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Abstract

We propose an estimator and confidence interval for computing the value of a
policy from off-policy data in the contextual bandit setting. To this end we apply
empirical likelihood techniques to formulate our estimator and confidence interval
as simple convex optimization problems. Using the lower bound of our confidence
interval, we then propose an off-policy policy optimization algorithm that searches
for policies with large reward lower bound. We empirically find that both our
estimator and confidence interval improve over previous proposals in finite sample
regimes. Finally, the policy optimization algorithm we propose outperforms a
strong baseline system for learning from off-policy data.

1 Introduction

Contextual Bandits [3, 17] are now in widespread practical use ([19, 7, 25]). Key to their success
is the ability to do off-policy or counterfactual estimation [12] of the value of any policy enabling
sound train/test regimes similar to supervised learning. However, off-policy evaluation requires more
data than supervised learning to produce estimates of the same accuracy. This is because off-policy
data needs to be importance-weighted and accurate estimation for importance-weighted data is still
an active research area. How can we find a tight confidence interval (CI) on counterfactual estimates?
And since tight CIs are deeply dependent on the form of their estimate, how can we find a tight
estimate? And given what we discover, how can we leverage this for improved learning algorithms?

We discover good answers to these questions through the application of empirical likelihood [24], a
nonparametric maximum likelihood approach that treats the sample as a realization from a multino-
mial distribution with an infinite number of categories. Like a likelihood method, empirical likelihood
(EL) adapts to the difficulty of the problem in an automatic way and results in efficient estimators.
Unlike parametric likelihood methods, we do not need to make any parametric assumptions about
the data generating process. We do assume that the expected importance weight is 1, a nonpara-
metric moment condition that is supposed to hold for correctly collected off-policy data. Finally,
EL-based estimators and confidence intervals can be computed by efficient algorithms that solve low
dimensional convex optimization problems. Figure 1 shows a preview of our results.

In section 4.2 we introduce our estimator. The estimator is computationally tractable, requiring a
bisection search over a single scalar, has provably low bias (see Theorem 1) and in section 5.1 we
experimentally demonstrate performance exceeding that of popular alternatives.

The estimator leads to an asymptotically exact confidence interval for off-policy estimation which
we describe in section 4.3. Other CIs are either narrow but fail to guarantee prescribed coverage,
or guarantee prescribed coverage but are too wide to be useful. Our interval is narrow and (despite
having only an asymptotic guarantee) empirically approaches nominal coverage from above as in
Figure 1 and Table 3. Finally, in section 4.5, we use our CI to construct a robust counterfactual
learning objective. We experiment with this in section 5.3 and empirically outperform a strong
baseline.

We now highlight several innovations in our approach:
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Figure 1: A comparison of confidence intervals on contextual bandit data. The EL confidence interval
is dramatically tighter than an approach based on a binomial confidence interval while avoiding
chronic undercoverage as per the asymptotic Gaussian confidence interval. In some regimes, the
asymptotic Gaussian CI both undercovers and has greater average width. This is possible as the
EL CI has a different functional form than a multiplier on the Gaussian CI. On the left, shaded area
represents 90% of the empirical distribution indicating the EL CI width varies less over realizations.
On the right, shaded area represents 4 times the standard error of the mean indicating coverage
differences are everywhere statistically significant.

• We use a nonparametric likelihood approach. This maintains [15] some of the asymptotic
optimality results known for likelihood in the multinomial (hence well-specified) case[11].

• We prove a finite sample result on the bias of our estimator. This also implies our estimator
is asymptotically consistent.

• Our CI considers a large set of plausible worlds (alternative hypotheses) from which the
observed off-policy data could have come from. One implication (cf. section 4.4) is that for
binary rewards the CI lower bound will be < 1 (and > 0) even if all observed rewards are 1.

• We show how to compute the confidence interval directly, saving a factor of log(1/ε) in
time complexity compared to standard implementations of EL for general settings.

• We propose a learning objective that searches for a policy with the best lower bound on its
reward and draw connections with distributionally robust optimization.

