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A Network Structure and Training Details

We now present the details of our network structure and training configurations.

The silent interval detection component of our model is composed of 2D convolutional layers, a
bidirectional LSTM, and two FC layers. The parameters of the convolutional layers are shown in
Table S1. Each convolutional layer is followed by a batch normalization layer with a ReLU activation
function. The hidden size of bidirectional LSTM is 100. The two FC layers, interleaved with a ReLU
activation function, have hidden size of 100 and 1, respectively.

Table S1: Convolutional layers in the silent interval detection component.

conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 conv10 conv11 conv12

Num Filters 48 48 48 48 48 48 48 48 48 48 48 8
Filter Size (1,7) (7,1) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (1,1)
Dilation (1,1) (1,1) (1,1) (2,1) (4,1) (8,1) (16,1) (32,1) (1,1) (2,2) (4,4) (1,1)
Stride 1 1 1 1 1 1 1 1 1 1 1 1

The noise estimation component of our model is fully convolutional, consisting of two encoders and
one decoder. The two encoders process the noisy signal and the incomplete noise profile, respectively;
they have the same architecture (shown in Table S2) but different weights. The two feature maps
resulted from the two encoders are concatenated in a channel-wise manner before feeding into the
decoder. In Table S2, every layer, except the last one, is followed by a batch normalization layer
together with a ReLU activation function. In addition, there is skip connections between the 2nd and
14-th layer and between the 4-th and 12-th layer.

Table S2: Architecture of noise estimation component. ‘C’ indicates a convolutional layer, and ‘TC’
indicates a transposed convolutional layer.

Encoder Decoder
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layer Type C C C C C C C C C C C TC C TC C C
Num Filters 64 128 128 256 256 256 256 256 256 256 256 128 128 64 64 2
Filter Size 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3
Dilation 1 1 1 1 1 2 4 8 16 1 1 1 1 1 1 1
Stride 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1

The noise removal component of our model is composed of two 2D convolutional encoders, a
bidirectional LSTM, and three FC layers. The two convolutional encoders take as input the input
audio spectrogram sx and the estimated full noise spectrogram N(sx, sx̃), respectively. The first
encoder has the network architecture listed in Table S3, and the second has the same architecture but
with half of the number of filters at each convolutional layer. Moreover, the bidirectional LSTM has
the hidden size of 200, and the three FC layers have the hidden size of 600, 600, and 2F , respectively,
where F is the number of frequency bins in the spectrogram. In terms of the activation function,
ReLU is used after each layer except the last layer, which uses sigmoid.

Table S3: Convolutional encoder for the noise removal component of our model. Each convolutional
layer is followed by a batch normalization layer with ReLU as the activation function.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Num Filters 96 96 96 96 96 96 96 96 96 96 96 96 96 96 8
Filter Size (1,7) (7,1) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (1,1)
Dilation (1,1) (1,1) (1,1) (2,1) (4,1) (8,1) (16,1) (32,1) (1,1) (2,2) (4,4) (8,8) (16,16) (32,32) (1,1)
Stride 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure S1: Constructed noisy audio based on different SNR levels. The first row shows the
waveform of the ground truth clean input.

Training details. We use PyTorch platform to implement our speech denoising model, which is
then trained with the Adam optimizer. In our end-to-end training without silent interval supervision
(referred to as “Ours w/o SID loss” in Sec. 4; also recall Sec. 3.2), we run the Adam optimizer for
50 epochs with a batch size of 20 and a learning rate of 0.001. When the silent interval supervision is
incorporated (recall Sec. 3.3), we first train the silent interval detection component with the following
setup: run the Adam optimizer for 100 epochs with a batch size of 15 and a learning rate of 0.001.
Afterwards, we train the noise estimation and removal components using the same setup as the
end-to-end training of “Ours w/o SID loss”.

B Data Processing Details

Our model is designed to take as input a mono-channel audio clip of an arbitrary length. However,
when constructing the training dataset, we set each audio clip in the training dataset to have the
same 2-second length, to enable batching at training time. To this end, we split each original audio
clip from AVSPEECH, DEMAND, and AudioSet into 2-second long clips. All audio clips are then
downsampled at 16kHz before converting into spectrograms using STFT. To perform STFT, the
Fast Fourier Transform (FFT) size is set to 510, the Hann window size is set to 28ms, and the hop
length is set to 11ms. As a result, each 2-second clip yields a (complex-valued) spectrogram with a
resolution 256× 178, where 256 is the number of frequency bins, and 178 is the temporal resolution.
At inference time, our model can still accept audio clips with arbitrary length.

