
A Construction of Random Fourier Features

As mentioned in Section 2, in this work, we focus on the widely used squared exponential (SE) kernel:
k(x, x′) = σ2

0 exp(−
∥∥x− x′∥∥2

2
/(2l2)) in which l is the length scale and σ2

0 is the signal variance.
σ2
0 = 1 is usually the default value, which we use in all experiments. We construct the random

features following the work of [43]. Specifically, for the SE kernel with length scale l, the spectral
density follows a D-dimensional Gaussian distribution: p(s) = N (0, 1

l2 ID×D). To begin with, we
draw M independent samples of {si}i=1,...,M from p(s) (every si is a D-dimensional vector), and
M independent samples of {bi}i=1,...,M from the uniform distribution over [0, 2π] (every bi is a
scalar). Next, for an input x, the corresponding M -dimensional random features (basis functions)
can be constructed as φ(x)> = [

√
2/M cos(s>i x+ bi)]i=1,...,M . Each set of random features φ(x)

is then normalized such that
∥∥φ(x)

∥∥2
2

= σ2
0 . As a result, sharing the random features φ(x),∀x ∈ X

among all agents (Section 2) can be achieved by simply sharing the parameters {si}i=1,...,M and
{bi}i=1,...,M . This is easily achievable since it is equivalent to sharing the parameters of the first
layer of a neural network model with M units in the hidden layer, in which {si}i=1,...,M are the
weights (which form a D ×M -dimensional weight matrix) and {bi}i=1,...,M are the biases.

B GP Posterior/Predictive Belief with Random Fourier Features
Approximation

Here we derive the expressions of the posterior/predictive mean and variance of a GP with ran-
dom Fourier features (RFF) approximation (Section 2). Recall that we have defined Φ(Xt) =
[φ(x1), . . . , φ(xt)]

> which is a t×M -dimensional matrix.

With the RFF approximation, the kernel function is approximated by k(x, x′) ≈ φ(x)>φ(x′).
Define K̂t = [φ(xt′)

>φ(xt′′)]t′,t′′=1,...,t = Φ(Xt)Φ(Xt)
> and k̂t(x) = [φ(x)>φ(xt′)]

>
t′=1,...,t =

Φ(Xt)φ(x), which are analogous to Kt and kt(x) in (1) with the kernel values k(x, x′) replaced by
the approximate kernel values φ(x)>φ(x′). With these definitions, we have that

Φ(Xt)
>
[
K̂t + σ2I

]
= Φ(Xt)

>
[
Φ(Xt)Φ(Xt)

> + σ2I
]

= Φ(Xt)
>Φ(Xt)Φ(Xt)

> + σ2Φ(Xt)
>

=
[
Φ(Xt)

>Φ(Xt) + σ2I
]

Φ(Xt)
>

= ΣtΦ(Xt)
>.

(4)

Multiplying both sides by Σ−1t from the left and (K̂t + σ2I)−1 from the right, we get

Σ−1t Φ(Xt)
> = Φ(Xt)

>(K̂t + σ2I)−1. (5)
Then multiplying both sides by φ(x)> from the left and yt from the right, we get

µ̂t(x) = φ(x)>νt = φ(x)>Σ−1t Φ(Xt)
>yt = φ(x)>Φ(Xt)

>(K̂t + σ2I)−1yt

= k̂t(x)>(K̂t + σ2I)−1yt,
(6)

which proves that the expression of the approximate posterior mean with RFF approximation:
µ̂t(x) = φ(x)>νt matches the expression of the posterior mean of standard GP without RFF
approximation, except that the kernel values k(x, x′) are replaced by the approximate kernel values
φ(x)>φ(x′).

Next, we derive the expression of the approximate posterior variance. Making use of the matrix
inversion lemma, we get

σ̂2
t (x) = σ2φ(x)>Σ−1t φ(x) = σ2φ(x)>(Φ(Xt)

>Φ(Xt) + σ2I)−1φ(x)

= σ2φ(x)>

[
1

σ2
I − 1

σ2
Φ(Xt)

>
(
I + Φ(Xt)

1

σ2
Φ(Xt)

>
)−1

Φ(Xt)
1

σ2

]
φ(x)

= φ(x)>φ(x)− φ(x)>Φ(Xt)
>
(
σ2I + Φ(Xt)