2 Related Work

There are many off-policy estimators for contextual bandits. The "Inverse Propensity Score" (IPS) [12]
is unbiased, but has high variance. The Self-Normalized IPS (SNIPS) [30] estimator trades off some
bias for better mean squared error (MSE). Our estimator has bias of the same order as SNIPS and
empirically better MSE. The EMP estimator of [14] also uses EL techniques and we will explain
the differences in detail in section 4.2. Critically, it would be challenging to use EMP to construct a
CI with correct coverage for small samples, as we will explain in section 4.4. An orthogonal way
to reduce variance is to incorporate a reward estimator as in the doubly robust (DR) estimator and
associated variants [27, 9, 33, 32]. The estimator presented here is a natural alternative to IPS and
SNIPS and can naturally replace the IPS part of a doubly robust estimator.

There is less work on off-policy CIs for contextual bandits. A simple baseline randomly rounds the
rewards to {0, 1} and the importance weights to 0 or the largest possible weight value and applies a
Binomial confidence interval. Another simple asymptotically motivated approach, previously applied
to contextual bandits [18], is via a Gaussian approximation. The EL confidence intervals are also
asymptotically motivated but empirically approach nominal coverage from above and are much tighter
than the Binomial confidence interval. In [5] empirical Bernstein bounds or Gaussian approximations
are combined with clipping of large importance weights to trade bias for variance. This requires
hyperparameter tuning whereas EL provides parameter-free CIs. Similar ideas to ours have been used
for the upper confidence bound in the Empirical KL-UCB algorithm [6], an on-policy algorithm for
multi-armed bandits. As detailed in section 4.4, both constructions need to consider some events that
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may not be in the data. While this happens without explicit data augmentation, it is analogous to the
use of explicitly augmented MDPs for off-policy estimation in Markov Decision Processes[20].

Learning algorithms for contextual bandits include theoretical [3, 17], reduction oriented [9],
optimization-based [29], and Bayesian [21] algorithms. A recent paper about empirical contex-
tual bandit learning [4] informs our experiments.

Ideas from empirical likelihood have previously been applied to robust supervised learning [8]. Our
combination of CIs with learning is a contextual bandit analogue to robust supervised learning.
Regularizing counterfactual learning via lower-bound optimization has been previously considered,
e.g., based upon empirical Bernstein bounds [29] or divergence-based trust regions grounded in lower
bounds from conservative policy iteration [28, 13].

3 Notation and Warm-up

We consider the off-policy contextual bandit problem, with contexts x ∈ X , a finite set of actions
A, and bounded real rewards r ∈ A→ [0, 1]. The environment generates i.i.d. context-reward pairs
(x, r) ∼ D and first reveals x. Then an action a ∈ A is sampled and the reward r(a) is revealed.

Let π be the policy whose value we want to estimate. For off-policy estimation we assume a
dataset {(xn, an, pn, rn)}Nn=1, generated from an arbitrary sequence of historical stochastic poli-
cies hn, with pn

.
= hn(an|xn) and rn

.
= rn(an). Let w(a)

.
= π(a|x)

h(a|x) be a random variable

denoting the density ratio between π and h and wn
.
= π(an|xn)

hn(an|xn) its realization. We assume
π � hn (absolute continuity), and that w ∈ [wmin, wmax].1 The value of π is defined as
V (π) = E(x,r)∼D,a∼π(·|x)[r(a)]. Since we don’t have data from π, but from hn we use impor-
tance weighting to write V (π) = E(x,r)∼D,a∼h(·|x)[w(a)r(a)]. The inverse propensity score (IPS)
estimator is a direct implementation of this: V IPS(π) = 1

N

∑N
n=1 wnrn. We can do better by ob-

serving that each policy hn is created using data before time n. Formally, let {Fn} be the filtration
generated by {(xk, ak, pk, rk)}k<n, and assume {hn} is {Fn}-adapted. Let En[·] .= E[·|Fn]. These
observations allow us to note that ∀n : En[w(a)] = 1. This moment condition has been used for vari-

ance reduction (e.g in the SNIPS estimator). We also observe that mn(v) =

(∑
k≤n (wkrk − v)∑
k≤n (wk − 1)

)
is a martingale sequence when v = V (π). This observation will allow us to develop consistent
estimators even with a non-stationary behavior policy.

