Supplement to "Optimal Iterative Sketching Methods with the Subsampled Randomized Hadamard Transform"

Contents

A	Proo	ofs of main theorems
	A.1	Calculations of $\theta_{1,h}$ and $\theta_{2,h}$ for Haar sketch.
		A.1.1 Proof of Lemma 3.2
	A.2	Proof of Theorem 3.1
	A.3	Calculations of $\theta_{1,h}$ and $\theta_{2,h}$ for SRHT
	A.4	Proof of Theorem 4.1 and 4.2
B	Proo	ofs of the auxiliary results
	B .1	Proof of the bounds on the support of F_h (Lemma A.2)
	B.2	Characterization of the e.s.d. of C_n
	B.3	Proof of Lemma A.3
	B. 4	Proof of the identity (25)

A Proofs of main theorems

A.1 Calculations of $\theta_{1,h}$ and $\theta_{2,h}$ for Haar sketch

We first prove some lemmas and provide the proof of 3.2 in Section A.1.1. This lemma characterizes the Stieltjes transform of the l.s.d. of S_nU_n .

Lemma A.1 (Stieltjes transform of l.s.d. of S_nU_n). We set $S_{1,n} = S_nU_n$. Then the matrix $S_{1,n}^{\top}S_{1,n}$ admits a *l.s.d.* whose Stieltjes transform m_h is given by

$$m_h(z) = \frac{z(2\gamma - 1) + \xi - \gamma - \sqrt{(\gamma + \xi - 2 + z)^2 + 4(z - 1)(1 - \gamma)(1 - \xi)}}{2\gamma z(1 - z)},$$
(1)

for any $z \in \mathbb{C} \setminus \mathbb{R}_+$ *.*

Proof. First, observe that since both S_n and U_n are rectangular orthogonal matrices, we can embed them into full orthogonal matrices as $\mathbb{S}_n = \begin{pmatrix} S_n \\ S_n^{\perp} \end{pmatrix}$ and $\mathbb{U}_n = \begin{pmatrix} U_n & U_n^{\perp} \end{pmatrix}$. Then, we can write

$$S_{1,n} = \begin{pmatrix} I_m & 0 \end{pmatrix} \mathbb{S}_n \mathbb{U}_n \begin{pmatrix} I_d \\ 0 \end{pmatrix}.$$
⁽²⁾

Let $\mathbb{W}_n = \mathbb{S}_n \mathbb{U}_n$, which is an $n \times n$ Haar matrix due to the orthogonal invariance of the Haar distribution. Then, we define

$$C_n := \begin{pmatrix} S_{1,n} S_{1,n}^\top & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_m & 0\\ 0 & 0 \end{pmatrix} \mathbb{W}_n \begin{pmatrix} I_d & 0\\ 0 & 0 \end{pmatrix} \mathbb{W}_n^\top \begin{pmatrix} I_m & 0\\ 0 & 0 \end{pmatrix}.$$
(3)

The matrix C_n is related to our matrix of interest $S_{1,n}^{\top}S_{1,n}$, as they have exactly the same non-zero eigenvalues. Thus, as a first step to establish Lemma A.1, we characterize the l.s.d. of C_n .

The matrix C_n admits a l.s.d. F_C , whose Stieltjes transform m_C is given by

$$m_C(z) = \frac{z + \gamma + \xi - 2 - \sqrt{(\gamma + \xi - 2 + z)^2 + 4(z - 1)(1 - \gamma)(1 - \xi)}}{2z(1 - z)},$$
(4)

for any $z \in \mathbb{C} \setminus \mathbb{R}_+$. The above expression (3) of the matrix C_n has the required form to apply Theorem 4.11 by [2], and hence characterize the e.s.d. of C_n through its η -transform which has to satisfy a fixed-point equation. We defer details of the proof to Section B.2. Now, we use the fact that the matrices $S_{1,n}^{\top}S_{1,n}$ and C_n have the same non-zero eigenvalues. Almost surely, there are exactly d of them, which we denote $\lambda_1, \ldots, \lambda_d$. Then, the e.s.d. F_{C_n} of C_n can be decomposed as

$$F_{C_n}(x) = \left(1 - \frac{d}{n}\right) \mathbf{1}_{\{x \ge 0\}} + \frac{1}{n} \sum_{i=1}^d \mathbf{1}_{\{x \ge \lambda_i\}} = \left(1 - \frac{d}{n}\right) \mathbf{1}_{\{x \ge 0\}} + \frac{d}{n} F_{h,n}(x),$$
(5)

where $F_{h,n}$ is the e.s.d. of $S_{1,n}^{\top}S_{1,n}$. Taking the limit $n \to \infty$, we find that $F_{1,n}$ converges weakly almost surely to

$$F_h(x) = \frac{1}{\gamma} \left(F_C(x) - (1 - \gamma) \mathbf{1}_{\{x \ge 0\}} \right) .$$
(6)

By definition of m_h and using (6), it follows that for $z \in \mathbb{C} \setminus \mathbb{R}_+$

$$m_h(z) = \int \frac{1}{x-z} \, \mathrm{d}F_h(x) = \frac{1}{\gamma} \int \frac{1}{x-z} \, \mathrm{d}F_C(x) - \frac{1-\gamma}{\gamma} \int \frac{1}{x-z} \, \delta_0(x) \, \mathrm{d}x \tag{7}$$

$$=\frac{1}{\gamma}m_C(z) + \frac{1-\gamma}{\gamma z}.$$
(8)

Plugging-in the expression of m_C , we obtain the claimed formula (1) for m_h .

We will need the following result regarding the support of F_h , which is proved in Appendix B.1.