>Φ(Xt)
)−1

Φ(Xt)φ(x)

= k̂(x, x)− k̂t(x)>
(
K̂t + σ2I

)−1
k̂t(x),

(7)
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which gives the expression of the approximate posterior variance: σ̂2
t (x) = σ2φ(x)>Σ−1t φ(x). To

conclude, Equations (6) and (7) prove that the expressions of the GP posterior mean and variance with
RFF approximation given in Section 2 (in the paragraph after Equation (3)) match the corresponding
expressions of standard GP posterior mean and variance without RFF approximation (1), except that
the original kernel values (i.e., k(x, x′)) are replaced by the corresponding approximate kernel values
(i.e., φ(x)>φ(x′)).

C Proof of Theorem 1

As mentioned in Section 4, we analyze our FTS algorithm in the more general setting in which a
message can be received from each agent An before every iteration t, instead of only before the first
iteration. Therefore, throughout our theoretical analysis, we use ωn,t, instead of ωn, to denote the
message received from agent An before iteration t. Similarly, we use ĝn,t, instead of ĝn, to denote
the corresponding sampled function from agent An with RFF approximation in iteration t, obtained
using ωn,t: ĝn,t(x) = φ(x)>ωn,t,∀x ∈ X . Note that our theoretical analysis and results also hold
in the most general setting where every agent An may collect more observations between different
rounds of communication, in which the only difference is that every tn,∀n = 1, . . . , N may increase
over different iterations.

Define Ft as the filtration containing agent A’s history of selected inputs and observed outputs up to
iteration t. Let δ ∈ (0, 1), we have defined in Theorem 1 that βt = B + σ

√
2(γt−1 + 1 + log(4/δ)

and ct = βt(1 +
√

2 log(|X |t2)) for all t ∈ Z+. Clearly, both βt and ct are increasing in t. Denote
by At the event that agentA chooses xt by maximizing a sampled function from its own GP posterior
belief (i.e., xt = arg maxx∈X ft(x), as in line 4 of Algorithm 1), which happens with probability pt;
denote by Bt the event that A chooses xt by maximizing the sampled function from any other agent
A1, . . . ,AN (line 6 of Algorithm 1), which happens with probability (1− pt); denote by Bt,n the
event that A chooses xt by maximizing the sampled function of agent An using RFF approximation
(i.e., xt = arg maxx∈X ĝn,t(x)), which happens with probability (1− pt)× PN [n].

To begin with, we define two high-probability events through the following lemmas.
Lemma 1. Let δ ∈ (0, 1). Define Ef (t) as the event that |µt−1(x) − f(x)| ≤ βtσt−1(x) for all
x ∈ X . We have that P

[
Ef (t)

]
≥ 1− δ/4 for all t ≥ 1.

Lemma 1 quantifies the concentration of the function f around its posterior mean and its proof
follows directly from Theorem 2 of the work of [9] by using an error probability of δ/4.

Lemma 2. Define Eft(t) as the event that |ft(x)− µt−1(x)| ≤ βt
√

2 log(|X |t2)σt−1(x). We have
that P

[
Eft(t)|Ft−1

]
≥ 1− 1/t2 for any possible filtration Ft−1.

Lemma 2 illustrates how concentrated a sampled function ft from f is around its posterior mean and
is a simpler version of Lemma 5 of the work of [9]. Specifically, we have assumed a discrete domain,
whereas the work of [9] deals with a compact domain. Note that both events Ef (t) and Eft(t) are
Ft−1-measurable.

Next, we define a set of inputs at every iteration t called saturated points, which represents the set of
“bad” inputs at iteration t. These inputs are “bad” in the sense that the function values at these inputs
have relatively large difference from the value of the global maximum of f . In the subsequent proof,
we will lower-bound the probability that the selected input xt is unsaturated, which will be a critical
step in the proof.
Definition 1. Define the set of saturated points at iteration t as

St = {x ∈ X : ∆(x) > ctσt−1(x)}

in which ∆(x) = f(x∗)− f(x) and x∗ = arg maxx∈X f(x).

Note that from this definition, x∗ is always unsaturated since ∆(x) = f(x∗) − f(x∗) = 0 <
ctσt−1(x∗) for all t ≥ 1. Also note that St is Ft−1-measurable.