3.1 Pedagogical Example

Suppose π is deterministic, r is binary-valued, and hn is the same ε-greedy policy for all n. In this
case there are only 3 possible values2 for the importance weight wn = π(an|xn)

hn(an|xn) ; 2 possible values
for the reward, and the data is an i.i.d. sample. The observed data can be reduced to a histogram with
6 bins. To construct an estimator and a confidence interval we will reason about plausible worlds that
could have generated the data. In particular each of these worlds induces a joint distribution over
importance weights and rewards. Let Q∗w,r denote the true probability of (w, r) under the logging
policy. Its maximum likelihood estimator is

Qmle = arg max
Q∈∆

{∑
n

log (Qwn,rn)

∣∣∣∣∣EQ [w] = 1

}
,

where ∆ is the simplex. The constraint enforces that the counterfactual distribution under π nor-
malizes; we discuss the implications in section 4.4. Associated with any maximizer Qmle is a
corresponding value estimate V̂ (π) = EQmle [wr]. Absent the constraint, the maximizing Q would
have been the empirical distribution and V̂ (π) would be V IPS(π). Furthermore, to find an asymptotic

1 wmin = 0 is always a lower bound, but wmax is application dependent. To ensure π � hn so that
estimation is consistent, it is common to enforce, for every action a′, hn(a

′|xn) ≥ pmin. Then wmax ≤ 1/pmin.
2π(an|xn) ∈ {0, 1} and hn(an|xn) has two possible values.
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CI for V̂ (π), we can use Wilks’ theorem. Define the maximum profile likelihood at v:

L(v) = sup
Q∈∆

{∑
n

log (Qwn,rn)

∣∣∣∣∣EQ[w] = 1,EQ[wr] = v

}
. (1)

Let Qprof(v) be the maximizing Q for L(v). Wilks’ Theorem says that −2(L(V (π)) −∑
n log(Qmle

wn,rn)) → χ2
(1) in distribution as n → ∞. Letting χ2,1−α

(1) be the 1 − α-quantile of
a χ-square distribution with one degree of freedom, an asymptotic 1− α-confidence interval is{

v

∣∣∣∣∑
n

log(Qmle
wn,rn)−

∑
n

log(Qprof
wn,rn(v)) ≤ 1

2
χ2,1−α

(1)

}
.

That is, if for a candidate v there exists a distributionQprof(v) over (w, r) pairs such that EQprof(v)[w] =
1, EQprof(v)[wr] = v, and the data likelihood is high then v should be in the CI for V (π). [11] shows
that for multinomials this is the tightest 1− α-confidence interval as n→∞ and α→ 0.

The value estimate is not necessarily unique if there are multiple distributions Qmle which obtain the
maximum, but all value estimates are contained in the α→ 1 limit of the above CI. For instance, if
all observed importance weights are zero by chance, Qmle must place some mass on a (w, r) with
w > 1 to satisfy EQ[w] = 1, but the likelihood is not sensitive to the value of r.

4 Off-Policy Estimation and Confidence Interval

We first review how empirical likelihood extends the above results, then present our results.

4.1 Empirical Likelihood

So far, we assumed that the random vector (w, r) has finite support and that data is iid. Empirical
likelihood [24] allows us to transfer the above results to settings where the support is infinite. The
seminal work [23] showed that the finite support assumption is immaterial. This was later extended
[26] to prove that estimating equations such as E[w] = 1 could be incorporated into the estimation
of E[wr]. As long as Cov(w,wr) 6= 0 Corollary 5 of [26] (also Theorem 3.5 of [24]) implies that
−2(L(V (π))−

∑
n log(Qmle

wn,rn))→ χ2
(1) in distribution as n→∞ without assuming finite support

for (w, r). Asymptotic optimality results for empirical likelihood are established in [15], but require
different proof techniques from the multinomial case [11].