Lemma A.2. The support of F_h satisfies

$$\inf \operatorname{supp}(F_h) \geqslant \frac{(1 - \sqrt{\rho_g})^2}{\left(1 + \frac{1}{\sqrt{\xi}}\right)^2}.$$
(9)

Thus, the support of F_h is bounded away from 0, so is the intersection of the support of F_C and \mathbb{R}^* . Further, the distribution F_C has a point mass at 0 equal to $1 - \gamma$. We now turn to the trace calculations in Lemma 3.2.

A.1.1 Proof of Lemma 3.2

1. Computing $\theta_{1,h}$

Using the facts that F_C has support within $[0, +\infty)$ and a point mass equal to $(1 - \gamma)$ at 0, its η -transform η_C is well-defined on $\{z \in \mathbb{R} \mid z > 0\}$, and, for z > 0, it can be decomposed as

$$\eta_C(z) = 1 - \gamma + \int_{x \neq 0} \frac{1}{1 + zx} \mathrm{d}F_C(x) \,. \tag{10}$$

The function $\frac{1}{x}$ is integrable on the set $\{x > 0\}$ with respect to F_C , since the support of F_C on \mathbb{R}^* is bounded away from 0. Since $\left|\frac{z}{1+xz}\right| < \frac{1}{x}$ when z > 0, x > 0, it follows by the dominated convergence theorem that

$$\lim_{z \to \infty} \int_{x \neq 0} \frac{z}{1 + xz} dF_C(x) = \int_{x \neq 0} \lim_{z \to \infty} \frac{z}{1 + xz} dF_C(x) = \int_{x \neq 0} \frac{1}{x} dF_C(x).$$
(11)

Using (10), it follows that

$$\lim_{z \to \infty} z \left(\eta_C(z) - (1 - \gamma) \right) = \int_{x \neq 0} \frac{1}{x} \, \mathrm{d}F_C(x) \,, \tag{12}$$

On the other hand, we have that

$$\lim_{z \to \infty} \eta_C(z) = (1 - \gamma) + \lim_{z \to \infty} \int_{x \neq 0} \frac{1}{1 + zx} \,\mathrm{d}F_C(t) \tag{13}$$

$$= (1 - \gamma) + \int_{x \neq 0} \lim_{z \to \infty} \frac{1}{1 + zx} \, \mathrm{d}F_C(x)$$
(14)

$$= 1 - \gamma \,. \tag{15}$$

where the second equality is again justified by the dominated convergence theorem. Subtracting $1 - \gamma$ from both sides of (33), multiplying by $z\left(1 + \frac{\xi - 1}{\eta_C(z)}\right)$ and letting $z \to \infty$, we obtain

$$\lim_{z \to \infty} z \left(1 + \frac{\xi - 1}{\eta_C(z)} \right) \left(\eta_C(z) - (1 - \gamma) \right) = \lim_{z \to \infty} z \left(1 + \frac{\xi - 1}{\eta_C(z)} \right) \left(\frac{\gamma}{1 + z(1 + \frac{\xi - 1}{\eta_C(z)})} \right) \,.$$

Note that the right-hand side of the above equation is equal to γ , and the left-hand side satisfies

$$\lim_{z \to \infty} z \left(1 + \frac{\xi - 1}{\eta_C(z)} \right) \left(\eta_C(z) - (1 - \gamma) \right) = \lim_{z \to \infty} z \left(\eta_C(z) - (1 - \gamma) \right) \left(1 + \frac{\xi - 1}{1 - \gamma} \right)$$
$$= \frac{\xi - \gamma}{1 - \gamma} \cdot \int_{x \neq 0} \frac{1}{x} \, \mathrm{d}F_C(x),$$

where we used (12) and (15). This shows that $\gamma = \frac{\xi - \gamma}{1 - \gamma} \int_{x \neq 0} \frac{1}{x} dF_C(x)$. We conclude by observing that

$$\theta_{1,h} = \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[(S_{1,n}^{\top} S_{1,n})^{-1} \right] = \frac{1}{\gamma} \cdot \lim_{n \to \infty} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{d} \frac{1}{\lambda_i} \right] = \frac{1}{\gamma} \int_{x \neq 0} \frac{1}{x} \, \mathrm{d}F_C(x) \,,$$

and consequently, $\theta_{1,h} = \frac{1-\gamma}{\xi-\gamma}$, which is the claimed result.

2. Computing $\theta_{2,h}$

Unrolling its definition, we have that

$$\theta_{2,h} = \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E}\left[(S_{1,n}^{\top} S_{1,n})^{-2} \right] = \frac{1}{\gamma} \cdot \lim_{n \to \infty} \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{d} \frac{1}{\lambda_i^2} \right] = \frac{1}{\gamma} \int_{\{x \neq 0\}} \frac{1}{x^2} \, \mathrm{d}F_C(x) \,,$$

where the limit in the third equation holds and is finite since F_C has support bounded away from 0 on \mathbb{R}^* . By definition of m_C and using the fact that F_C has point mass $1 - \gamma$ at 0, we get that

$$\frac{\mathrm{d}m_C(z)}{\mathrm{d}z} = \int \frac{1}{(x-z)^2} \,\mathrm{d}F_C(x) = \frac{1-\gamma}{z^2} + \int_{\{x\neq 0\}} \frac{1}{(x-z)^2} \,\mathrm{d}F_C(x) \,.$$