The next lemma bounds the deviation of the sampled function ĝn,t(x) from agent An’s GP posterior
belief with RFF approximation around its posterior mean µ̂n,t(x), whose proof is based on that of
Lemma 11 of [40].

15



Lemma 3. Given δ ∈ (0, 1). We have that for all agents An,∀n = 1, . . . , N , all x ∈ X and all
t ≥ 1, with probability of at least 1− δ/4

|µ̂n,t(x)− ĝn,t(x)| ≤
√

2 log
2π2t2N

3δ
+M.

Proof. Recall from Section 2 that the sampled function ĝn,t is obtained by firstly sampling ωn,t ∼
N (νn,t, σ

2Σ−1n,t), and then setting ĝn,t(x) = φ(x)>ωn,t,∀x ∈ X . Moreover, we have shown in

Section 2 that µ̂n,t(x) = φ(x)>νn,t. Denote ωn,t = νn,t + σΣ
−1/2
n,t z, in which z ∼ N (0, I) is the

M × 1-dimensional standard Gaussian distribution. We have that

|µ̂n,t(x)− ĝn,t(x)|2 = |φ(x)>νn,t − φ(x)>(νn,t + σΣ
−1/2
n,t z)|2

= |σφ(x)>Σ
−1/2
n,t z|2

≤ σ2
∥∥∥φ(x)>Σ

−1/2
n,t

∥∥∥2
2
‖z‖22

= σ2φ(x)>Σ−1n,tφ(x)‖z‖22
= σ̂2

n,t(x)‖z‖22 ≤‖z‖
2
2 ,

(8)

in which we have made use of the assumption w.l.o.g. that the posterior variance is upper-bounded
by 1 in the last inequality. Next, making use of the concentration of chi-squared distribution:
P(‖z‖22 ≥M + 2λ) ≤ exp(−λ) [40], we have that with probability of at least 1− 3δ

2π2t2N ,

‖z‖22 ≤M + 2 log
2π2t2N

3δ
. (9)

Taking a union bound over all agents A1, . . . ,AN and over all t ≥ 1 completes the proof.

The following lemma uniformly upper-bounds the difference between agent An’s objective function
gn and sampled function ĝn,t from its GP posterior belief with RFF approximation.
Lemma 4. Given any δ ∈ (0, 1). For agent An’s sampled function ĝn,t from its GP posterior belief
with RFF approximation, we have that for all agents An,∀n = 1, . . . , N , all x ∈ X and all t ≥ 1,
with probability of at least 1− δ/2,

|ĝn,t(x)− gn(x)| ≤ ∆̃n,t,

where β′t = B + σ
√

2(γt−1 + 1 + log(8N/δ), and

∆̃n,t , ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′tn+1 +

√
2 log

2π2t2N

3δ
+M.

Proof. Recall that ε is the accuracy of the RFF approximation, tn is the number of iterations that
agent An has completed in its own BO task when it passes information to A, M is the number
of random features used in the RFF approximation. Denote by µ̂n,t(x) and µn,t(x) (σ̂n,t(x) and
σn,t(x)) the posterior mean (standard deviation) at x of agent An’s GP after running its own BO task
for tn iterations with and without the RFF approximation respectively.

We have that for all x ∈ X , all agents An and all t ≥ 1, with probability of at least 1− δ/8,

|µn,t(x)− µ̂n,t(x)| ≤ ε (tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

) , (10)

which can be proved by following the proof of Theorem 5 in the work of [40] by substituting the
error probability of 3δ

4π2t2N , and taking a union bound over all agents and all t ≥ 1. Next, making use
of Lemma 1 (replacing f by gn, and δ/4 by δ/(8N)), we get

|µn,t(x)− gn(x)| ≤ β′tn+1σn,t(x) ≤ β′tn+1, (11)

which holds for all x ∈ X , agents An and tn ≥ 1, with probability of at least 1 − δ/8. The last
inequality follows from our assumption w.l.o.g. that the posterior variance is upper-bounded by 1.

Combining the two equations above and making use of Lemma 3 completes the proof.
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The next lemma shows a uniform upper bound on the difference between the sampled function ft of
agent A and that of agent An with RFF approximation (ĝn,t).

