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A Network Structure and Training Details

We now present the details of our network structure and training configurations.

The silent interval detection component of our model is composed of 2D convolutional layers, a
bidirectional LSTM, and two FC layers. The parameters of the convolutional layers are shown in
Table S1. Each convolutional layer is followed by a batch normalization layer with a ReLU activation
function. The hidden size of bidirectional LSTM is 100. The two FC layers, interleaved with a ReLU
activation function, have hidden size of 100 and 1, respectively.

Table S1: Convolutional layers in the silent interval detection component.

convl conv2 conv3 conv4 conv5 conv6 conv7 conv8 conv9 convl0 convll convl2

Num Filters 48 48 48 48 48 48 48 48 48 48 48 8
Filter Size an @1 G5 G5 65 G5 G5 65 (.5 (5,5 (5,5 (1,1)
Dilation (n (@ aaO,n 2n &1 @G adel1) 321 (1,1 (2,2) 4.4) (1,1)
Stride 1 1 1 1 1 1 1 1 1 1 1 1

The noise estimation component of our model is fully convolutional, consisting of two encoders and
one decoder. The two encoders process the noisy signal and the incomplete noise profile, respectively;
they have the same architecture (shown in Table S2) but different weights. The two feature maps
resulted from the two encoders are concatenated in a channel-wise manner before feeding into the
decoder. In Table S2, every layer, except the last one, is followed by a batch normalization layer
together with a ReLU activation function. In addition, there is skip connections between the 2nd and
14-th layer and between the 4-th and 12-th layer.

Table S2: Architecture of noise estimation component. ‘C’ indicates a convolutional layer, and ‘TC’
indicates a transposed convolutional layer.

Encoder Decoder
D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LayerType C C C c c c ¢ ¢ ¢ ¢ c T ¢ T C ¢
Num Filters 64 128 128 256 256 256 256 256 256 256 256 128 128 64 64 2
Filter Size 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3
Dilation 1 1 1 1 1 2 4 8 16 1 1 1 1 1 1 1
Stride 1 2 1 2 1 1 1 1 1 1 1 2 1 2 1 1

The noise removal component of our model is composed of two 2D convolutional encoders, a
bidirectional LSTM, and three FC layers. The two convolutional encoders take as input the input
audio spectrogram s, and the estimated full noise spectrogram N(s, sz ), respectively. The first
encoder has the network architecture listed in Table S3, and the second has the same architecture but
with half of the number of filters at each convolutional layer. Moreover, the bidirectional LSTM has
the hidden size of 200, and the three FC layers have the hidden size of 600, 600, and 2F, respectively,
where F' is the number of frequency bins in the spectrogram. In terms of the activation function,
ReLU is used after each layer except the last layer, which uses sigmoid.

Table S3: Convolutional encoder for the noise removal component of our model. Each convolutional
layer is followed by a batch normalization layer with ReLU as the activation function.

Cl c2 C3 C4 C5 C6 C7 C8 c9 C10 CI1 Ci12 C13 Cl4 Cl15

NumFilters 96 96 96 96 96 96 96 9% 9 96 96 96 9% 9 8
Filter Size  (L,7) (L) (55 (55 (55 (55 (5 (535 (35 (53 (55 (55 G5 G5 (LD
Dilation (L) (LD (LD @D &) @ a6 (321 (L) (22 @4 88 (1616) (3232) (L1
Stride 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure S1: Constructed noisy audio based on different SNR levels. The first row shows the
waveform of the ground truth clean input.

Training details. We use PyTorch platform to implement our speech denoising model, which is
then trained with the Adam optimizer. In our end-to-end training without silent interval supervision
(referred to as “Ours w/o SID loss” in Sec. 4; also recall Sec. 3.2), we run the Adam optimizer for
50 epochs with a batch size of 20 and a learning rate of 0.001. When the silent interval supervision is
incorporated (recall Sec. 3.3), we first train the silent interval detection component with the following
setup: run the Adam optimizer for 100 epochs with a batch size of 15 and a learning rate of 0.001.
Afterwards, we train the noise estimation and removal components using the same setup as the
end-to-end training of “Ours w/o SID loss”.

B Data Processing Details

Our model is designed to take as input a mono-channel audio clip of an arbitrary length. However,
when constructing the training dataset, we set each audio clip in the training dataset to have the
same 2-second length, to enable batching at training time. To this end, we split each original audio
clip from AVSPEECH, DEMAND, and AudioSet into 2-second long clips. All audio clips are then
downsampled at 16kHz before converting into spectrograms using STFT. To perform STFT, the
Fast Fourier Transform (FFT) size is set to 510, the Hann window size is set to 28ms, and the hop
length is set to 11ms. As a result, each 2-second clip yields a (complex-valued) spectrogram with a
resolution 256 x 178, where 256 is the number of frequency bins, and 178 is the temporal resolution.
At inference time, our model can still accept audio clips with arbitrary length.

Both our clean speech dataset and noise datasets are first split into training and test sets, so that no
audio clips in training and testing are from the same original audio source—they are fully separate.

