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Abstract

Random projections or sketching are widely used in many algorithmic and learning
contexts. Here we study the performance of iterative Hessian sketch for least-
squares problems. By leveraging and extending recent results from random matrix
theory on the limiting spectrum of matrices randomly projected with the subsam-
pled randomized Hadamard transform, and truncated Haar matrices, we can study
and compare the resulting algorithms to a level of precision that has not been
possible before. Our technical contributions include a novel formula for the second
moment of the inverse of projected matrices. We also find simple closed-form
expressions for asymptotically optimal step-sizes and convergence rates. These
show that the convergence rate for Haar and randomized Hadamard matrices are
identical, and asymptotically improve upon Gaussian random projections. These
techniques may be applied to other algorithms that employ randomized dimension
reduction.

1 Introduction

Random projections are a classical way of performing dimensionality reduction, and are widely
used in many algorithmic and learning contexts, e.g., [32, 17, 35, 9] etc. In this work, we study
the performance of the iterative Hessian sketch [24], in the context of overdetermined least-squares
problems

x∗ : = argmin
x∈Rd

{
f(x) : =

1

2
‖Ax− b‖2

}
. (1)

Here A ∈ Rn×d is a given data matrix with n > d and b ∈ Rn is a vector of observations. For
simplicity of notations, we assume throughout this work that rank(A) = d. We will leverage and
extend recent results on the limiting spectral distributions of two classical subspace embeddings,
random uniform projections and the subsampled randomized Hadamard transform (SRHT), to
compare corresponding iterative Hessian sketch versions.

The iterative Hessian sketch (IHS) is an effective iterative method for solving least-squares [23, 24,
14, 28] (and more general convex optimal optimization problems [25]), and it aims to address the
condition number dependency of standard iterative solvers as follows. Given step sizes {µt} and
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momentum parameters {βt}, it computes the update

xt+1 = xt − µtH−1t ∇f(xt) + βt(xt − xt−1) , (2)

where the Hessian H = A>A of f is approximated by Ht = A>S>t StA, and S0, . . . , St, . . . are
i.i.d. sketching (random) matrices with dimensions m× n and m� n. From now on, we refer to the
i.i.d. property of the sketching matrices as refreshed matrices.

There are many possible choices for the sketching matrices St, and this is critical for the performance
of the IHS. A classical sketch is a matrix S ∈ Rm×n with independent and identically distributed
(i.i.d.) Gaussian entries N (0,m−1), for which the matrix multiplication SA requires in general
O(mnd) basic operations (using classical matrix multiplication). This is larger than the cost O(nd2)
of solving (1) with direct methods when m > d. Another well-studied embedding is the (truncated)
m× n Haar matrix S, whose rows are orthonormal and with range uniformly distributed among the
subspaces of Rn with dimension m. However, this requires time O(nm2) to be formed, through a
Gram-Schmidt procedure, which is also larger than O(nd2).

The SRHT [1, 27] is another classical random orthogonal embedding. Due to the recursive structure
of the Hadamard transform, the sketch SA can be formed in O(nd logm) time, so that the SRHT
is often viewed as a standard reference point for comparing sketching algorithms. Moreover, for
many applications, random projections with i.i.d. entries perform worse compared to orthogonal
projections [17, 18, 9]. More recently, this observation has also found some theoretical support in
limited contexts [8, 36]. Works by [6] also showed the guaranteed improved performance in accuracy
and/or speed. Consequently, along with computational considerations, these results favor the SRHT
over Gaussian projections.

Our goal in this work is to design an optimal version of the IHS with SRHT and Haar embeddings.
For this purpose, it is necessary to have a tight characterization of the spectral properties of the matrix
U>S>SU where U is an n×d partial orthogonal matrix (see, e.g., [13]). With Gaussian embeddings,
the matrix U>S>SU has the well-studied Wishart distribution, see e.g., [19, 3, 29, 5, 7, 38]. In
fact, [13] provided an optimal IHS with Gaussian embeddings, and showed that the best achievable
error ‖A(xt − x∗)‖2 scales as (d/m)t. However, a similar analysis does not work for SRHT and
Haar sketches. To make progress on this problem, we aim to leverage powerful tools from asymptotic
random matrix theory, and we consider the asymptotic regime where we let the relevant dimensions
go to infinity.