Lemma 5. At iteration t, conditioned on the events Ef (t) and Eft(t), we have that for all agents
An,∀n = 1, . . . , N and for all x ∈ X with probability ≥ 1− δ/2

|ĝn,t(x)− ft(x)| ≤ ∆n,t,

in which

∆n,t , ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′tn+1 +

√
2 log

2π2t2N

3δ
+M + dn + ct.

Proof. Firstly, note that since we condition on both events Ef (t) and Eft(t), we have that for all
x ∈ X and all t ≥ 1

|f(x)− ft(x)| ≤ |f(x)− µt−1(x)|+ |µt−1(x)− ft(x)|

= βtσt−1(x) + βt
√

2 log(|X |t2)σt−1(x) = ctσt−1(x)
(12)

Next,

|ĝn,t(x)− ft(x)| ≤ |ĝn,t(x)− gn(x)|+ |gn(x)− f(x)|+ |f(x)− ft(x)|
≤ ∆̃n,t + dn + ctσt−1(x)

≤ ∆̃n,t + dn + ct,

(13)

in which we have made use of Lemma 4, the definition of dn: dn = maxx∈X |f(x) − gn(x)|
(Section 2, last paragraph), Equation (12), and the assumption that the posterior variance is upper-
bounded by 1. Plugging in the expression of ∆̃n,t from Lemma 4 completes the proof.

Lemma 6. For any filtration Ft−1, conditioned on the events Ef (t) and At, we have that for every
x ∈ X ,

P
(
ft(x) > f(x)|Ft−1, Ef (t), At

)
≥ p, (14)

in which p = 1
4e
√
π

.

As shown in the proof of Lemma 8 of [9], the proof of Lemma 6 makes use of the fact that
ft(x) ∼ N (µt−1(x), β2

t σ
2
t−1(x)) since we are conditioning on the event At, the confidence bound

given in Lemma 1 which holds since we are conditioning on the event Ef (t), and the Gaussian
anti-concentration lemma. That is, for a Gaussian random variable X ∼ N (µ, σ2), for any β > 0,
we have that

P
(
X − µ
σ

> β

)
≥ exp(−β2)

4
√
πβ

.

The next lemma shows that in each iteration t, the probability that an unsaturated input is selected
can be lower-bounded.

Lemma 7. For any filtration Ft−1, conditioned on the event Ef (t), we have that with probability
≥ 1− δ/2,

P
(
xt ∈ X \ St|Ft−1

)
≥ Pt,

in which
Pt , pt(p− 1/t2).

Proof. Note that all probabilities in this proof are conditioned on the event Ef (t) and thus this
conditioning is omitted for simplicity. At iteration t, the probability that the selected input xt is
unsaturated can be lower-bounded by:

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
xt ∈ X \ St|Ft−1, At

)
P(At) = P

(
xt ∈ X \ St|Ft−1, At

)
pt (15)

Next, we attempt to lower-bound P
(
xt ∈ X \ St|Ft−1, At

)
.
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Firstly, recall that conditioned on the event At, xt is selected by maximizing ft, which is sampled
from the GP posterior belief of function f . This gives rise to:

P
(
xt ∈ X \ St|Ft−1, At

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At
)
. (16)

This inequality can be obtained by observing that the event on the right hand side is a subset of
the event on the left hand side. Specifically, recall from Definition 1 that x∗ is always unsaturated.
Therefore, if ft(x∗) > ft(x),∀x ∈ St, as a result of the way in which xt is selected (i.e., xt =
arg maxx∈X ft(x)), this guarantees that an unsaturated input will be selected as xt since at least one
unsaturated input (x∗) has a larger value of ft than all saturated inputs.

Next, we assume that both events Ef (t) and Eft(t) are true, which allows us to derive an upper
bound on ft(x) for all x ∈ St:

ft(x)
(a)

≤ f(x) + ctσt−1(x)
(b)

≤ f(x) + ∆(x) = f(x) + f(x∗)− f(x) = f(x∗), (17)

in which (a) follows from (12) since here we also assume both events Ef (t) and Eft(t) are true, and
(b) results from the definition of saturated set (Definition 1). Therefore, (17) implies that

P
(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At, Eft(t)
)
≥ P

(
ft(x

∗) > f(x∗)|Ft−1, At, Eft(t)
)
. (18)

Next, we can show that

P
(
xt ∈ X \ St|Ft−1, At

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At
)

(a)

≥ P
(
ft(x

∗) > f(x∗)|Ft−1, At
)
− P

(
Eft(t)|Ft−1

)
(b)

≥ p− 1/t2,

(19)

in which (a) follows from some simple probabilistic manipulations and the fact that the event Eft(t)
is Ft−1-measurable and thus independent of the event At, (b) results from Lemma 6 and the fact
that the event Eft(t) holds with probability of at least 1− 1/t2. Combining this inequality with (15)
completes the proof.