To supervise our silent interval detection, we label the clean audio signals in the following way. We
first normalize each audio clip so that its magnitude is in the range [-1,1], that is, ensuring the largest
waveform magnitude at -1 or 1. Then, the clean audio clip is divided into segments of length 1/30
seconds. We label a time segment as a “silent” segment (i.e., label 0) if its average waveform energy
in that segment is below 0.08. Otherwise, it is labeled as a “non-silent” segment (i.e., label 1).
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Figure S2: Denoise quality under different input SNRs. Here we expand Fig. 6 of the main text,
including the evaluations under all six metrics described in Sec. 4.2.
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C Evaluation on Silent Interval Detection

C.1 Metrics

We now provide the details of the metrics used for evaluating our silent interval detection (i.e., results
in Table 1 of the main text). Detecting silent intervals is a binary classification task, one that classifies



every time segment as being silent (i.e., a positive condition) or not (i.e., a negative condition). Recall
that the confusion matrix in a binary classification task is as follows:

Table S4: Confusion matrix

Actual

Positive Negative

Positive  True Positive (TP)  False Positive (FP)

Predicted

Negative  False Negative (FN)  True Negative (TN)

In our case, we have the following conditions:

e A true positive (TP) sample is a correctly predicted silent segment.
e A true negative (TN) sample is a correctly predicted non-silent segment.
e A false positive (FP) sample is a non-silent segment predicted as silent.

o A false negative (FN) sample is a silent segment predicted as non-silent.

The four metrics used in Table 1 follow the standard definitions in statistics, which we review here:

precision = 7NTP
Ntp + Nep’
recall = L,
N1p + NEn 1)
precision - recall
Fl = 2 TR an
precision + recall
_ Ntp + NN
accuracy =

Ntp + NN+ Nep + Nen”

where N1p, NTn, INrp, and Npy indicate the numbers of true positive, true negative, false positive,
and false negative predictions among all tests. Intuitively, recall indicates the ability of correctly
finding all true silent intervals, precision measures how much proportion of the labeled silent intervals
are truly silent. F1 score takes both precision and recall into account, and produces their harmonic
mean. And accuracy is the ratio of correct predictions among all predictions.

C.2 An Example of Silent Interval Detection

In Fig. S3, we present an example of silent interval detection results in comparison to two alternative
methods. The two alternatives, described in Sec. 4.3, are referred to as Baseline-thres and VAD,
respectively. Figure S3 echos the quantitative results in Table 1: VAD tends to be overly conservative,
even in the presence of mild noise; and many silent intervals are ignored. On the other hand,
Baseline-thres tends to be too aggressive; it produces many false intervals. In contrast, our silent
interval detection maintains a better balance, and thus predicts more accurately.

Ground Truth Baseline-thres
Ours VAD

Figure S3: An example of silent interval detection results. Provided an input signal whose SNR
is 0dB (top-left), we show the silent intervals (in red) detected by three approaches: our method,
Baseline-thres, and VAD. We also show ground-truth silent intervals in top-left.



D Ablation Studies and Analysis

D.1 Details of Ablation Studies
In Sec. 4.4 and Table 2, the ablation studies are set up in the following way.

e “Ours” refers to our proposed network structure and training method that incorporates silent
interval supervision (recall Sec. 3.3). Details are described in Appendix A.

e “Ours w/o SID loss” refers to our proposed network structure but optimized by the
training method in Sec. 3.2 (i.e. an end-to-end training without silent interval supervision).
This ablation study is to confirm that silent interval supervision indeed helps to improve the
denoising quality.

e “Ours Joint loss” refers to our proposed network structure optimized by the end-to-end
training approach that optimizes the loss function (1) with the additional term (2). In this
end-to-end training, silent interval detection is also supervised through the loss function.
This ablation study is to confirm that our two-step training (Sec. 3.3) is more effective.

e “Ours w/o NE loss” uses our two-step training (in Sec. 3.3) but without the loss term on
noise estimation—that is, without the first term in (1). This ablation study is to examine the
necessity of the loss term on noise estimation for better denoising quality.

e “Ours w/o SID comp” turns off silent interval detection: the silent interval detection
component always outputs a vector with all zeros. As a result, the input noise profile to the
noise estimation component N is made precisely the same as the original noisy signal. This
ablation study is to examine the effect of silent intervals for speech denoising.

e “Ours w/o NR comp” uses a simple spectral subtraction to replace our noise removal
component; the other components remain unchanged. This ablation studey is to examine the
efficacy of our noise removal component.

D.2 The Influence of Silent Interval Detection on Denoising Quality

A key insight of our neural-network-based denoising model is the leverage of silent interval distribu-
tion over time. The experiments above have confirmed the efficacy of our silent interval detection
for better speech denoising. We now report additional experiments, aiming to gain some empirical
understanding of how the quality of silent interval prediction would affect speech denoising quality.

Table S5: Results on how silent interval detection quality affects the speech denoising quality.