Our technical analysis is based on asymptotic random matrix theory, see e.g., [3, 29, 5, 7, 38] etc.
Classical results such as the Marchenko-Pastur law do not address well the case of the SRHT, and we
leverage recent results on asymptotically liberating sequences established by [2] (see also [31] for
prior work). Further, we are inspired by the work of [8], who, to our knowledge, first leveraged these
results to study the SRHT. However, their results are limited to one-step "sketch-and-solve" methods,
and do not address the iterative Hessian sketch. Moreover, while we build on their results, we also
need to extend them significantly: for instance, we need to derive the second moment formula for
θ2,h in (11), which is novel and non-trivial to establish.

Beyond the IHS, there exist other randomized pre-conditioning methods [4, 10, 20, 26] for solving
least-squares, which are based on the SRHT (or closely related sketches) which address effectively
the condition number dependency of iterative solvers. Besides least-squares, SRHT sketches are
widely used for a wide range of applications across numerical linear algebra, statistics and convex
optimization, such as low-rank matrix factorization [11, 34], kernel regression [37], random subspace
optimization [16], or sketch and solve linear regression [8], see the reviews above for applications.
Hence, a refined analysis of the SRHT, including our specific technical contributions, may also lead
to better algorithms in these fields.

Throughout the paper, we will consistently use the following assumptions and notations for the aspect
ratios, γ : = limn,d→∞

d
n ∈ (0, 1), ξ : = limn,m→∞

m
n ∈ (γ, 1) and ρg : = γ

ξ ∈ (0, 1), and the
subscript g (resp. h) will refer to Gaussian-related (resp. Haar and Hadamard-related) quantities. We
use the notations ‖z‖ ≡ ‖z‖2 for the Euclidean norm of a real vector z, ‖M‖2 for the operator norm
of a matrix M , and ‖M‖F for its Frobenius norm. For a sequence of iterates {xt}, we denote the
error vector ∆t : = U>A(xt − x∗), where U is the n × d matrix of left singular vectors of A. In
particular, we have that ‖∆t‖2 = ‖A(xt − x∗)‖2.
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1.1 Overview of our results, contributions and questions left open

All our contributions hold in the asymptotic limit n, d,m → ∞, and under the aforementioned
assumption that the aspect ratios (d/n) and (m/n) have finite limits.

We work with the matrix U>S>SU , where U is an n× d matrix with orthonormal columns and S is
an m×n Haar or SRHT matrix. Our first results concern Haar projections (Section 3). By leveraging
results about their limiting spectral distributions, and after some calculations with Stieljes transforms
(defined below) we provide the following new trace formula (see Lemma 3.2):

θ2,h : = lim
n→∞

1

d
trE

[
(U>S>SU)−2

]
=

(1− γ)(γ2 + ξ − 2γξ)

(ξ − γ)3
.

As an application, we characterize explicitly the optimal step sizes µt and momentum parameters βt
of the IHS with Haar embeddings (Theorem 3.1). We emphasize that the optimal parameters have
asymptotically closed form for any data matrix A, unlike for certain other propular methods such as
gradient descent, which can be useful in practice. With these optimal parameters, we find that at any
time step t > 1 (Theorem 3.1),

lim
n→∞

E‖∆t‖2
‖∆0‖2

= ρth , (3)

where the convergence rate ρh is given by ρh : = ρg · ξ(1−ξ)
γ2+ξ−2ξγ , and always satisfies ρh < ρg.

By comparing with the prior work [13], this implies that Haar embeddings have uniformly better
performance than Gaussian ones. Further, as an immediate consequence of Theorem 2 in [13], we
obtain that the optimal momentum parameters βt are equal to 0, that is, Heavy-ball momentum does
not accelerate the algorithm with refreshed Haar embeddings (Theorem 3.1 and following discussion).
Thus, we are able to characterize explicitly the optimal version of the IHS with Haar embeddings.