The next lemma presents an upper bound on the expected instantaneous regret of the FTS algorithm.
Lemma 8. For any filtration Ft−1, conditioned on the event Ef (t), we have that with probability of
≥ 1− δ/2

E[rt|Ft−1] ≤ ct
(

1 +
10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
,

in which rt is the instantaneous regret: rt = f(x∗)− f(xt), and ψt , 2(1− pt)
∑N
n=1 PN [n]∆n,t.

Proof. To begin with, we define xt as the unsaturated input at iteration t with the smallest (posterior)
standard deviation:

xt = arg minx∈X\St
σt−1(x). (20)

Following this definition, for any Ft−1 such that Ef (t) is true, we have that

E
[
σt−1(xt)|Ft−1

]
≥ E

[
σt−1(xt)|Ft−1, xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σt−1(xt)Pt,

(21)

in which the last inequality follows from the definition of xt and Lemma 7.

Now we condition on both events Ef (t) and Eft(t), and analyze the instantaneous regret as:

rt = ∆(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + ft(xt) + ctσt−1(xt)− ft(xt) + ctσt−1(xt)

(b)

≤ ctσt−1(xt) + ctσt−1(xt) + ctσt−1(xt) + ft(xt)− ft(xt)
= ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt),

(22)
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in which (a) follows from the definition of ∆(x) and |ft(x)−f(x)| ≤ ctσt−1(x) for all x ∈ X since
we assume both events Ef (t) and Eft(t) are true, and (b) results from the fact that xt is unsaturated.
Next, we analyze the expected value of the underlined term given a filtration Ft−1:

E
[
ft(xt)− ft(xt)|Ft−1

]
= P (At)E

[
ft(xt)− ft(xt)|Ft−1, At

]
+ P (Bt)

N∑
n=1

PN [n]E
[
ft(xt)− ft(xt)|Ft−1, Bt,n

]
(a)

≤ (1− pt)
N∑
n=1

PN [n]E
[
ft(xt)− ft(xt)|Ft−1, Bt,n

]
(b)

≤ (1− pt)
N∑
n=1

PN [n]E
[
ĝn,t(xt) + ∆n,t − ĝn,t(xt) + ∆n,t|Ft−1, Bt,n

]
(c)

≤ 2(1− pt)
N∑
n=1

PN [n]∆n,t , ψt,

(23)

in which (a) follows since when At is true, i.e., when xt = arg maxx∈X ft(x), ft(xt)− ft(xt) ≤ 0,
(b) makes use of Lemma 5 (note that here we are also conditioning on the events Ef (t) and Eft(t)
which is the same as Lemma 5, and that Lemma 5 holds irrespective of the event Bt,n since both
Eft and Eft(t) are Ft−1-measurable) and thus holds with probability of ≥ 1− δ/2, and (c) follows
since conditioned on the event Bt,n (i.e., xt = arg maxx∈X ĝn,t(x)), ĝn,t(xt)− ĝn,t(xt) ≤ 0.

Subsequently, we can analyze the expected instantaneous regret by separately considering the two
cases in which the event Eft(t) is true and false respectively:

E
[
rt|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt))|Ft−1

]
+ E

[
ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ 2ct

Pt
E
[
σt−1(xt)|Ft−1

]
+ ctE

[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2

≤ ct
(

1 +
2

Pt

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
.

(24)

Note that since 1/(p− 1/t2) ≤ 5/p and pt ≥ p1 for all t ≥ 1,
2

Pt
=

2

pt(p− 1
t2 )
≤ 10

ppt
≤ 10

pp1
. (25)

Therefore, (24) can be further analyzed as

E
[
rt|Ft−1

]
≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
, (26)

which completes the proof.