Using again the fact that F_C has support bounded away from 0 on \mathbb{R}^* and the dominated convergence theorem, we have that $\gamma \theta_{2,h} = \lim_{z \to 0} \int_{x \neq 0} \frac{1}{(x-z)^2} \, \mathrm{d}F_C(x)$, and thus,

$$\gamma \theta_{2,h} = \lim_{z \to 0} \left\{ \frac{\mathrm{d}m_C(z)}{\mathrm{d}z} - \frac{1-\gamma}{z^2} \right\} \,.$$

We denote

$$\Delta := (\gamma + \xi - 2 + z)^2 + 4(z - 1)(1 - \gamma)(1 - \xi) , \Delta' := \frac{d\Delta}{dz} = 2(z + \gamma + \xi - 2) + 4(1 - \gamma)(1 - \xi) .$$

Then, using the expression (4) of m_C and taking the derivative, it follows that

$$\frac{\mathrm{d}m_C(z)}{\mathrm{d}z} - \frac{1-\gamma}{z^2} = \frac{1 - \frac{1}{2\sqrt{\Delta}}(2(z+\gamma+\xi-2) + 4(1-\gamma)(1-\xi))}{2z(1-z)} \tag{16}$$

$$+\frac{(z+\gamma+\xi-2-\sqrt{\Delta})(2z-1)}{2z^2(z-1)^2}+\frac{\gamma-1}{z^2}$$
(17)

$$= \frac{1}{2z^2(z-1)^2} [\Delta_1 + (2\gamma\xi - \gamma - \xi)\Delta_2 - \Delta_3 + \Delta_4],$$
(18)

where

$$\begin{cases} \triangle_1 = \frac{z^2(z-1)}{\sqrt{\triangle}} \\ \triangle_2 = \frac{z(z-1)}{\sqrt{\triangle}} \\ \triangle_3 = (2z-1)\sqrt{\triangle} \\ \triangle_4 = z(1-z) + (z+\gamma+\xi-2)(2z-1) + 2(\gamma-1)(z-1)^2 \end{cases}$$

According to L'Hospital rule,

$$\gamma \theta_{2,h} = \lim_{z \to 0} \frac{\Delta_1'' + (2\gamma\xi - \gamma - \xi)\Delta_2'' - \Delta_3'' + \Delta_4''}{2(12z^2 - 12z + 2)} = \lim_{z \to 0} \frac{\Delta_1'' + (2\gamma\xi - \gamma - \xi)\Delta_2'' - \Delta_3'' + \Delta_4''}{4}, \quad (19)$$

where $riangle_i''$ denotes the second derivative of $riangle_i$ with respect to z. After some calculations, we find that

$$\begin{split} & \Delta_1''|_{z=0} = -\frac{2}{\xi - \gamma} \,, \\ & \Delta_2''|_{z=0} = \frac{2}{\xi - \gamma} + \frac{4\gamma\xi - 2\gamma - 2\xi}{(\xi - \gamma)^3} \,, \\ & \Delta_3''|_{z=0} = \frac{4(2\gamma\xi - \gamma - \xi) - 1}{\xi - \gamma} + \frac{(2\gamma\xi - \gamma - \xi)^2}{(\xi - \gamma)^3} \,, \\ & \Delta_4''|_{z=0} = 2(2\gamma - 1) \,. \end{split}$$

Using (19), it follows that

$$\gamma \theta_{2,h} = \frac{1}{4} \left(\frac{-(2\gamma - 1)^2}{\xi - \gamma} + \frac{(2\gamma\xi - \gamma - \xi)^2}{(\xi - \gamma)^3} \right) = \frac{\gamma (1 - \gamma)(\gamma^2 + \xi - 2\gamma\xi)}{(\xi - \gamma)^3}$$

and finally, we obtain the claimed expression, that is, $\theta_{2,h} = \frac{(1-\gamma)(\gamma^2 + \xi - 2\gamma\xi)}{(\xi - \gamma)^3}$.

A.2 Proof of Theorem 3.1

Proof. Let $\{S_t\}$ be a sequence of independent $m \times n$ Haar matrices, and let $\{x_t\}$ be the sequence of iterates generated by the update (2) with $\mu_t = \theta_{1,h}/\theta_{2,h}$ and $\beta_t = 0$. Recall that we denote $\Delta_t = U^{\top}A(x_t - x^*)$, where $A = U\Sigma V^{\top}$ is a thin singular value decomposition of A. For $t \ge 0$, we have that

$$A (A^{\top}S^{\top}SA)^{-1} A^{\top} = U\Sigma V^{\top} (V\Sigma U^{\top}S^{\top}SU\Sigma V^{\top})^{-1} V\Sigma U^{\top}$$
$$= U\Sigma V^{\top}V\Sigma^{-1} (U^{\top}S^{\top}SU)^{-1}\Sigma^{-1}VV^{\top}\Sigma U^{\top}$$
$$= U (U^{\top}S^{\top}SU)^{-1}U^{\top}$$

Multiplying both sides of the update formula (2) by A, subtracting Ax^* and using the normal equation $A^{\top}Ax^* = A^{\top}b$, we find that

$$A(x_{t+1} - x^*) = \left(I_n - \mu_t U(U^\top S_t^\top S_t U)^{-1} U^\top\right) A(x_t - x^*).$$
(20)

Multiplying both sides of (20) by U^{\top} , using the definition of Δ_t and the fact that $U^{\top}U = I_d$, it follows that

$$\begin{aligned} \Delta_{t+1} &= U^{\top} \left(I_n - \mu_t U (U^{\top} S_t^{\top} S_t U)^{-1} U^{\top} \right) A(x_t - x^*) \\ &= \left(U^{\top} - \mu_t U^{\top} U (U^{\top} S_t^{\top} S_t U)^{-1} U^{\top} \right) (Ax_t - x^*) \\ &= \left(I_d - \mu_t (U^{\top} S_t^{\top} S_t U)^{-1} \right) \Delta_t \,, \end{aligned}$$

and then, taking the squared norm,

$$\|\Delta_{t+1}\|^2 = \Delta_t^{\top} \left(I_d - \mu_t (U^{\top} S_t^{\top} S_t U)^{-1} \right)^2 \Delta_t \,.$$