Our next results concern SRHT sketches (Section 4). We prove that under the additional mild
assumption on the initial error ∆0 that E[∆0∆>0 ] = d−1Id, the IHS with SRHT embeddings also has
rate of convergence ρh (Theorem 4.1). This relies on novel formulas for the first two inverse moments
of SRHT sketches (Lemma 4.3). Consequently, SRHT matrices uniformly outperform Gaussian
embeddings. Then, we confirm numerically the above theoretical statements (Section 6).

We finally analyze the computational complexity of our method, in comparison to some standard
randomized pre-conditioned solvers [26] for dense, ill-conditioned least-squares. We show that in our
infinite-dimensional regime, we improve by a factor log d (Section 5).

Importantly, we specifically focus on the IHS with refreshed i.i.d. embeddings. An immediate variant
of the IHS uses the same update (2), but with a fixed embedding S drawn only once at the first
iteration, which is appealing in practice. In a concurrent paper [15] more recent to the initial version
of the present work, it has been shown that, in the same asymptotic regime, the IHS with a fixed
SRHT embedding achieves a better convergence rate. Thus, we emphasize that our core contributions
are to develop novel techniques and results for analyzing the IHS with the SRHT, as this may be
useful for future developments and extensions of this algorithm in different contexts (e.g., constrained
least-squares, convex optimization).

Although we characterize the optimal step sizes and momentum parameters for the IHS with Haar
embeddings, we only characterize the optimal step size in the absence of momentum for the IHS with
the SRHT. It is thus left as an open question to know whether momentum can accelerate further our
method.

2 Technical Background

We introduce a few needed definitions, and we refer the reader to [5, 3, 22, 38] for an extensive intro-
duction to random matrix theory. Let {Mn}n be a sequence of Hermitian random matrices, where
each Mn has size n× n. For a fixed n, the empirical spectral distribution (e.s.d.) of Mn is the (cu-
mulative) distribution function of its eigenvalues λ1, . . . , λn, i.e., FMn

(x) : = 1
n

∑n
j=1 1 {λj 6 x}

for x ∈ R, which has density fMn
(x) = 1

n

∑n
j=1 δλj

(x) with δλ the Dirac measure at λ. Due to the
randomness of the eigenvalues, FMn

is random. The relevant aspect of some classes of large n× n
symmetric random matrices Mn is that, almost surely, the e.s.d. FMn

converges weakly towards
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a non-random distribution F , as n → ∞. This function F , if it exists, will be called the limiting
spectral distribution (l.s.d.) of Mn.

A powerful tool in the analysis of random matrices is the Stieltjes transform. For µ a probability mea-
sure supported on [0,+∞), its Stieltjes transform is defined over the complex space complementary
to the support of µ as

mµ(z) : =

∫
1

x− z dµ(x) . (4)

It holds in particular that mµ is analytic over C \ R+, mµ(z) ∈ C+ for z ∈ C+, mµ(z) ∈ C− for
z ∈ C− and µµ(z) > 0 for z < 0, where R+ is the set of positive reals and C+ is the set of complex
numbers with positive imaginary part. Another useful transform for studying the product of random
matrices is the S-transform, denoted Sµ. This is defined as the solution of the following equation,
which is unique under certain conditions (see [33]),

mµ

(
z + 1

zSµ(z)

)
+ zSµ(z) = 0. (5)

We introduce a few additional concepts from free probability that will be used in the proofs.
We refer the reader to [33, 12, 21, 3] for an extensive introduction to this field. Consider
the algebra An of n × n random matrices. For Xn ∈ An, we define the linear functional
τn(Xn) : = 1

nE [traceXn]. Then, we say that a family {Xn,1, . . . , Xn,I} of random matrices
in An is asymptotically free if for every i ∈ {1, . . . , I}, Xn,i has a limiting spectral distribution,

and if τ
(∏m

j=1 Pj
(
Xn,ij − τ

(
Pj(Xn,ij )