We now turn to the iid. assumption. In many practical setups data may have been collected from
various logging policies which makes the w’s non-iid. Existing estimators, such as IPS, have no
trouble handling such data. A key insight is that all the information about the problem is captured
in the martingale estimating equation mn(V (π)) = 0. The extension of empirical likelihood to
martingales is given by Dual Likelihood [22]. The reason for the name is that the functional of
interest is the convex dual of the empirical likelihood formulation subject to the martingale estimating
equation of interest. In our case, we use dual variables τ and β that correspond to the first and second
component of mn(v) = 0 respectively. As derived in appendix A we get the dual likelihood

lv(β, τ) =
∑
n

log (1 + β(wn − 1) + τ(wnrn − v)) (2)

That derivation also reveals the constraint set associated with a feasible primal solution,

C = {(β, τ)|∀w, r : 1 + β(w − 1) + τ(wr − v) ≥ 0}. (3)

Despite the domains of w and r being potentially infinite, we can express C using only 4 constraints
as C = {(β, τ)|∀w ∈ {wmin, wmax}, r ∈ {0, 1} : 1 + β(w − 1) + τ(wr − v) ≥ 0}.
This is also the convex dual of (1) as iid and finite support data are just special cases of this framework.
However, L(v) and the corresponding Q do not have a generative interpretation when w’s are not iid.
Nevertheless, under very mild conditions [22] the maximum of eq. (2) with v = V (π) still has an
asymptotic distribution that obeys a nonparametric analogue to Wilks’ theorem. Thus it functions
similarly for hypothesis testing. We will still refer to the support of Q to provide intuition.
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What is the set of alternative hypotheses considered when constructing hypothesis tests or CIs via
a dual likelihood formulation? This is easier to understand in the primal, as the dual likelihood
corresponds to a primal optimization over all distributions Q over (w, r) which measure-theoretically
dominate the empirical distribution (i.e., place positive probability on each realized datum) and satisfy
the moment condition EQ[w] = 1. Although this includes distributions with unbounded support, the
optima are supported on the sample plus at most one more point as discussed in section 4.4.

4.2 Off-Policy Estimation

We start by defining a (dual) analogue to the nonparametric maximum likelihood estimator (NPMLE)
in the primal formulation for the iid case. Consider the quantity

l∗mle = sup
(β,0)∈C

lv(β, 0) (4)

which is obtained by setting τ = 0 (so the value of v is immaterial) and optimizing over β. This
quantity may seem mysterious, but it corresponds to the NPMLE. Indeed, τ = 0 means EQ[wr] is
free to take on any value, as in the primal maximum likelihood formulation. We propose our estimator
as any v which obtains the maximum dual likelihood, i.e., any value in the set{

v

∣∣∣∣ sup
(β,τ)∈C

lv(β, τ) = l∗mle

}
. (5)

In appendix B we prove there is an interval of maximizers of the form

V̂ (π; ρ) = ρ+
1

N

∑
n

wn(rn − ρ)

1 + β∗(wn − 1)
, (6)

where ρ is any value in [0, 1] and β∗ maximizes∑
n

log (1 + β(wn − 1)) s.t. ∀w : 1 + β(w − 1) ≥ 0. (7)

The constraints on β∗ are over all possible values of w, not just the observed w. However the
constraints with w = wmin and w = wmax imply all other constraints. We solve this 1-d convex
problem via bisection to accuracy ε in O(N log( 1

ε )) time. Note that β = 0 is always feasible and it is
optimal when

∑
n wn = N . When β∗ = 0, (6) becomes V IPS for all values of ρ.