Taking the expectation with respect to S_t and using the independence of S_t with respect to S_0, \ldots, S_{t-1} , we obtain that

$$\mathbb{E}_{S_t} \left[\|\Delta_{t+1}\|^2 \right] = \Delta_t^\top \mathbb{E} \left[\left(I_d - \mu_t (U^\top S_t^\top S_t U)^{-1} \right)^2 \right] \Delta_t$$

$$\Delta_t^\top \left(I_d - 2\mu_t \mathbb{E} \left[(U^\top S_t^\top S_t U)^{-1} \right] + \mu^2 \mathbb{E} \left[(U^\top S_t^\top S_t U)^{-2} \right] \right) \Delta_t$$
(21)

$$= \Delta_t^{\top} \left(I_d - 2\mu_t \mathbb{E} \left[(U^{\top} S_t^{\top} S_t U)^{-1} \right] + \mu_t^2 \mathbb{E} \left[(U^{\top} S_t^{\top} S_t U)^{-2} \right] \right) \Delta_t.$$
(22)

We write the spectral decomposition $U^{\top}S_t^{\top}S_tU = V\Sigma V^{\top}$ where Σ is diagonal with positive entries $\lambda_1, \ldots, \lambda_d$ and $V_t = [v_1, \ldots, v_d]$ is a $d \times d$ orthogonal matrix. The matrix S_tU is distributed as the $m \times d$ upper-left block of an $n \times n$ Haar matrix. Therefore, S_tU is right rotationally invariant, and so is the matrix V. It follows that $\lambda_i v_{ik} v_{i\ell} \stackrel{d}{=} -\lambda_i v_{ik} v_{i\ell}$ for any index i and any indices $k \neq \ell$. Then, for any $p \in \{1, 2\}$ and any $k \neq \ell$, we have

$$\mathbb{E}\left[\left((U^{\top}S^{\top}SU)^{-p}\right)_{k\ell}\right] = \sum_{i=1}^{d} \mathbb{E}\left[\lambda_i^{-p}v_{ik}v_{i\ell}\right] = -\sum_{i=1}^{d} \mathbb{E}\left[\lambda_i^{-p}v_{ik}v_{i\ell}\right],$$

which implies that the off-diagonal term $\mathbb{E}\left[\left((U^{\top}S^{\top}SU)^{-p}\right)_{k\ell}\right]$ is equal to 0. Further, by permutation invariance of the matrix V, we get that for any k,

$$\mathbb{E}\left[\left((U^{\top}S^{\top}SU)^{-p}\right)_{kk}\right] = \frac{1}{d}\operatorname{trace}\mathbb{E}\left[\left(U^{\top}S^{\top}SU\right)^{-p}\right],$$

or equivalently, $\mathbb{E}\left[(U^{\top}S^{\top}SU)^{-p}\right] = \theta_{p,n}I_d$ where $\theta_{p,n} := d^{-1} \operatorname{trace} \mathbb{E}\left[(U^{\top}S^{\top}SU)^{-p}\right]$. Then, using (22), it follows that

$$\mathbb{E}_{S_{t}} \left[\|\Delta_{t+1}\|^{2} \right] = \Delta_{t}^{\top} \left(I_{d} - 2\mu_{t} \,\theta_{1,n} I_{d} + \mu_{t}^{2} \,\theta_{2,n} I_{d} \right) \Delta_{t}$$

= $(1 - 2\mu_{t} \theta_{1,n} + \mu_{t}^{2} \theta_{2,n}) \cdot \|\Delta_{t}\|^{2}$
= $\left(1 - \frac{\theta_{1,n}^{2}}{\theta_{2,n}} + \left(\frac{\theta_{1,n}}{\sqrt{\theta_{2,n}}} - \mu_{t} \sqrt{\theta_{2,n}} \right)^{2} \right) \cdot \|\Delta_{t}\|^{2}.$

By induction, we further obtain

$$\frac{\mathbb{E}\left[\|\Delta_t\|^2\right]}{\|\Delta_0\|^2} = \prod_{j=0}^{t-1} \left(1 - \frac{\theta_{1,n}}{\theta_{2,n}}^2 + \left(\frac{\theta_{1,n}}{\sqrt{\theta_{2,n}}} - \mu_j\sqrt{\theta_{2,n}}\right)^2\right)$$

Taking the limit $n \to \infty$ and using the definition $\theta_{h,p} = \lim_{n \to \infty} \theta_{p,n}$ for $p \in \{1, 2\}$, we find that

$$\lim_{n \to \infty} \frac{\mathbb{E}\left[\|\Delta_t\|^2 \right]}{\|\Delta_0\|^2} = \prod_{j=0}^{t-1} \left(1 - \frac{\theta_{1,h}^2}{\theta_{2,h}^2} + \left(\frac{\theta_{1,h}}{\sqrt{\theta_{2,h}}} - \mu_j \sqrt{\theta_{2,h}} \right)^2 \right).$$

The above right-hand side is minimized at $\mu_i = \theta_{1,h}/\theta_{2,h}$ for all times steps $j \ge 0$, which yields the error formula

$$\lim_{n \to \infty} \frac{\mathbb{E}\left[\|\Delta_t\|^2 \right]}{\|\Delta_0\|^2} = \left(1 - \frac{\theta_{1,h}{}^2}{\theta_{2,h}} \right)^t$$

Plugging-in the expressions of $\theta_{1,h}$ and $\theta_{2,h}$, we obtain the claimed convergence rate ρ_h .