)))
→ 0 almost surely for any positive integer m, any

polynomials P1, . . . , Pm and any indices i1, . . . , im ∈ {1, . . . , I} with i1 6= i2, . . . , im−1 6= im 6= i1.
In particular, this definition implies that for two sequences of asymptotically free random matrices
Xn, Yn, we have the trace decoupling relation

1

n
E [traceXnYn]− 1

n
E [traceXn]

1

n
E [traceYn]→ 0 . (6)

Essential to our analysis is the following result. If two n × n random matrices An and Bn are
asymptotically free and have respective l.s.d. µA and µB with respective S-transforms SA and
SB , then the matrix product AnBn has l.s.d. µAB whose S-transform is SAB(z) = SA(z)SB(z).
The distribution µAB is called the free multiplicative convolution of µA and µB , and we denote
µAB = µA � µB .

We will also make use of an alternative form of the Stieltjes transform: the η-transform is defined for
z ∈ C \ R− as

ηµ(z) : =

∫
1

1 + zx
dµ(x) =

1

z
mµ

(
−1

z

)
. (7)

There are standard examples of classes of random matrices and their limiting spectral behavior. We
recall a classical result [19]. If S is an m× d matrix with identically and independently distributed
entries N (0, 1/m), then, as m, d→∞ with m/d→ ρ ∈ (0, 1), the Marchenko-Pastur theorem (see
[19, 5]) states that the matrix S>S has l.s.d. Fρ, whose Stieltjes transform is the unique solution of a
certain fixed point equation, and whose density is explicitly given by

µρ(x) =

√
(b− x)+(x− a)+

2πρx
, (8)

where y+ = max{0, y}, a = (1 − √ρ)2 and b = (1 +
√
ρ)2. In our analysis of Haar and SRHT

matrices, we will encounter similar fixed-point equations satisfied by the Stieltjes (or η-) transform of
their l.s.d.

3 Sketching with Haar matrices

Sketching matrices with i.i.d. entries are not ideal for sketching. Intuitively, i.i.d. projections distort
the geometry of Euclidean space due to their non-orthogonality. In this section, we consider the IHS
with refreshed Haar matrices {St}. The following result says that orthogonal projection has better
performance than Gaussian projection.
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Theorem 3.1 (Optimal IHS with Haar sketches). With refreshed Haar matrices {St}, step sizes
µt = θ1,h/θ2,h (where θi,h are defined in Lemma 3.2) and momentum parameters βt = 0, the
sequence of error vectors {∆t} satisfies

ρh : =

(
lim
n→∞

E‖∆t‖2
‖∆0‖2

)1/t

= ρg ·
ξ(1− ξ)

γ2 + ξ − 2ξγ
. (9)

Further, for any sequence of step sizes {µt} and momentum parameters {βt}, we have that, for the
resulting sequence of error vectors {∆t},

ρh 6 lim inf
t→∞

(
lim
n→∞

E‖∆t‖2
‖∆0‖2

)1/t

, (10)

that is, ρh is the optimal rate one may achieve using Haar embeddings.

The proof of Theorem 3.1, whose details are deferred to Appendix A.2, is decomposed into two steps.
First, we relate the asymptotic convergence rate ρh to the first and second moments of the inverse
l.s.d. of the sketched matrix SU , and we adapt to the asymptotic setting the proof of Theorem 1
in [13]. Then, and this is our key technical contribution, we provide an explicit formula of this second
moment, as given in the following technical lemma.
Lemma 3.2 (First two inverse moments of Haar sketches). Suppose that S is an m× n Haar matrix,
and let U be an n× d deterministic matrix with orthonormal columns. It holds that

θ1,h : = lim
n→∞

1

d
trace E

[
(U>S>SU)−1

]
=

1− γ
ξ − γ

θ2,h : = lim
n→∞

1

d
trace E

[
(U>S>SU)−2

]
=

(1− γ)(γ2 + ξ − 2γξ)