Shift  No Shift  1/30 1/10 1/5 172 Shrink  No Shrink  20% 40% 60% 80%
PESQ 2.471 1.932 1317 1.169 1.094 PESQ 2.471 2.361 2.333 2283 2249
(a) Effect of shifting silent intervals. (b) Effect of shrinking silent intervals.

First, starting with ground-truth silent intervals, we shift them on the time axis by 1/30, 1/10, 1/5, and
1/2 seconds. As the shifted time amount increases, more time segments become incorrectly labeled:
both the numbers of false positive labels (i.e., non-silent time segments labeled silent) and false
negative labels (i.e., silent time segments are labeled non-silent) increase. After each shift, we feed
the silent interval labels to our noise estimation and removal components and measure the denoising
quality under the PESQ score.

In the second experiment, we again start with ground-truth silent intervals; but instead of shifting
them, we shrink each silent interval toward its center by 20%, 40%, 60%, and 80%. As the silent
intervals become more shrunken, fewer time segments are labeled as silent. In other words, only the
number of false negative predictions increases. Similar to the previous experiment, after each shrink,
we use the silent interval labels in our speech denoising pipeline, and meausure the PESQ score.

The results of both experiments are reported in Table S5. As we shrink the silent intervals, the
denoising quality drops gently. In contrast, even a small amount of shift causes a clear drop of
denoising quality. These results suggest that in comparison to false negative predictions, false positive
predictions affect the denoising quality more negatively. On the one hand, reasonably conservative
predictions may leave certain silent time segments undetected (i.e., introducing some false negative



labels), but the detected silent intervals indeed reveal the noise profile. On the other hand, even a
small amount of false positive predictions causes certain non-silent time segments to be treated as
silent segments, and thus the observed noise profile through the detected silent intervals would be
tainted by foreground signals.

E Evaluation of Model Performance

E.1 Generalization Across Datasets

To evaluate the generalization ability of our model, we performed three cross-dataset tests reported in
Table S6. The experiments are set up in the following way.

e “Testi”: We train our model on our own AVSPEECH+Audioset (AA) dataset but evaluate
on Valentini’s VoiceBank-DEMAND (VD) testset. The result is shown in the first row of
the “Test i” section in Table S6. In comparison, the second row shows the result of training
on VD and testing on VD.

e “Test ii”: We train our model on our own AA dataset but evaluate on our second
AVSPEECH+DEMAND (AD) testset. The result is shown in the first row of the “Test
ii” section in Table S6. In comparison, the second row shows the result of training on AD
and testing on AD.

o “Test iii”: We train our model on our own AD dataset but evaluate on AA testset. The result
is shown in the first row of the “Test iii” section of the table. In comparison, the second row
shows the result of training on AA and testing on AA.

The small degradation in each cross-dataset test demonstrates the great generalization ability of our
method. We could not directly compare the generalization ability of our model with existing methods,
as no previous work reported cross-dataset evaluation results.

Table S6: Generalization across datasets.

Test Trainset Testset PESQ CSIG CBAK COVL STOI
AA VD 3.00 3.78 3.08 3.34 0.98

Testi VD VD 316 396 354 353 098

Tostii AA AD 265 348 321 301 0.90

AD AD 280 366 336 317 091

.. AD AA 212 271 265 234 0.9
Test iii

AA AA 2.30 291 2.81 2.54 0.82

E.2 Generalization on Real-world Data

We conduct experiments to understand the extent to which the model trained with different datasets
can generalize to real-world data. We train two versions of our model using our AVSPEECH+Audioset
dataset and Valentini’s VoiceBank-DEMAND, respectively (denoted as “Model AA” and “Model
VD, respectively, in Table S7), and use them to denoise our collected real-world recordings. For the
denoised real-world audios, we measure the noise level reduction in detected silent intervals. This
measurement is doable, since it requires no knowledge of noise-free ground-truth audios. As shown
in Table S7, in terms of noise reduction, the model trained with our own AA dataset outperforms
the one trained with the public VoiceBank-DEMAND dataset by a significant amount for all tested
real-world recordings. On average, it produces 22.3 dB noise reduction in comparison to 12.6 dB,
suggesting that our dataset allows the denoising model to better generalize to many real-world
scenarios.



Table S7: Real-world recording noise reduction comparison.

Real-world Recording Model AA noise reduction (dB) Model VD noise reduction (dB)

Song Excerpt 1 22.38 9.22
Song Excerpt 2 21.16 17.65
Chinese 18.99 15.65
Japanese 16.95 9.39
Korean 25.90 9.76
German 14.54 7.29
French 21.95 17.16
Spanish 1 33.34 11.00
Spanish 2 31.66 14.09
Female 1 17.64 7.79
Female 2 30.21 8.64
Female 3 19.15 6.70
Male 1 24.81 14.44
Male 2 24.92 13.35
Male 3 13.10 10.99
Multi-person 1 32.00 21.60
Multi-person 2 15.10 15.07
Multi-person 3 18.71 10.68
Street Interview 20.54 18.94
AVERAGE 22.27 12.60