Both our clean speech dataset and noise datasets are first split into training and test sets, so that no
audio clips in training and testing are from the same original audio source—they are fully separate.

To supervise our silent interval detection, we label the clean audio signals in the following way. We
first normalize each audio clip so that its magnitude is in the range [-1,1], that is, ensuring the largest
waveform magnitude at -1 or 1. Then, the clean audio clip is divided into segments of length 1/30
seconds. We label a time segment as a “silent” segment (i.e., label 0) if its average waveform energy
in that segment is below 0.08. Otherwise, it is labeled as a “non-silent” segment (i.e., label 1).
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Metric Dataset SNR Baseline-thres SEGAN Spectral gating Adobe Audition DFL VSE Ours Ours-GTSI

avg_stoi Audioset -10 0.452435221186 0.239792699982 0.480897205715 0.498351248714 0.359458015212 0.339769991737 0.601921509877 0.638204206878

avg_stoi Audioset -7 0.541852268966 0.286854724622 0.563202140051 0.574848359499 0.464998412978 0.392132163975 0.69522558827 0.718753578538

avg_stoi Audioset -3 0.652099112496 0.363023527823 0.671714767097 0.676393645352 0.618150488059 0.444570540143 0.795443428389 0.806383840488

avg_stoi Audioset 0 0.71846241353 0.428111325525 0.743615992609 0.746257376588 0.71423807327 0.458656992051 0.850343095305 0.857522433438

avg_stoi Audioset 3 0.774287496407 0.483402768654 0.805798068855 0.806576254242 0.786894414835 0.475988156388 0.891961445652 0.896741288063

avg_stoi Audioset 7 0.81942655938 0.535070552592 0.871147454483 0.86971108878 0.854474908641 0.496507598105 0.929618377107 0.93327168215

avg_stoi Audioset 10 0.838441265589 0.558100747534 0.905914562206 0.904167825488 0.887762306588 0.494145838704 0.948536799441 0.951655050801

avg_stoi DEMAND -10 0.553166661562 0.653382295734 0.721006107387 0.718956515606 0.685191177031 0.430805843788 0.790743553097 0.805123909548

avg_stoi DEMAND -7 0.625274202924 0.740577824678 0.781610360589 0.779002283309 0.746021563415 0.460305708156 0.850713755898 0.859616921299

avg_stoi DEMAND -3 0.713761524053 0.8272630316 0.848201926362 0.845376422518 0.811285453074 0.476619227544 0.905679639079 0.911138736434

avg_stoi DEMAND 0 0.767750382985 0.870178850878 0.887953227152 0.883655299869 0.849823545207 0.483375797614 0.933110856316 0.936634683923

avg_stoi DEMAND 3 0.809977514501 0.898972129825 0.917268938905 0.91276743617 0.879801514652 0.496745522403 0.951859897034 0.954462423953

avg_stoi DEMAND 7 0.839759440988 0.922691746168 0.944072068003 0.939713546885 0.909440582201 0.496783455747 0.967695057825 0.97025338594

avg_stoi DEMAND 10 0.851136887153 0.933187563345 0.957288345806 0.952972426848 0.925755751256 0.503612328369 0.975460970055 0.97813551667

avg_csig Audioset -10 1.38184591945 1.01482989249 1.21013344315 1.43244182962 1.05774346267 1.83136456829 1.7982145472 1.99043215572

avg_csig Audioset -7 1.64539209768 1.01916195361 1.35186814047 1.68809856871 1.10033154374 2.05626851121 2.17927007522 2.37843748427

avg_csig Audioset -3 2.05629722246 1.04188752035 1.70762621688 2.16762655851 1.27512966244 2.30851787814 2.64397539356 2.80932079692

avg_csig Audioset 0 2.37294490211 1.08223043611 2.01462820064 2.53822901983 1.54054753956 2.45603853705 2.96539022549 3.11554639442