(ξ − γ)3
. (11)

The formula of the second moment, to the best of our knowledge, is derived explicitly for the first
time. We provide a proof sketch here. Note that θi,h (i = 1, 2) is the average of the eigenvalues of
U>S>SU to the power of−i. Denoting Fh the limiting distribution of the eigenvalues of U>S>SU ,
we have θi,h =

∫
x−idFh(x). This matrix has a specific structure whose l.s.d. has been studied in the

random matrix literature. Specifically, given some diagonal non-negative matricesD,T and a squared
Haar matrix W , Theorem 4.11 of [7] characterizes the l.s.d. of matrices of the form D

1
2WTW>D

1
2

through a system of functions involving its η-transform and the l.s.d. of D,T . Our setting is more
intricate, as S,U are both partial orthogonal matrices, and we need to use an orthogonal complement
trick. After getting the η-transform and thus the Stieltjes transform m(z) =

∫
1

x−zdFh(x), we can
calculate θ1,h, θ2,h by evaluating the first and second derivatives of m(z) at 0. Fortunately in our
case, the Stieltjes transform has a closed form, though the calculation is cumbersome. We defer the
detailed proof to Appendix A.1.

One might wonder how the l.s.d. of Haar matrices and that of Gaussian embeddings – the Marchenko-
Pastur law µρg – differ. Consider the re-scaled matrix n

mS
>
1,nS1,n, whose expectation is equal to

the identity. Crucially, the l.s.d. µρg does not depend on the sample size n but only on the limit
ratio between d and m, whereas the distribution Fh involves the ratios γ and ξ. Numerically, we
observe in Figure 1 that, for fixed γ=0.2, as ξ increases, the empirical Haar density departs from the
Marchenko-Pastur density µρg , and concentrates more and more relatively to µρg . Importantly, we
see that the support of Fh is included within the support of µρg , and thus, more concentrated around 1.
According to Theorem 3.1 orthogonal projections are uniformly better than Gaussian i.i.d. projections.
Indeed, the ratio between the convergence rates ρh and ρg is equal to ξ(1− ξ)/(γ2 + ξ − 2γξ), and
is always strictly smaller than 1. To see this, note that ξ(1− ξ)/(γ2 + ξ − 2γξ) < 1 if and only if
ξ(1 − ξ) < γ2 + ξ − 2γξ, and after simplification, we obtain the condition (ξ − γ)2 > 0. In the
small sketch size regime d 6 m� n, we have ρh/ρg ≈ 1. As the sketch size m increases relatively
to n, the convergence rates’ ratio scales as ρh/ρg ≈ (1− ξ), and one can improve on the number of
iterations – and thus, data passes – with Haar embeddings by making 1− ξ bounded away from 1.
Further, observe that if we do not reduce the size of the original matrix, so that m = n and ξ = 1,
then the algorithm converges in one iteration. This means that we do not lose any information in the
linear model. In contrast, Gaussian projections introduce more distortions than rotation, even though
the rows of a Gaussian matrix are almost orthogonal to each other in the high-dimensional setting.
The reason is that the eigenvalues are not close to unity.
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Figure 1: Empirical density of the matrix n
mU

>S>SU for S anm×n Haar matrix, versus Marchenko-
Pastur density with shape parameter d/m. We use n = 4096, d = 820 and m ∈ {860, 1640, 2450},
so that γ ≈ 0.2 and ξ ∈ {0.2, 0.4, 0.6}.

Interestingly, momentum does not accelerate the refreshed sketch with Haar embeddings. Leveraging
past information through the Heavy-ball update (2) does not provide any benefit, possibly due to the
independence between the sketching matrices {St}. Our proof of this fact is actually an immediate
consequence of Theorem 2 in [13]. On the other hand, it remains an open question whether there exists
a first-order method which uses past iterates along with refreshed matrices, and provide acceleration
over gradient descent updates.