It remains to prove that ρ_h is the best rate one may achieve with the update (2) along with Haar embeddings. It is actually an immediate consequence of Theorem 2 in [4] whose assumptions (precisely, Assumption 1 in [4]) are trivially satisfied by Haar embeddings.

A.3 Calculations of $\theta_{1,h}$ and $\theta_{2,h}$ for SRHT

Our analysis proceeds in a way similar to the analysis of the Haar case, and we describe in this paragraph the main steps. Denote by F_S the l.s.d. of $U^{\top}S^{\top}SU$ and by $F_{S,n}$ its e.s.d. As we did for the Haar case with the matrix C_n , we introduce here an auxiliary matrix G_n whose e.s.d. is related to $F_{S,n}$. Then, we characterize the η -transform η_G of its l.s.d. F_G . Our analysis for η_G uses recent results on *asymptotically liberating sequences* from free probability [1]. This technique has also been used in the prior work [3]. Finally, we show that η_G is equal to the η -transform η_C of F_C , and we conclude that $F_S = F_h$.

Let $S = BH_nDP$ be the $n \times n$ SRHT matrix (before discarding the rows) as defined in Section 4 in the paper, and U be an $n \times d$ deterministic matrix with orthonormal columns. Note that whether we consider the zero rows or not in the matrix S, the matrix $U^{\top}S^{\top}SU$ remains the same, and so does its l.s.d. The matrices B, H_n and D are all symmetric matrices, and they respectively satisfy $B^2 = B$, $H_n^2 = I_n$ and $D^2 = I_n$, and P is also an orthogonal matrix. Then, we have that $S^{\top}S = P^{\top}DH_nBH_nDP$, and further,

$$(S^{\top}S)^{2} = P^{\top}DH_{n}BH_{n}DPP^{\top}DH_{n}BH_{n}DP = P^{\top}DH_{n}BH_{n}DP = S^{\top}S.$$

We first have the following observation, whose proof is deferred to Appendix B.3.

Lemma A.3. For P, B, D, H_n and U defined as above, we have the following equality in distribution

$$U^{\top}(P^{\top}DH_n)B(HDP)U \stackrel{\mathrm{d}}{=} U^{\top}(P^{\top}DH_nDP)B(P^{\top}DH_nDP)U.$$
(23)

We now proceed with asymptotic statements, and we introduce the subscript *n* to all matrices. We set $W_n := P_n^\top D_n H_n D_n P_n$. It holds that the matrix $U_n^\top W_n B_n W_n U_n$ has the same nonzero eigenvalues as $G_n := B_n W_n U_n U_n^\top W_n B_n$, so that we first find the l.s.d. of the matrix G_n . The reader may notice that G_n plays a similar role in the analysis of the SRHT case, to that of the matrix C_n in the analysis of the Haar case.

The following result states the asymptotic freeness of the matrices B_n and $W_n U_n U_n^{\top} W_n$. Its proof follows directly from Corollaries 3.5 and 3.7 by [1].

Lemma A.4. Let B_n, W_n, U_n be defined as above. Then, the matrices $\{B_n, W_n U_n U_n^\top W_n\}$ are asymptotically free in the limit of the non-commutative probability spaces of random matrices. Consequently, the e.s.d. of the matrix $G_n = B_n W_n U_n U_n^\top W_n B_n$ converges to the freely multiplicative convolution of the l.s.d. F_B of B_n and the l.s.d. F_U of $U_n U_n^\top$, that is, G_n has l.s.d. given by $F_G = F_B \boxtimes F_U$.

Since the density of the l.s.d. F_B is $f_B = \xi \delta_1 + (1 - \xi) \delta_0$ and and the density of F_U is $f_U = \gamma \delta_1 + (1 - \gamma) \delta_0$, we have that the S-transforms S_B of F_B and S_U of F_U are respectively equal to $S_B(y) = \frac{y+1}{y+\xi}$ and $S_U(y) = \frac{y+1}{y+\gamma}$. From Lemma A.4, it follows that the S-transform S_G of F_G is the product of S_B and S_U , i.e.,

$$S_G(y) = S_U(y)S_B(y) = \frac{(y+1)^2}{(y+\xi)(y+\gamma)}.$$
(24)

First, note that using their respective definitions, the S-transform of F_G and its η -transform η_G are related by the equation $\eta_G \left(-\frac{y}{y+1}S_G(y)\right) = y+1$. Plugging-in the expression (24) of $S_G(y)$ into the latter equation, we obtain that

$$\eta_G\left(-\frac{y(y+1)}{(y+\gamma)(y+\xi)}\right) = y+1.$$

Letting $z = -\frac{(y+\gamma)(y+\xi)}{y(y+1)}$ and using the relationship (8) between the Stieltjes and η -transforms, we find that the Stieltjes transform m_G of G is equal to

$$m_G(z) = \frac{z + \gamma + \xi - 2 - \sqrt{g(z)}}{2z(1-z)}$$

where $g(z) = (\gamma + \xi - 2 + z)^2 + 4(z - 1)(1 - \gamma)(1 - \xi)$. Hence, we get that $m_G(z) = m_C(z)$, that is, $F_G = F_C$.