avg_csig Audioset 3 2.70562032138 1.15108502507 2.35725772548 2.94121501629 1.88660711688 2.56801903735 3.32794713927 3.46174116275

avg_csig Audioset 7 2.9577303687 1.28261338445 2.76291996742 3.29843382072 2.37792107712 2.71321000215 3.59711310827 3.71589989485

avg_csig Audioset 10 3.19113236991 1.36596812223 3.04813896667 3.63592768265 2.69729056987 2.75593559853 3.88155178351 3.98649814747

avg_csig DEMAND -10 1.87002618665 1.71010766003 1.94567233994 2.10149523175 1.74651665706 2.28997007715 2.78081352145 2.89162911252

avg_csig DEMAND -7 2.1714038205 2.02399528274 2.25865816815 2.45836201091 1.97846852675 2.4453653343 3.13269207245 3.24224023712

avg_csig DEMAND -3 2.59799358965 2.46308789135 2.64355254584 2.97315840118 2.32791450864 2.61527743823 3.54150883411 3.65242863891

avg_csig DEMAND 0 2.8942677892 2.72225994064 2.94227467512 3.32759448608 2.61019375326 2.70819585413 3.789732664 3.89437160605

avg_csig DEMAND 3 3.11949673345 2.92256133303 3.11812984672 3.59357073858 2.87351952928 2.78152529765 3.95241903192 4.05822091177

avg_csig DEMAND 7 3.35553645249 3.1115894152 3.37060153891 3.89702076585 3.19349630622 2.83591265167 4.18064834216 4.28010761713

avg_csig DEMAND 10 3.43568356507 3.20700853687 3.4524249956 4.022436246 3.40391496901 2.88188855576 4.23567441771 4.34058062807

avg_cbak Audioset -10 1.63300603249 1.30934795505 1.3745867378 1.59381988132 1.45521592892 1.69038261341 2.02805499848 2.13401486329

avg_cbak Audioset -7 1.80977418372 1.34429398195 1.54964826596 1.78304642222 1.59530567305 1.79615817372 2.28532392042 2.38430465251

avg_cbak Audioset -3 2.09279987913 1.45591690573 1.88985459878 2.0824653242 1.91293650075 1.9086047612 2.61957303372 2.70233065977

avg_cbak Audioset 0 2.3046451094 1.57371851786 2.14227453831 2.31742030758 2.18047302049 1.98424106071 2.84987860414 2.92902822558

avg_cbak Audioset 3 2.51236744052 1.6870410422 2.38782025647 2.55160428375 2.43253435222 2.03626945686 3.06597682552 3.14075604327

avg_cbak Audioset 7 2.73498753469 1.81526394753 2.69842229145 2.84075810785 2.73803958664 2.10696460833 3.32149478103 3.39416966185

avg_cbak Audioset 10 2.85698494464 1.87231659764 2.89120778153 3.03349530347 2.93780167642 2.13118768516 3.49080596816 3.56362473235

avg_cbak DEMAND -10 1.90980851692 2.12658950026 1.93734714511 1.93765715381 2.16180632372 1.90659454879 2.68945332416 2.76867770113

avg_cbak DEMAND -7 2.11134268484 2.36494778529 2.1708321186 2.14969914227 2.37463298773 1.98184207652 2.94074185598 3.01810993498

avg_cbak DEMAND -3 2.39899878288 2.65866022956 2.47274428625 2.46644609796 2.65548191547 2.06385565093 3.23164872199 3.31145098296

avg_cbak DEMAND 0 2.61054456596 2.84081997328 2.70614075027 2.71728157061 2.84903460644 2.11010194265 3.41981812272 3.4988601241

avg_cbak DEMAND 3 2.80131560925 2.9890457177 2.90258444099 2.95225370075 3.02423207891 2.14746930661 3.58161825113 3.66221151215

avg_cbak DEMAND 7 2.98553007154 3.13640606148 3.12953713865 3.21071661404 3.22716247802 2.17209175614 3.76518929619 3.84772685646

avg_cbak DEMAND 10 3.07768120679 3.2121678098 3.27025868265 3.35637544284 3.35684774286 2.19588606866 3.88030919031 3.96354104525