We also emphasize that the optimal parameters have asymptotically closed forms, for any data matrix
A! This is quite unexpected and can be useful in practice. The reason is that random projections
introduce a great deal of regularity, leading to a "universal" behavior of certain quantities, including
those we need. For methods such as gradient descent with momentum, the optimal parameters (e.g,
stepsize, momentum), can depend on quantities that can be nontrivial to estimate (e.g, the Lipschitz
constant), and require extra computational work.

However, the time complexity of generating anm×n Haar matrix using the Gram-Schmidt procedure
is O(nm2), which is, for instance, larger than the classical cost O(nd2) for solving the least-squares
problem (1), and we now turn to the analysis of another orthogonal matrix, the SRHT, which contains
less randomness, but is more structured and faster to generate.

4 Sketching with SRHT matrices

We have seen in the previous section that Haar random projections have a better performance than
Gaussian i.i.d. random projections. However, they are still slow to generate and apply. Can we get
the same good statistical performance as Haar projections with faster methods? Here we consider the
SRHT. This is faster as it relies on the well-structured Walsh-Hadamard transform, which is defined
as follows. For an integer n = 2p with p > 1, the Walsh-Hadamard transform is defined recursively

as Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
with H1 = 1. We consider a version of the SRHT which is slightly

different from the classical SRHT [1]. Our transform A 7→ SA first randomly permutes the rows
of A, before applying the classical transform. This has negligible cost O(n) compared to the cost
O(nd logm) of the matrix multiplication A 7→ SA, and breaks the non-uniformity in the data. That
is, we define the n× n subsampled randomized Hadamard matrix as S = BHnDP/

√
n, where B

is an n× n diagonal sampling matrix of i.i.d. Bernoulli random variables with success probability
m/n, Hn is the n× n Walsh-Hadamard matrix, D is an n× n diagonal matrix of i.i.d. sign random
variables, equal to ±1 with equal probability, and P ∈ Rn×n is a uniformly distributed permutation
matrix. At the last step, we discard the zero rows of S, so that it becomes an m̃×n orthogonal matrix
with m̃ ∼ Binomial(m/n, n), and the ratio m̃/n concentrates fast around ξ as n→∞. Although
the dimension m̃ is random, we refer to S as an m× n SRHT matrix.

The following theorem characterizes the exact convergence rate of the IHS with refreshed SRHT
embeddings.

Theorem 4.1 (IHS with SRHT sketches). Suppose that the initial point x0 is random and that the
error vector ∆0 satisfies the condition E

[
∆0∆>0

]
= d−1Id. Then, with refreshed SRHT matrices

{St}, step sizes µt = θh1/θ
h
2 and momentum parameters βt = 0, the sequence of error vectors {∆t}
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satisfies

ρs : =

(
lim
n→∞

E‖∆t‖2
E‖∆0‖2

)1/t

= ρg ·
ξ(1− ξ)

γ2 + ξ − 2ξγ
= ρh . (12)

Here we impose an additional mild assumption on the initialization of the least-squares problem (1).
We note that the initialization condition E

[
∆0∆>0

]
=d−1Id can be achieved by picking x0 uniformly

on the unit d-sphere Sd−1, followed by a uniformly random signed permutation and scaling to
the columns of A. The key challenge to avoid this is that we need to evaluate E

[
‖∆t‖2

]
=

traceE
[
Q0 . . . Qt−1Qt−1 . . . Q0∆0∆>0

]
, where Qt = Id − µt (U>S>t StU)−1 and U are the left

singular vectors of A. Understanding this for general ∆0 requires properties that are not currently
known in random matrix theory (see Appendix A.4 and Remark A.1 for more details). Further we
can only analyze the case βt = 0, and we do not have a proof for optimality, but we conjecture that it
is true based on numerical simulations.

We also present an upper-bound on the error, which holds for any deterministic or random initialization
x0 and exhibits an identical convergence rate. This is weaker by a factor of d, but this is negligible
for large t.