Eq. (6) (and eq. (9) in 4.3) are valid in the martingale setting, i.e., for a sequence of historical
policies. Appendix B shows that when there exists an unobserved extreme value of w, say wex, any
associated primal solution Qmle will assign some probability to a pair (wex, ρ). Section 4.4 discusses
the beneficial implications of this. Once both wmin, wmax are observed with any r, eq. (6) becomes
a point estimate because

∑
n wn (1 + β∗(wn − 1))

−1
= N , i.e., ρ cancels out and Qmle only has

support on the observed data.

The EMP estimator, based on empirical likelihood, was proposed in [14]. Specializing it to a constant
reward predictor for all (x, a) we can write both estimators in terms of Qmle. Eq. (6) leads to V̂ (π) =

(1−
∑
nQ

mle
wn,rnwn)ρ+

∑
nQ

mle
wn,rnwnrn while EMP is V̂EMP(π) =

∑
nQ

mle
wn,rnwnrn/

∑
nQ

mle
wn,rn .

When wmin and wmax are observed,
∑
nQ

mle
wn,rn =

∑
nQ

mle
wn,rnwn = 1 and the two estimators

coincide. Section 5.1 empirically investigates their finite sample behavior.

4.2.1 Finite Sample Bias

We show a finite-sample bound on the bias of an estimator, based upon eq. (6), of the value difference
R(π)

.
= V (π) − V (h) between π and the logging policy. We obtain our estimator for R(π) via

EQmle [wr]− EQmle [r] and using the primal-dual relationship for Qmle from appendix A. In practical
applications R(π) is the relevant quantity for deciding when to update a production policy. The proof
is in appendix D.

Theorem 1. Let R̂(π)
.
= 1

N

∑
n

(wn−1)(rn−ρ)
1+β∗(wn−1) with β∗ as in eq. (7), and let a.s. ∀n : 0 ≤ wn ≤

wmax with wmax ≥ 1. Then∣∣∣E [R̂(π)
]
−R(π)

∣∣∣ ≤ 10

√
wmax

N
+ 16

wmax

N
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where R(π)
.
= V (π)− V (h) is the true policy value difference between π and {hn}n∈N .

The leading term in Theorem 1 is actually any ω ≥ En[(wn − 1)2]; ω = wmax is a worst case.
This result indicates low bias for the estimator (leading terms comparable to finite-sample variance);
meanwhile inspection of eq. (6) (and (9)) indicate neither can overflow the underlying range of
reward. This explains the excellent mean square error performance observed in section 5.1.

4.3 Off-Policy Confidence Interval

We can use the dual likelihood of eq. (2) to construct an asymptotic confidence interval [22] in a
manner completely analogous to Wilks’ theorem for the primal likelihood formulation{

v

∣∣∣∣ sup
(β,τ)∈C

lv(β, τ)− l∗mle ≤
1

2
χ2,α

(1)

}
, (8)

where α is the desired nominal coverage and χ2,α
(1) is the α-quantile of a χ-square distribution with

one degree of freedom. The asymptotic guarantee is that the coverage error of this interval is O(1/n).

In general applications of EL a bisection on v is recommended for finding the boundaries of the CI:
given an interval [`, u] check whether v = (`+ u)/2 is in the set given by (8) and update ` or u. This
requires O(log(1/ε)) calls to maximize (2). Here we derive a more explicit form for the boundary
points which is more insightful and faster to compute (2 optimization calls). In appendix C we prove
the lower bound of the CI is

vlb(π) = κ∗
1

N

∑
n

wnrn
γ∗ + β∗wn + wnrn

, (9)

where (β∗, γ∗, κ∗) are given by

sup
κ≥0
β,γ

∑
n

(
−κ log κ+ κ

(
−φ+ log (γ + βwn + wnrn)

))

subject to ∀w : γ + βw ≥ 0, where φ = 1
2N χ

2,α
(1) −

1
N l
∗
mle.

The constraints range over all possible values of w, but wmin and wmax are the only relevant ones.
This is a convex problem with 3 variables and 2 constraints that can be solved to ε-accuracy by
the ellipsoid method (for example) in O(N log( 1

ε )) time. The upper bound can be obtained by
transforming the rewards r ← 1− r, finding the lower bound, and then setting vub ← 1− vlb.