avg_covl Audioset -10 1.16852786313 1.04085498997 1.14094596886 1.23414944246 1.05083266498 1.42571992216 1.56287749416 1.72946402856

avg_covl Audioset -7 1.31837497391 1.02568748257 1.23702529674 1.40721849863 1.07910351495 1.59560815901 1.89235980221 2.0776539074

avg_covl Audioset -3 1.60794037902 1.03436633948 1.51403169542 1.78227632849 1.22170760193 1.80102913972 2.30708929326 2.46821124837

avg_covl Audioset 0 1.87974512741 1.0589044715 1.79027645692 2.10685955593 1.45459486582 1.93901575981 2.59163708375 2.74524661027

avg_covl Audioset 3 2.16093475458 1.10599163512 2.10968316442 2.46317708977 1.77301844427 2.03453863456 2.90751200759 3.05105487163

avg_covl Audioset 7 2.37814359049 1.19813094347 2.47394098327 2.79948723856 2.22237088735 2.1676478906 3.14913941942 3.28035631548

avg_covl Audioset 10 2.55635756578 1.25357808036 2.74891936278 3.10740814308 2.51121954018 2.21266878789 3.39221193667 3.51525854406

avg_covl DEMAND -10 1.42728550153 1.59153717461 1.75438873957 1.83998419708 1.63045115261 1.81404925572 2.40522810399 2.52638647395

avg_covl DEMAND -7 1.63944632148 1.86282674582 2.02055067169 2.13476229428 1.84436913783 1.93773996827 2.72216900291 2.84475143827

avg_covl DEMAND -3 1.9894307776 2.24372442591 2.37497639006 2.5796267862 2.16323714163 2.08639247493 3.08717050074 3.21702822133

avg_covl DEMAND 0 2.25445037073 2.47859354074 2.64914624051 2.88887215419 2.41521044122 2.17292640396 3.30521053976 3.43229421999

avg_covl DEMAND 3 2.46040803567 2.66769942595 2.83250028776 3.12354973572 2.65290790018 2.24055332084 3.44690252358 3.57576136508

avg_covl DEMAND 7 2.66118569629 2.85169511382 3.06910933022 3.3858301795 2.94691088349 2.28885730808 3.6428937956 3.76603885054

avg_covl DEMAND 10 2.73077954769 2.94540289635 3.15567250621 3.50075542625 3.14244133392 2.32935298321 3.69177375632 3.82029127601

avg_pesq Audioset -10 0.924088591427 0.777906485525 1.045186227 1.01416232264 0.723805399425 1.21072688263 1.49321457841 1.68612497765

avg_pesq Audioset -7 1.06263094068 0.784360812015 1.25243807786 1.24437458398 0.845534836284 1.35453917931 1.77435181504 1.9619057935

avg_pesq Audioset -3 1.32799818309 0.841500279088 1.61150939559 1.59077637471 1.17828470035 1.49735088934 2.13075576099 2.29982094785

avg_pesq Audioset 0 1.52752901041 0.919772355252 1.87616270933 1.85420142433 1.46999775383 1.60844536378 2.36697376539 2.5342873936

avg_pesq Audioset 3 1.72295432799 1.00315455086 2.1185494641 2.11444938794 1.76038289758 1.68273054996 2.58286411487 2.74331730553

avg_pesq Audioset 7 1.90527675294 1.11221058616 2.41210526177 2.43087395389 2.1285367091 1.79070658642 2.81920251938 2.97029628407

avg_pesq Audioset 10 1.97735667866 1.15596683409 2.59757543018 2.63777308179 2.36744350093 1.83618863389 2.9590846835 3.10324312072

avg_pesq DEMAND -10 1.04141358251 1.55705351666 1.9298458968 1.91257566567 1.50487205811 1.53646500696 2.21089407165 2.35679833171

avg_pesq DEMAND -7 1.22147012177 1.80505497977 2.1492789345 2.14839664765 1.74035705671 1.62722750435 2.46049654815 2.60445576295

avg_pesq DEMAND -3 1.4867303537 2.1137618043 2.41930987259 2.44849459279 2.05864462753 1.73899699582 2.72376374837 2.87706292032

avg_pesq DEMAND 0 1.69048987342 2.30547160369 2.60959566607 2.64252384555 2.27884698322 1.80752944179 2.87958444031 3.03204306731