Subsequently, we make use of the concentration inequality of super-martingales to derive a bound on
the cumulative regret.
Definition 2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)},

Xt = rt − ct
(

1 +
10

pp1

)
σt−1(xt)− ψt −

2B

t2
,

Yt =

t∑
s=1

Xs.
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Lemma 9. Conditioned on Lemma 8 (i.e., with probability of ≥ 1− δ/2), (Yt : t = 0, . . . , T ) is a
super-martingale with respect to the filtration Ft.

Proof.

E
[
Yt − Yt−1|Ft−1

]
= E

[
Xt|Ft−1

]
= E

[
rt − ct

(
1 +

10

pp1

)
σt−1(xt)− ψt −

2B

t2
|Ft−1

]

= E
[
rt|Ft−1

]
−

[
ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2

]
≤ 0,

(27)

in which the last inequality follows from Lemma 8 when the event Ef (t) is true; when Ef (t) is false,
rt = 0 and thus the inequality holds trivially.

The Azuma-Hoeffding Inequality presented below will be useful for proving the concentration of the
super-martingale (Yt : t = 0, . . . , T ).

Lemma 10 (Azuma-Hoeffding Inequality). Given any δ′ ∈ (0, 1). If a super-martingale (ZT : t =
1, . . . , T ), defined with respect to the filtration Ft, satisfies |Zt − Zt−1| ≤ αt for some constant αt,
then for all t = 1, . . . , T and with probability of at least 1− δ′,

ZT − Z0 ≤

√√√√2 log(1/δ′)

T∑
t=1

α2
t .

Finally, we can derive an upper bound on the cumulative regret through the following lemma.

Lemma 11. Given δ ∈ (0, 1), then with probability of at least 1− δ,

RT ≤cT
(

1 +
10

pp1

)
O(
√
TγT ) +

T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ
,

in which γT is the maximum information gain about f obtained from any set of T observations.

Proof.

|Yt − Yt−1| = |Xt| ≤ |rt|+ ct

(
1 +

10

pp1

)
σt−1(xt) + ψt +

2B

t2

(a)

≤ 2B + ct

(
1 +

10

pp1

)
+ ψt +

2B

t2

(b)

≤ 2Bct
p

+ ct

(
1 +

10

pp1

)
+ ψt +

2Bct
p

≤ ct
(

1 +
4B

p
+

10

pp1

)
+ ψt,

(28)

in which (a) follows since the posterior variance is upper-bounded by 1, (b) follows since 2B ≤
2Bct/p and 2B/t2 ≤ 2Bct/p.
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This allows us to apply the Azuma-Hoeffding Inequality (Lemma 10) by using an error probability of
δ/4,

T∑
t=1

rt ≤
T∑
t=1

ct

(
1 +
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pp1

)
σt−1(xt) +

T∑
t=1
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+√√√√2 log

4

δ
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[
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)
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]2
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2T log
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δ
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√
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Bπ2

3
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(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ
,

(29)

which holds with probability ≥ 1 − δ/4. The last inequality follows since ct is increasing in t,∑T
t=1 1/t2 = π2/6, and ψt ≤ ψ1 +O(

√
log t) for all t ∈ Z+ which is ensured by the way in which

we choose the sequence pt, i.e., such that (1− pt)ct ≤ (1− p1)c1 for all t ∈ Z+ \ {1}. Lastly, note
that the event Ef (t) holds with probability ≥ 1 − δ/4, i.e., rt = rt with probability ≥ 1 − δ/4.
In the last equality, we made use of the fact that

∑T
t=1 σt−1(xt) = O(

√
TγT ) which is proved by

Lemmas 5.3 and 5.4 of [52]. Taking into account the error probability of Lemma 8 (δ/2), which is
required for (Yt : t = 0, . . . , T ) to form a super-martingale, completes the proof.

Finally, we are ready to prove Theorem 1. Recall that ct = O
((

B +
√
γt + log(1/δ)

)√
log t

)
.

Therefore,
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γT
√
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ψt

 .

(30)

D Further Experimental Details and Results

All experiments reported in this work are run on a computer with 48 cores of Xeon Silver 4116
(2.1Ghz) processors, RAM of 256GB, and 1 NVIDIA Tesla T4 GPU. For fair comparisons, in all
experiments, the same random initializations are used by all methods.