Theorem 4.2. For any initialization x0, with refreshed SRHT matrices {St}, step sizes µt = θh1/θ
h
2

and momentum parameters βt = 0, the sequence of error vectors {∆t} satisfies

lim sup
n→∞

(
E‖∆t‖2

d · E‖∆0‖2
)1/t

≤ ρh . (13)

The proofs of Theorem 4.1 and 4.2 are deferred to Appendix A.4. While providing significant
computational benefits for forming the sketch SA, SRHT embeddings are still able to match the
convergence rate of orthogonal projections, and thus, also improves on Gaussian sketches. This result
follows from the observation that, althouth SRHT has much less randomness than Haar projection,
their first two inverse moments behave the same asymptotically. This is formally stated in the
following lemma.

Lemma 4.3 (First two inverse moments of SRHT sketches). Let S be an m× n SRHT matrix, Sh
be an m× n Haar matrix, and U an n× d deterministic matrix with orthonormal columns. Then,
the matrices U>S>SU and U>S>h ShU have the same limiting spectral distribution. Consequently,
with θ1,h, θ2,h as defined in Lemma 3.2, it holds that

lim
n→∞

1

d
traceE

[
(U>S>SU)−1

]
= θ1,h , (14)

lim
n→∞

1

d
traceE

[
(U>S>SU)−2

]
= θ2,h . (15)

The proof is based on recent results about asymptotically liberating sequences from the free probability
literature [2], which proves the asymptotic freeness for Hadamard matrices. This technique is also
used in [8] to study SRHT. Specifically, they defined the bi-signed-permutation Hadamard matrix
W = P>DHDP , where H is a Hadamard matrix, D is a sign-flipping diagonal matrix, and P is a
permutation. Corollary 3.5, 3.7 of [2] showed that the Bernoulli-sampling diagonal matrix B and
WUU>W are asymptotically free in the non-commutative probability space of random matrices.
Another observation is that, by changing the definition of S to S = BP>DHDP = BW , the l.s.d.
of U>S>SU remain the same as when S = BHDP . The asymptotic freeness shows that the l.s.d.
of U>S>SU for S an SRHT is the same as when S is a Haar matrix. So we get the same results as
in Lemma 3.2. The detailed proof is defered to Appendix A.3.

In Figure 2, we verify that the empirical densities with Haar and SRHT matrices are indeed very
close.

5 Complexity Analysis

Let us now turn to a complexity analysis of the IHS with SRHT embeddings, and compare it, in an
asymptotic sense, to the complexity of the standard pre-conditioned conjugate gradient method [26].
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Figure 2: Empirical densities of the matrices n
mU

>S>SU for S an m×n Haar matrix and SRHT
matrix, versus Marchenko-Pastur density with shape parameter d/m. We use n = 4096, d = 820
and m ∈ {860, 1640, 2450}, so that γ ≈ 0.2 and ξ ∈ {0.21, 0.4, 0.6}.

The latter uses a sketch SA to compute a pre-conditioning matrix P , such that AP−1 has a small
condition number, and then it solves the least-squares problem miny ‖AP−1y − b‖2, using the
conjugate-gradient method. As for the IHS, it can be decomposed into three parts: sketching,
factoring (computing P and AP−1 versus computing Ht), and iterating. The pre-conditioned
conjugate gradient prescribes the sketch size m ≈ d log d to guarantee convergence with high-
probability. This lower bound is based on the finite-sample bounds on the extremal eigenvalues
of the matrix U>S>SU derived by [30]. Then, given ε > 0 and with m ≈ d log d, the resulting
complexity to achieve ‖∆t‖2 6 ε scales as Cc � nd log d+ d3 log d+ nd log(1/ε), where nd log d
is the cost of forming SA, the term d3 log d is the factoring cost, and nd log(1/ε) is the per-iteration
cost times the number of iterations. In contrast, we obtain that the IHS with the SRHT can use m ≈ d,
with resulting complexity Cn � (nd log d+ d3 + nd) log(1/ε). Note that the number of iterations
multiplies the sum of the sketching, factoring and per-iteration costs, and this is due to refreshing the
sketches. Then, treating the term log(1/ε) as a constant independent of the dimensions, we find that,
as n, d,m grow to infinity, we have that Cn/Cc � 1/ log d.