avg_pesq DEMAND 3 1.8636040117 2.46452854586 2.76060782029 2.79845963584 2.4794550254 1.86449576888 2.99743682999 3.15123278972

avg_pesq DEMAND 7 2.00874357753 2.62893634474 2.91800894136 2.96070283193 2.73063050363 1.90137165332 3.11439533933 3.26768618873

avg_pesq DEMAND 10 2.06267856686 2.71469114377 3.00591690571 3.04862845453 2.90312580178 1.92970571811 3.1764660519 3.32713262953

avg_ssnr Audioset -10 1.27738496777 0.104606474115 0.75811714378 0.632327770879 0.535233239324 0.0751246339745 2.32229410118 2.51508309979

avg_ssnr Audioset -7 1.9606158704 0.248675329927 1.17313518784 1.02684680809 1.01372266813 0.0932493747925 3.25149268148 3.41615080131

avg_ssnr Audioset -3 3.17817678946 0.623993207192 1.98731498746 1.8067004794 2.10379997084 0.124790091516 4.69847830758 4.80126493255

avg_ssnr Audioset 0 4.23826479324 1.05142051989 2.70448153861 2.54149642425 3.11309673023 0.133950538447 5.85446287332 5.94247031777

avg_ssnr Audioset 3 5.39717767494 1.50680256065 3.44464452227 3.37009682678 4.12526395917 0.145721331226 7.06019772169 7.14507039335

avg_ssnr Audioset 7 6.87198978755 2.03560176346 4.65656723657 4.53621511078 5.41623948338 0.160568272956 8.7161594012 8.80405093367

avg_ssnr Audioset 10 7.84109636392 2.32655104412 5.55559625302 5.41479321723 6.33473491066 0.164945925586 9.98539041269 10.0773727545

avg_ssnr DEMAND -10 2.83363901944 2.62283940409 1.68899107024 0.572218003206 3.18072646106 0.114796773595 5.14483330341 5.34388531207

avg_ssnr DEMAND -7 3.73009729315 3.60657515363 2.41252362071 1.04750755502 4.0399536095 0.133028433281 6.42255639111 6.61710238247

avg_ssnr DEMAND -3 5.25960094766 4.93229599746 3.57509705237 2.13032621396 5.2246226552 0.151297809038 8.22303012099 8.39029083915

avg_ssnr DEMAND 0 6.48895851886 5.83026974071 4.5671263652 3.30543130529 6.10740859842 0.157334097536 9.57352812709 9.72403437096

avg_ssnr DEMAND 3 7.7529600295 6.59844712753 5.54500307927 4.62428090869 6.95188100097 0.170818267992 10.8857794561 11.0356381902

avg_ssnr DEMAND 7 9.1329505758 7.38516838517 6.83972251299 6.24679359602 7.92339049 0.166365183575 12.5619830342 12.7116563295

avg_ssnr DEMAND 10 9.92825310545 7.80813293108 7.76897185274 7.25079850654 8.51381472963 0.183162574714 13.7242716488 13.8699439631
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Figure S2: Denoise quality under different input SNRs. Here we expand Fig. 6 of the main text,
including the evaluations under all six metrics described in Sec. 4.2.

C Evaluation on Silent Interval Detection

C.1 Metrics

We now provide the details of the metrics used for evaluating our silent interval detection (i.e., results
in Table 1 of the main text). Detecting silent intervals is a binary classification task, one that classifies
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every time segment as being silent (i.e., a positive condition) or not (i.e., a negative condition). Recall
that the confusion matrix in a binary classification task is as follows:

Table S4: Confusion matrix

Actual

Positive Negative

Pr
ed

ic
te

d
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

In our case, we have the following conditions:

• A true positive (TP) sample is a correctly predicted silent segment.

• A true negative (TN) sample is a correctly predicted non-silent segment.

• A false positive (FP) sample is a non-silent segment predicted as silent.

• A false negative (FN) sample is a silent segment predicted as non-silent.