D.1 Optimization of Synthetic Functions

In the synthetic experiments, we sample the objective functions from a GP with a length scale of
0.03. The functions are defined on a 1-dimensional discrete domain uniformly distributed in [0, 1],
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Figure 4: Performances in the most general setting in which tn is increasing (green curve) for the
(a) landmine detection, (b) Google glasses and (c) mobile phone sensors experiments. The specific
experimental setup is described in Appendix D.2.1. The results correspond to Fig. 3 in the main
paper.

with size |X | = 1, 000. The output values of all functions f(x),∀x ∈ X are normalized into the
range of [0, 1]. Whenever an input x is queried, the corresponding noisy observation is obtained
by adding a zero-mean Gaussian noise N (0, σ2) where σ2 = 0.01 to the corresponding function
value f(x) (Section 2, first paragraph). For a sampled objective function for the target agent, we
generate the objective functions of the other agents, as well as their observations, in the following
way. For agent An, we go through every input in the entire discrete domain, and for each input, we
add either dn or −dn to the corresponding output function value with probability 0.5 each, after
which the resulting value is used as the objective function value of the agent An. This step ensures
the validity of the definition of dn as the maximum difference between the objective function of
the target agent A and that of agent An: dn = maxx∈X |f(x)− gn(x)| (Section 2, last paragraph).
Next, we randomly sample tn inputs from the entire discrete domain, and for each sampled input, we
obtain a noisy output observation by adding a zero-mean Gaussian noise: N (0, σ2) where σ2 = 0.01,
to the corresponding function value. Subsequently, following the procedures described in the first
paragraph of Section 3.1, every agent An applies RFF approximation using its own tn observations
(input-output pairs) to derive the RFF approximation parameters νn and Σn and hence to draw a
sample of ωn, which is the parameter to be passed to and used by the target agent A. Finally, after
receiving the parameters ωn’s from all other agents, the target agent starts to run the FTS algorithm
(Algorithm 1).

D.2 Real-world Experiments

D.2.1 Results in the Most General Setting with Increasing tn

Here we perform additional experiments in the most general setting of our FTS algorithm (Section 3.1,
last paragraph): (a) information can be received from every agent An before every iteration instead
of only before the first iteration, and (b) every An may also be performing black-box optimization
tasks (possibly also using FTS), such that An may collect more observations (i.e., tn may increase)
between different rounds of communication. We use the three real-world experiments (Section 5.2) to
investigate the performances in this setting, and compare the performances with those in the simpler
setting where communication is allowed only before the first iteration.

Here we describe the detailed experimental setup for the experiments in this section. Before the
first iteration of the FTS algorithm, every agent An for n = 1, . . . , N , who has completed tn = 50
iterations of its own BO task (we use standard TS here for simplicity, but it can be replaced by FTS
in which An is the target agent), passes the first message to the target agent A. Next, before every
iteration t > 1 of the FTS algorithm (Algorithm 1), every agentAn runs one more iteration of its own
BO task, calculates the updated RFF approximation parameters νn,t and Σn,t (3), samples a new ωn,t
from its posterior belief: ωn,t ∼ N (νn,t, σ

2Σ−1n,t), and finally passes the sampled ωn,t to the target
agentA. Then,A uses the received updated information to run iteration t of the FTS algorithm. After
this, the information from every agent An is updated and sent to A again, and the FTS algorithm
proceeds to the next iteration t+ 1. As a result, every tn,∀n = 1, . . . , N increases by 1 after every
iteration of FTS.
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The performances in all three experiments are shown in Fig. 4, in which FTS outperforms standard
TS in both settings for all experiments. The figure also shows that in the most general setting
in which tn is increasing, the performances for the two activity recognition experiments (Google
glasses and mobile phone sensors experiments) are improved, whereas the performances for the
landmine detection experiment are comparable in both settings. Note that the most general setting
with increasing tn may not necessarily lead to better performances: Although using more observations
from those agents with similar objective functions to the target agent can give more useful information
and hence potentially benefit the FTS algorithm, more observations from heterogeneous agents may
turn out to hurt the performance of FTS since the information from these agents are actually harmful
for the BO task of the target agent.

D.2.2 More Experimental Details

In all real-world experiments, we use length scale = 0.01 to generate the random features (Ap-
pendix A) and σ2 = 10−6 in the RFF approximation using equations (2) and (3).