Further, the matrix G_n has the same non-zero eigenvalues as the matrix $U_n^{\top} W_n B_n W_n U_n$ which, according to Lemma A.3, is equal in distribution to $U_n^{\top} S_n^{\top} S_n U_n$. Denote by $\lambda_1, \ldots, \lambda_{\tilde{d}}$ the non-zero eigenvalues of $U_n^{\top} S_n^{\top} S_n U_n$, where \tilde{d} is itself a random number due to the randomness of non-zero rows \tilde{m} . Hence, the e.s.d $F_{G,n}$ of G_n and the e.s.d. $F_{S,n}$ of $U_n^{\top} S_n^{\top} S_n U_n$ satisfy (see Appendix B.4)

$$F_{G_n}(x) \stackrel{\mathrm{d}}{=} \left(1 - \frac{d}{n}\right) \mathbf{1}_{\{x \ge 0\}} + \frac{d}{n} F_{S,n}(x) \,. \tag{25}$$

Thus, we obtain that $F_{S,n}$ converges weakly almost surely to the distribution

$$F_S(x) := \frac{1}{\gamma} \left(F_G(x) - (1 - \gamma) \mathbf{1}_{\{x \ge 0\}} \right) = \frac{1}{\gamma} \left(F_C(x) - (1 - \gamma) \mathbf{1}_{\{x \ge 0\}} \right) .$$
(26)

The latter expression is equal to $F_h(x)$ according to (6), so that $F_S(x) = F_h(x)$. The analysis of the traces of the expected first and second inverse moments only involves the limiting distribution (we refer the reader to the proof of the expressions of $\theta_{1,h}$ and $\theta_{2,h}$, in Section A.1). Due to the equality $F_h = F_S$, they remain the same with SRHT matrices, which concludes the proof of Lemma 4.3.

A.4 Proof of Theorem 4.1 and 4.2

Let $\{S_t\}$ be a sequence of independent $m \times n$ SRHT matrices, and let $\{x_t\}$ be the sequence of iterates generated by the update (2) with $\mu_t = \theta_{1,h}/\theta_{2,h}$ and $\beta_t = 0$. Denote $\Delta_t = U^{\top}A(x_t - x^*)$ the sequence of error vectors. The proof follows exactly the same lines as for Theorem 4.1 up to the relationship (22), which we recall here,

$$\mathbb{E}_{S_t}\left[\|\Delta_{t+1}\|^2\right] = \mathbb{E}_{S_t}\left[\Delta_t^\top \left(I_d - \mu_t \left(U^\top S_t^\top S_t U\right)^{-1}\right)^2 \Delta_t\right].$$
(27)

Denote $Q_t = I_d - \mu_t (U^{\top} S_t^{\top} S_t U)^{-1}$. It holds that $\Delta_{t+1} = Q_t \Delta_t$ as previously shown. Hence, by induction, we obtain that

$$\mathbb{E}\left[\|\Delta_t\|^2\right] = \operatorname{trace} \mathbb{E}\left[Q_0 \dots Q_{t-1} Q_{t-1} \dots Q_0 \Delta_0 \Delta_0^\top\right].$$
(28)

Using the independence of Δ_0 and the Q_i , and the assumption $\mathbb{E}\left[\Delta_0 \Delta_0^\top\right] = I_d/d$, it follows that

$$\mathbb{E}\left[\|\Delta_t\|^2\right] = \frac{1}{d}\operatorname{trace} \mathbb{E}\left[Q_1 \dots Q_{t-1} Q_{t-1} \dots Q_0^2\right].$$
(29)

It holds that the matrix Q_0^2 is asymptotically free from $Q_{t-1} \dots Q_1$. Therefore, using the trace decoupling relation (7), we have that

$$\lim_{n \to \infty} \mathbb{E} \left[\|\Delta_t\|^2 \right] = \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_1 \dots Q_{t-1} Q_{t-1} \dots Q_0^2 \right]$$
$$= \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_0^2 \right] \cdot \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_2 \dots Q_{t-1} Q_{t-1} \dots Q_1^2 \right] .$$

Note that $\lim_{n\to\infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_0^2 \right] = (1 - 2\mu_0 \theta_{1,h} + \mu_0^2 \theta_{2,h})$. Repeating the same asymptotic freeness argument between Q_1^2 and $Q_{t-1} \dots Q_2$ and plugging-in $\mu_j = \theta_{1,h}/\theta_{2,h}$, we finally obtain the claimed result,

$$\lim_{n \to \infty} \mathbb{E}\left[\|\Delta_{t+1}\|^2 \right] = \prod_{j=0}^{t-1} \left(1 - \mu_j \theta_{1,h} + \mu_j^2 \theta_{2,h} \right)$$
$$= \left(1 - \frac{\theta_{1,h}^2}{\theta_{2,h}} \right)^t.$$

The proof of Theorem 4.2 immediately follows from an alternative upper-bound on the expression (28) for the norm of the error. In particular, we note that

$$\mathbb{E}\left[\|\Delta_t\|^2\right] = \operatorname{trace} \mathbb{E}\left[Q_0 \dots Q_{t-1}Q_{t-1} \dots Q_0 \Delta_0 \Delta_0^{\top}\right]$$

$$\leq \|\Delta_0 \Delta_0^{\top}\|_2 \operatorname{trace} \mathbb{E}\left[Q_0 \dots Q_{t-1}Q_{t-1} \dots Q_0\right]$$

$$= d\|\Delta_0\|_2^2 \frac{1}{d} \operatorname{trace} \mathbb{E}\left[Q_0 \dots Q_{t-1}Q_{t-1} \dots Q_0\right].$$

We then combine the earlier expression (29) with the above upper-bound and complete the proof.