The four metrics used in Table 1 follow the standard definitions in statistics, which we review here:

precision =
NTP

NTP +NFP
,

recall =
NTP

NTP +NFN
,

F1 = 2 · precision · recall
precision + recall

, and

accuracy =
NTP +NTN

NTP +NTN +NFP +NFN
,

(S1)

where NTP, NTN, NFP, and NFN indicate the numbers of true positive, true negative, false positive,
and false negative predictions among all tests. Intuitively, recall indicates the ability of correctly
finding all true silent intervals, precision measures how much proportion of the labeled silent intervals
are truly silent. F1 score takes both precision and recall into account, and produces their harmonic
mean. And accuracy is the ratio of correct predictions among all predictions.

C.2 An Example of Silent Interval Detection

In Fig. S3, we present an example of silent interval detection results in comparison to two alternative
methods. The two alternatives, described in Sec. 4.3, are referred to as Baseline-thres and VAD,
respectively. Figure S3 echos the quantitative results in Table 1: VAD tends to be overly conservative,
even in the presence of mild noise; and many silent intervals are ignored. On the other hand,
Baseline-thres tends to be too aggressive; it produces many false intervals. In contrast, our silent
interval detection maintains a better balance, and thus predicts more accurately.

Ground Truth

Ours

Baseline-thres

VAD

Figure S3: An example of silent interval detection results. Provided an input signal whose SNR
is 0dB (top-left), we show the silent intervals (in red) detected by three approaches: our method,
Baseline-thres, and VAD. We also show ground-truth silent intervals in top-left.
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D Ablation Studies and Analysis

D.1 Details of Ablation Studies

In Sec. 4.4 and Table 2, the ablation studies are set up in the following way.

• “Ours” refers to our proposed network structure and training method that incorporates silent
interval supervision (recall Sec. 3.3). Details are described in Appendix A.

• “Ours w/o SID loss” refers to our proposed network structure but optimized by the
training method in Sec. 3.2 (i.e. an end-to-end training without silent interval supervision).
This ablation study is to confirm that silent interval supervision indeed helps to improve the
denoising quality.

• “Ours Joint loss” refers to our proposed network structure optimized by the end-to-end
training approach that optimizes the loss function (1) with the additional term (2). In this
end-to-end training, silent interval detection is also supervised through the loss function.
This ablation study is to confirm that our two-step training (Sec. 3.3) is more effective.
• “Ours w/o NE loss” uses our two-step training (in Sec. 3.3) but without the loss term on

noise estimation—that is, without the first term in (1). This ablation study is to examine the
necessity of the loss term on noise estimation for better denoising quality.

• “Ours w/o SID comp” turns off silent interval detection: the silent interval detection
component always outputs a vector with all zeros. As a result, the input noise profile to the
noise estimation component N is made precisely the same as the original noisy signal. This
ablation study is to examine the effect of silent intervals for speech denoising.

• “Ours w/o NR comp” uses a simple spectral subtraction to replace our noise removal
component; the other components remain unchanged. This ablation studey is to examine the
efficacy of our noise removal component.

D.2 The Influence of Silent Interval Detection on Denoising Quality

A key insight of our neural-network-based denoising model is the leverage of silent interval distribu-
tion over time. The experiments above have confirmed the efficacy of our silent interval detection
for better speech denoising. We now report additional experiments, aiming to gain some empirical
understanding of how the quality of silent interval prediction would affect speech denoising quality.

Table S5: Results on how silent interval detection quality affects the speech denoising quality.

Shift No Shift 1/30 1/10 1/5 1/2

PESQ 2.471 1.932 1.317 1.169 1.094
(a) Effect of shifting silent intervals.

Shrink No Shrink 20% 40% 60% 80%

PESQ 2.471 2.361 2.333 2.283 2.249

(b) Effect of shrinking silent intervals.

First, starting with ground-truth silent intervals, we shift them on the time axis by 1/30, 1/10, 1/5, and
1/2 seconds. As the shifted time amount increases, more time segments become incorrectly labeled:
both the numbers of false positive labels (i.e., non-silent time segments labeled silent) and false
negative labels (i.e., silent time segments are labeled non-silent) increase. After each shift, we feed
the silent interval labels to our noise estimation and removal components and measure the denoising
quality under the PESQ score.

