are diagonal matrices whose diagonal entries are i.i.d. random variables, and P is a permutation matrix. Define $\tilde{B}=P B P^{\top}$ and $\tilde{D}=P^{\top} D P$, then we have

$$
\tilde{B} \stackrel{d}{=} B, \quad \tilde{D} \stackrel{d}{=} D
$$

and

$$
\begin{equation*}
D P=P \tilde{D}, \quad P^{\top} D=\tilde{D} P^{\top} . \tag{35}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
U^{\top} P^{\top} D H_{n} D P B P^{\top} D H_{n} D P U & =U^{\top} P^{\top} D H_{n} P \tilde{D} B \tilde{D} P^{\top} H_{n} D P U \\
& =U^{\top} P^{\top} D H_{n} P B \tilde{D}^{2} P^{\top} H_{n} D P U \\
& =U^{\top} P^{\top} D H_{n} P B P^{\top} H_{n} D P U \\
& =U^{\top} P^{\top} D H_{n} \tilde{B} H_{n} D P U \\
& \stackrel{d}{=} U^{\top} P^{\top} D H_{n} B H_{n} D P U,
\end{aligned}
$$

where the first equation follows from (35), the second equation holds because \tilde{D} and B are diagonal so they commute, while the third equation holds because $D^{2}=I_{n}$.

B. 4 Proof of the identity (25)

We note that

$$
\begin{aligned}
F_{G_{n}}(x) & \stackrel{\mathrm{d}}{=}\left(1-\frac{\widetilde{d}}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{1}{n} \sum_{j=1}^{\widetilde{d}} \mathbf{1}_{\left\{x \geqslant \lambda_{j}\right\}} \\
& =\left(1-\frac{\widetilde{d}}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{d}{n} \cdot \frac{1}{d} \sum_{j=1}^{\tilde{d}} \mathbf{1}_{\left\{x \geqslant \lambda_{j}\right\}} \\
& =\left(1-\frac{\widetilde{d}}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{d}{n}\left(F_{S, n}(x)-\left(\frac{d-\widetilde{d}}{d}\right) \mathbf{1}_{\{x \geqslant 0\}}\right) \\
& =\left(1-\frac{d}{n}\right) \mathbf{1}_{\{x \geqslant 0\}}+\frac{d}{n} F_{S, n}(x),
\end{aligned}
$$

which proves (25).

References

[1] G. W. Anderson and B. Farrell. Asymptotically liberating sequences of random unitary matrices. Advances in Mathematics, 255:381-413, 2014.
[2] R. Couillet and M. Debbah. Random Matrix Methods for Wireless Communications. Cambridge University Press, 2011.
[3] E. Dobriban and S. Liu. Asymptotics for sketching in least squares regression. In Advances in Neural Information Processing Systems, pages 3670-3680, 2019.
[4] J. Lacotte and M. Pilanci. Faster least squares optimization. arXiv preprint arXiv:1911.02675, 2019.