6 Numerical Simulations

6.1 Comparison of the different variants of the iterative Hessian sketch

We evaluate the performance of the IHS with refreshed Haar/SRHT sketches against refreshed
Gaussian sketches.

First, we generate a synthetic data matrix A ∈ Rn×d with exponential spectral decay (its j-th
singular value of A is σj = 0.98j) and where n = 8192 and d = 800. We consider the sketch
sizes m ∈ {980, 2450, 4100}. For the SRHT, we use the step size µt = θ1,h/θ2,h prescribed in
Theorem 4.1, where we replace ξ and γ by their finite sample approximations ξ ≈ m

n and γ ≈ d
n . For

refreshed Gaussian embeddings, we use the optimal parameters µt and βt derived in [13]. Results
are reported in Figure 3. As m increases, Haar/SRHT embeddings are increasingly better compared
to Gaussian projections. Further, the empirical curves match closely our theoretical predictions: the
algorithmic parameters derived from our asymptotic analysis are useful in practice when they are
replaced by their finite-sample approximations. Second, we carry out a similar experiment with
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Figure 3: Synthetic dataset: Error ‖∆t‖2/‖∆0‖2 versus number of iterations for the iterative Hessian
sketch: (a) m = 980, (b) m = 2450 and (c) m = 4100. We average over 50 independent trials and
empirical standard deviations are shown in the form of error bars.
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the CIFAR10 dataset, for which we consider one-vs-all classification. Here, we have n = 60000,
d = 3072 and we use the sketch sizes m ∈ {6000, 18000, 30000}. Results are reported in 4, and we
observe similar quantitative results as for the aforementioned synthetic dataset.
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Figure 4: CIFAR10 dataset: Error ‖∆t‖2/‖∆0‖2 versus number of iterations for the iterative Hessian
sketch: (a) m = 6000, (b) m = 18000 and (c) m = 30000. We average over 50 independent trials
and empirical standard deviations are shown in the form of error bars.

6.2 Comparison of the iterative Hessian sketch to standard iterative solvers

We compare the IHS with the SRHT against the conjugate gradient (CG) method and its precondi-
tioned (pCG) version [26]. We also consider a variant of the IHS, for which we do not refresh the
embedding at every iteration. We generate a synthetic data matrixA ∈ Rn×d with exponential spectral
decay (σj = 0.98j), n = 4096 and d = 200. We consider the sketch sizes m ∈ {1000, 1500, 2000}.
We observe that the IHS which refreshes embeddings at every iteration has the best convergence rate.
More generally, the higher this update frequency, the better the performance. In comparison, CG
has the worst convergence rate, which is expected since the data matrix is ill-conditioned, and pCG
performs slightly worse than the IHS with update frequency equal to 1.

0 5 10 15 20
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10−14

10−11

10−8

10−5

10−2

IHS pred.

CG

pCG

IHS, 0.05

IHS, 0.2

IHS, 0.5

IHS, 0.8

IHS, 0.9

IHS, 1.0

0 5 10 15 20
(b) m = 1500

10−18

10−14

10−10

10−6

10−2

0 5 10 15 20
(c) m = 2000

10−22

10−17

10−12

10−7

10−2

Figure 5: Error ‖∆t‖2/‖∆0‖2 versus number of iterations for the iterative Hessian sketch with the
SRHT and different sketch sizes. We average over 50 independent trials. For instance, ’IHS, 0.2’
refers to the IHS with update frequency equal to 0.2. For clarity, we do not show error bars for the
mean empirical standard deviation which are barely visible.

Broader Impact

We believe that the proposed method in this work can have positive societal impacts. Our algorithm
can be applied in massive scale distributed learning and optimization problems encountered in real-life
problems. The computational effort can be significantly lowered as a result of dimension reduction.
Consequently energy costs for optimization can be significantly reduced.
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