In the second experiment, we again start with ground-truth silent intervals; but instead of shifting
them, we shrink each silent interval toward its center by 20%, 40%, 60%, and 80%. As the silent
intervals become more shrunken, fewer time segments are labeled as silent. In other words, only the
number of false negative predictions increases. Similar to the previous experiment, after each shrink,
we use the silent interval labels in our speech denoising pipeline, and meausure the PESQ score.

The results of both experiments are reported in Table S5. As we shrink the silent intervals, the
denoising quality drops gently. In contrast, even a small amount of shift causes a clear drop of
denoising quality. These results suggest that in comparison to false negative predictions, false positive
predictions affect the denoising quality more negatively. On the one hand, reasonably conservative
predictions may leave certain silent time segments undetected (i.e., introducing some false negative
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labels), but the detected silent intervals indeed reveal the noise profile. On the other hand, even a
small amount of false positive predictions causes certain non-silent time segments to be treated as
silent segments, and thus the observed noise profile through the detected silent intervals would be
tainted by foreground signals.

E Evaluation of Model Performance

E.1 Generalization Across Datasets

To evaluate the generalization ability of our model, we performed three cross-dataset tests reported in
Table S6. The experiments are set up in the following way.

• “Test i”: We train our model on our own AVSPEECH+Audioset (AA) dataset but evaluate
on Valentini’s VoiceBank-DEMAND (VD) testset. The result is shown in the first row of
the “Test i” section in Table S6. In comparison, the second row shows the result of training
on VD and testing on VD.

• “Test ii”: We train our model on our own AA dataset but evaluate on our second
AVSPEECH+DEMAND (AD) testset. The result is shown in the first row of the “Test
ii” section in Table S6. In comparison, the second row shows the result of training on AD
and testing on AD.

• “Test iii”: We train our model on our own AD dataset but evaluate on AA testset. The result
is shown in the first row of the “Test iii” section of the table. In comparison, the second row
shows the result of training on AA and testing on AA.

The small degradation in each cross-dataset test demonstrates the great generalization ability of our
method. We could not directly compare the generalization ability of our model with existing methods,
as no previous work reported cross-dataset evaluation results.

Table S6: Generalization across datasets.

Test Trainset Testset PESQ CSIG CBAK COVL STOI

Test i AA VD 3.00 3.78 3.08 3.34 0.98
VD VD 3.16 3.96 3.54 3.53 0.98

Test ii AA AD 2.65 3.48 3.21 3.01 0.90
AD AD 2.80 3.66 3.36 3.17 0.91

Test iii AD AA 2.12 2.71 2.65 2.34 0.79
AA AA 2.30 2.91 2.81 2.54 0.82

E.2 Generalization on Real-world Data

We conduct experiments to understand the extent to which the model trained with different datasets
can generalize to real-world data. We train two versions of our model using our AVSPEECH+Audioset
dataset and Valentini’s VoiceBank-DEMAND, respectively (denoted as “Model AA” and “Model
VD”, respectively, in Table S7), and use them to denoise our collected real-world recordings. For the
denoised real-world audios, we measure the noise level reduction in detected silent intervals. This
measurement is doable, since it requires no knowledge of noise-free ground-truth audios. As shown
in Table S7, in terms of noise reduction, the model trained with our own AA dataset outperforms
the one trained with the public VoiceBank-DEMAND dataset by a significant amount for all tested
real-world recordings. On average, it produces 22.3 dB noise reduction in comparison to 12.6 dB,
suggesting that our dataset allows the denoising model to better generalize to many real-world
scenarios.
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Table S7: Real-world recording noise reduction comparison.

Real-world Recording Model AA noise reduction (dB) Model VD noise reduction (dB)

Song Excerpt 1 22.38 9.22
Song Excerpt 2 21.16 17.65
Chinese 18.99 15.65
Japanese 16.95 9.39
Korean 25.90 9.76
German 14.54 7.29
French 21.95 17.16
Spanish 1 33.34 11.00
Spanish 2 31.66 14.09
Female 1 17.64 7.79
Female 2 30.21 8.64
Female 3 19.15 6.70
Male 1 24.81 14.44
Male 2 24.92 13.35
Male 3 13.10 10.99
Multi-person 1 32.00 21.60
Multi-person 2 15.10 15.07
Multi-person 3 18.71 10.68
Street Interview 20.54 18.94

AVERAGE 22.27 12.60
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