Landmine Detection. This dataset, downloadable from http://www.ee.duke.edu/~lcarin/
LandmineData.zip, consists of the data from 29 landmine fields, with each field associated with
a dataset for landmine detection. The dataset of each landmine field is made up of a number of
input-output pairs, each corresponding to a location; for every location, the input includes 9 features
extracted from radar images and the output is a binary label indicating whether the location contains
landmines. The number of data points (input-output pairs) of every field ranges from 445 to 690,
with a mean of 511; for every field, we use 50% of the data points as the training set, and the other
50% as the validation set. We use support vector machines (SVM) as the predictive model, and tune
two SVM hyperparameters: RBF kernel parameter in the range of [0.01, 10], and L2 regularization
parameter in [10−4, 10]. For every queried hyperparamter setting, the SVM model is trained on the
training set using this particular set of hyperparameters, and evaluated using the validation set to
produce the reported performances. As mentioned in the main text, the dataset of the landmine fields
are significantly imbalanced, i.e., there are considerably more locations without than with landmines.
Specifically, the percentage of positive samples (i.e., locations with landmines) in different landmine
fields ranges from 2.9% to 9.4%, with a mean of 6.2%. Therefore, for this dataset, validation error is
inappropriate since an all-zero prediction would result in very low classification error. Hence, we
use the Area Under the Receiver Operating Characteristic Curve (AUC) which is a more appropriate
metric when evaluating the performance of ML models on imbalanced datasets.

Activity Recognition Using Google Glasses. This dataset consists of two-hour long sensor data
collected using Google glasses from 38 participants, while the participants are performing different
activities such as eating. The dataset can be downloaded from http://www.skleinberg.org/
data/GLEAM.tar.gz. For every participant, we group the sensor data into different time windows;
for each time window, we calculate the statistics (i.e., mean, variance and kurtosis) of different sensor
measurements within this time window, and use them as the features (57 features in total are extracted
from each time window); the label for each time window is a binary value indicating whether the
participant is eating or conducting other activities during this time window. As a result, for every
participant, each time window produces a data point, i.e., an input-output pair. The number of data
points for every participant ranges from 242 to 3416 with an average of 1930. For every participant,
we randomly select 100 data points as the validation set, and use the remaining data points as the
training set. We use logistic regression (LR) as the activity prediction model for every participant, and
tune 3 hyperparameters of LR: the batch size in the range of [20, 60], the L2 regularization parameter
in [10−6, 1], and the learning rate in [0.01, 0.1]. Following the common practice for using LR and
neural network models, the inputs are pre-processed by removing the mean and dividing by the
standard deviation.

Activity Recognition Using Mobile Phone Sensors. This dataset, which can be downloaded from
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+
Smartphones, contains measurements from mobile phone sensors (accelerometer and gyroscope)
involving 30 subjects. 561 features were provided together with the dataset, with each set of features
associated with a corresponding label indicating which one of the six activities the subject is
performing. Therefore, the activity recognition problem for every subject corresponds to a 6-class
classification problem. The number of data points (input-output pairs) possessed by the subjects
ranges from 281 to 409 with a mean of 343. For every subject, we use 50% of the data points as the
training set, and the remaining 50% as the validation set. We again use LR as the activity recognition
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Figure 5: Additional results for the other 5 target agents for the landmine detection experiment
(M = 100).

model, and the tuned hyperparameters, as well as their ranges, are the same as those in the activity
recognition experiment using Google glasses.

D.2.3 Additional Results for More Agents

In this section, we present additional experimental results for the three real-world experiments
(Section 5.2). Note that as mentioned in Section 5.2 (last paragraph), the results presented in Fig. 3
in the main text correspond to using the first agent (of the 6 agents used to produce the results in
Fig. 2 in the main text) as the target agent for every experiment. Meanwhile, the additional results
shown in this section (Figs. 5, 6 and 7) correspond to using each of the remaining 5 agents (agents 2
to 6) as the target agent. Note that since all three real-world datasets contain heterogeneous agents
(Section 5.2, first paragraph), it is unreasonable to expect FTS to always outperform standard TS
for all agents. Instead, as shown in the figures, FTS performs better than TS for some agents, and
comparably with TS for other agents.
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Figure 6: Additional results for the other 5 target agents for the activity recognition experiment using
Google glasses (M = 100).
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Figure 7: Additional results for the other 5 target agents for the activity recognition experiment using
mobile phone sensors (M = 100).
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