Remark A.1. In view of equations (4-6) in [1], one can show that asymptotic freeness between $U^{\top}S^{\top}SU$ and a rank-one matrix vv^{\top} holds provided that $||v||_2 < \infty$ as the dimensions grow to infinity. One could then wonder whether such a result can be applied to our setting, in order to remove the assumption $\mathbb{E}\Delta_0\Delta_0^{\top} = \frac{1}{d} \cdot I_d$. Using (28), dividing by $\mathbb{E}||\Delta_0||^2$ and denoting $\widetilde{\Delta}_0 = \frac{\Delta_0}{\sqrt{\mathbb{E}||\Delta_0||^2/d}}$, we get

$$\frac{\mathbb{E}\|\Delta_t\|^2}{\mathbb{E}\|\Delta_0\|^2} = \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_0 \dots Q_{t-1} Q_{t-1} \dots Q_0 \widetilde{\Delta}_0 \widetilde{\Delta}_0^\top \right]$$

Provided we have asymptotic freeness between $\widetilde{\Delta}_0 \widetilde{\Delta}_0^{\top}$ and $Q_0 \dots Q_{t-1} Q_{t-1} \dots Q_0$, then we have

$$\lim_{n \to \infty} \frac{\mathbb{E} \|\Delta_t\|^2}{\mathbb{E} \|\Delta_0\|^2} = \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_0 \dots Q_{t-1} Q_{t-1} \dots Q_0 \right] \cdot \lim_{n \to \infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[\widetilde{\Delta}_0 \widetilde{\Delta}_0^\top \right]$$

According to our previous analysis, the term $\lim_{n\infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[Q_0 \dots Q_{t-1} Q_{t-1} \dots Q_0 \right]$ is equal to $\left(1 - \frac{\theta_{1,h}^2}{\theta_{2,h}}\right)^t$. On the other hand, the term $\lim_{n\infty} \frac{1}{d} \operatorname{trace} \mathbb{E} \left[\widetilde{\Delta}_0 \widetilde{\Delta}_0^\top \right]$ is equal to 1, so that we would get the claimed result. But, for asymptotic freeness to hold between $\widetilde{\Delta}_0 \widetilde{\Delta}_0^\top$ and $Q_0 \dots Q_{t-1} Q_{t-1} \dots Q_0$, we need $\|\widetilde{\Delta}_0\| < \infty$, and this assumption seems too strong: for instance, if Δ_0 is deterministic, then $\|\widetilde{\Delta}_0\| = \sqrt{d}$ which is unbounded as the dimensions grow to infinity.

B Proofs of the auxiliary results

B.1 Proof of the bounds on the support of F_h (Lemma A.2)

Proof. We show that the support of F_h satisfies

$$\inf \operatorname{supp}(F_h) \ge \frac{\left(1 - \sqrt{\rho_g}\right)^2}{\left(1 + \frac{1}{\sqrt{\xi}}\right)^2}.$$

Let S be an $m \times n$ Haar matrix, U an $n \times d$ deterministic matrix with orthonormal columns, and S_g be an $m \times n$ matrix independent of S, with i.i.d. entries $\mathcal{N}(0, 1/m)$. Write $S_g = \Omega_\ell \Sigma \Omega_r$ a singular value decomposition of S_g . It

holds that Ω_{ℓ} is an $m \times m$ Haar matrix, independent of the $m \times m$ diagonal matrix of singular values Σ , and $\Omega_r \stackrel{d}{=} S$, so that $\Omega_{\ell} \Sigma S \stackrel{d}{=} S_g$. Further, the operator norm of Σ satisfies $\lim_{n \to \infty} \|\Sigma\|_2 = \left(1 + \frac{1}{\sqrt{\ell}}\right)$ almost surely. Then,

$$\sigma_{\min}(SU) = \min_{\|x\|=1} \|SUx\| \ge \min_{\|x\|=1} \frac{\|\Sigma SUx\|}{\|\Sigma\|_2}$$
$$= \frac{1}{\|\Sigma\|_2} \cdot \min_{\|x\|=1} \|\Omega_\ell \Sigma SUx\|.$$

Almost surely, $\min_{\|x\|=1} \|\Omega_{\ell}\Sigma Sx\| \to (1-\sqrt{\rho_g})$ as $n \to \infty$. Thus, almost surely, $\liminf_{n\to\infty} \sigma_{\min}(SU) \ge \frac{(1-\sqrt{\rho_g})}{(1+\frac{1}{\sqrt{\xi}})}$, which yields the claimed lower bound on the support of F_h .

B.2 Characterization of the e.s.d. of C_n

Recall the definition (3) of the matrix C_n ,

$$C_n = \begin{pmatrix} I_m & 0\\ 0 & 0 \end{pmatrix} \mathbb{W}_n \begin{pmatrix} I_d & 0\\ 0 & 0 \end{pmatrix} \mathbb{W}_n^\top \begin{pmatrix} I_m & 0\\ 0 & 0 \end{pmatrix}$$

We leverage Theorem 4.11 from [2], which we recall for the sake of completeness.

Theorem B.1 (Theorem 4.11, [2]). Let $D_n \in \mathbb{R}^{n \times n}$ and $T_n \in \mathbb{R}^{n \times n}$ be diagonal non-negative matrices, and $\mathbb{W}_n \in \mathbb{R}^{n \times n}$ be a Haar matrix. Denote F_D and F_T the respective l.s.d. of D_n and T_n . Denote C_n the matrix $C_n := D_n^{\frac{1}{2}} \mathbb{W}_n T_n \mathbb{W}_n^{\top} D_n^{\frac{1}{2}}$. Then, as n tends to infinity, the e.s.d. of C_n converges to F whose η -transform η_F satisfies

$$\eta_F(z) = \int \frac{1}{z\gamma(z)x+1} dF_D(x) ,$$

$$\gamma(z) = \int \frac{x}{\eta_F(z)+z\delta(z)x} dF_T(x) ,$$

$$\delta(z) = \int \frac{x}{z\gamma(z)x+1} dF_D(x) .$$

The e.s.d. of $\begin{pmatrix} I_d & 0 \\ 0 & 0 \end{pmatrix}$ converges to the distribution F_{γ} with density $\gamma \delta_1 + (1-\gamma)\delta_0$, and the e.s.d. of $\begin{pmatrix} I_m & 0 \\ 0 & 0 \end{pmatrix}$ converges to the distribution F_{ξ} with density $\xi \delta_1 + (1-\xi)\delta_0$. Then, according to Theorem B.1, the e.s.d. of C_n converges to a distribution F_C , whose η -transform η_C is solution of the following system of equations,

$$\eta_C(z) = \int \frac{1}{z\gamma(z)x+1} \,\mathrm{d}F_{\xi}(x)\,,\tag{30}$$

$$\gamma(z) = \int \frac{x}{\eta_C(z) + z\delta(z)x} \,\mathrm{d}F_\gamma(x)\,,\tag{31}$$

$$\delta(z) = \int \frac{x}{z\gamma(z)x+1} \,\mathrm{d}F_{\xi}(x) \,. \tag{32}$$

Plugging the above expressions of F_{ξ} and F_{γ} into the above equations, and after simplification, we obtain that η_C is solution of the following second-order equation

$$\eta_C(z) = (1 - \gamma) + \frac{\gamma}{1 + z \left(1 + \frac{\xi - 1}{\eta_C(z)}\right)},$$
(33)

Plugging the relationship (8) between the Stieltjes and η -transforms into (33), we find that

$$m_C(z) = \frac{z + \gamma + \xi - 2 - \sqrt{g(z)}}{2z(1-z)},$$
(34)

where $g(z) = (\gamma + \xi - 2 + z)^2 + 4(z - 1)(1 - \gamma)(1 - \xi)$, and we choose the branch of the square-root such that $m_C(z) \in \mathbb{C}^+$ for $z \in \mathbb{C}^+$, $m_C(z) \in \mathbb{C}^-$ for $z \in \mathbb{C}^-$ and $m_C(z) > 0$ for z < 0.

B.3 Proof of Lemma A.3

Proof. Note that both B and D are diagonal matrices whose diagonal entries are i.i.d. random variables, and P is a permutation matrix. Define $\tilde{B} = PBP^{\top}$ and $\tilde{D} = P^{\top}DP$, then we have

$$\tilde{B} \stackrel{d}{=} B, \quad \tilde{D} \stackrel{d}{=} D$$

and

$$DP = P\tilde{D}, \quad P^{\top}D = \tilde{D}P^{\top}. \tag{35}$$

It follows that

$$U^{\top}P^{\top}DH_{n}DPBP^{\top}DH_{n}DPU = U^{\top}P^{\top}DH_{n}P\tilde{D}B\tilde{D}P^{\top}H_{n}DPU$$
$$= U^{\top}P^{\top}DH_{n}PB\tilde{D}^{2}P^{\top}H_{n}DPU$$
$$= U^{\top}P^{\top}DH_{n}PBP^{\top}H_{n}DPU$$
$$= U^{\top}P^{\top}DH_{n}\tilde{B}H_{n}DPU$$
$$\stackrel{d}{=} U^{\top}P^{\top}DH_{n}BH_{n}DPU,$$

where the first equation follows from (35), the second equation holds because \tilde{D} and B are diagonal so they commute, while the third equation holds because $\tilde{D}^2 = I_n$.

B.4 Proof of the identity (25)

We note that

$$\begin{aligned} F_{G_n}(x) \stackrel{\mathrm{d}}{=} \left(1 - \frac{\widetilde{d}}{n}\right) \mathbf{1}_{\{x \ge 0\}} &+ \frac{1}{n} \sum_{j=1}^{\widetilde{d}} \mathbf{1}_{\{x \ge \lambda_j\}} \\ &= \left(1 - \frac{\widetilde{d}}{n}\right) \mathbf{1}_{\{x \ge 0\}} + \frac{d}{n} \cdot \frac{1}{d} \sum_{j=1}^{\widetilde{d}} \mathbf{1}_{\{x \ge \lambda_j\}} \\ &= \left(1 - \frac{\widetilde{d}}{n}\right) \mathbf{1}_{\{x \ge 0\}} + \frac{d}{n} \left(F_{S,n}(x) - \left(\frac{d - \widetilde{d}}{d}\right) \mathbf{1}_{\{x \ge 0\}}\right) \\ &= \left(1 - \frac{d}{n}\right) \mathbf{1}_{\{x \ge 0\}} + \frac{d}{n} F_{S,n}(x) \,, \end{aligned}$$

which proves (25).

References

- G. W. Anderson and B. Farrell. Asymptotically liberating sequences of random unitary matrices. Advances in Mathematics, 255:381–413, 2014.
- [2] R. Couillet and M. Debbah. *Random Matrix Methods for Wireless Communications*. Cambridge University Press, 2011.
- [3] E. Dobriban and S. Liu. Asymptotics for sketching in least squares regression. In Advances in Neural Information Processing Systems, pages 3670–3680, 2019.
- [4] J. Lacotte and M. Pilanci. Faster least squares optimization. arXiv preprint arXiv:1911.02675, 2019.