In eq. (9) we can have κ∗
∑
n wn (γ∗ + β∗(wn − 1) + wnrn)

−1
< N even after extreme values of

w have been observed. This corresponds to a primal solution which is placing “extra” probability
on either (wmin, 0) or (wmax, 0). For example, this allows our lower bound to be < 1 even if all
observed rewards are 1. Section 4.4 discusses the benefits of the additional primal support.

4.4 The Importance of E[w] = 1

By inspection, the primal constraint E[w] = 1 can be infeasible for a distribution only supported on the
observed values if 1 is not in the convex hull of observed importance weights. Consequently solutions
to equations (6) and (9) can correspond to distributions Q in the primal formulation with support
beyond the observed values. This is a known property of constrained empirical likelihood [10].

We precisely characterize the additional support as confined to a single extreme point. In ap-
pendix B we show the support of the primal distribution associated with equation (6) is a subset of
{(wn, rn)}n≤N ∪ {(wex, ρ)}, where wex = wmin if

∑
wn ≥ N and otherwise wex = wmax.

In appendix C we show the support of the primal distribution associated with equation (9) is
{(wn, rn)}n≤N ∪ {(wex, 0)}, where wex is either wmin or wmax. We also point out that simi-
lar ideas have already been used for multi-armed bandits. For example, the empirical KL-UCB
algorithm [6] uses empirical likelihood to construct an upper confidence bound on each arm by
considering distributions that can place additional mass on the largest possible reward.

Although the modification of the support from the observed data points seems modest, it greatly
improves both the estimator and the CI. Critically, both can produce values that are outside the convex
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hull of the observations, but never overflow the possible range [0, 1]. In contrast, empirical likelihood
on the sample is constrained to the convex hull of the observations; while empirical likelihood on the
bounded range without the E[w] = 1 constraint can produce value estimates in the range [0, wmax].
Furthermore, we observe in practice that our CIs approach nominal coverage values from above, as
in Figure 1. This is not typical behavior when empirical likelihood is constrained to the sample.

Per Lemma 2.1 of [24], empirical likelihood can only place O(1/n) mass outside the sample. With
our primal constraint E[w] = 1 this mass is further limited to O(1/wmax), and decreases as the
realized average importance weight approaches 1. As seen in Figure 1, this can result in non-trivial
CIs in the regime n < wmax where other interval estimation techniques struggle.

4.5 Offline Contextual Bandit Learning

Here the goal is to learn a policy π using a dataset {(xn, an, pn, rn)}n∈N , i.e., without interacting
with the system generating the data. One strategy is to leverage a counterfactual estimator to reduce
policy learning to optimization [18], suggesting the use of equation (6) in the objective.

Alternatively we can instead optimize the lower bound of equation (9). In the iid. case optimizing
the lower bound corresponds to a variant of distributionally robust optimization. The log-empirical
likelihood for a distribution Q is equivalent to the KL divergence between the empirical distribution
1/N and Q. A likelihood maximizer Qmle attains the minimum such KL divergence. By optimizing
the lower bound (9) we are performing distributionally robust optimization with uncertainty set

Q(π) =

{
Q

∣∣∣∣EQ[w(π)] = 1, KL
(

1

N

∣∣∣∣∣∣∣∣Q) ≤ B(π)

}
,

where B(π) = KL
(
1

N ||Q
mle(π)

)
+ 1

2N χ
2,α
(1) and we have made dependences on π explicit. Given a

set of policies Π we can set up the game

max
π∈Π

min
Q∈Q(π)

∑
n

Qw(π)n,rnw(π)nrn

for finding the policy π∗ ∈ Π with the best reward lower bound. For our experiments we use a
heuristic alternating optimization strategy. In one phase the policy is fixed and we find the optimal
dual variables associated with equation (9). In the alternate phase we find a policy with a better lower
bound, i.e., a policy which improves upon equation (9) with dual variables held fixed. Developing
better methods for solving this game is deferred for future work.

5 Experiments

The purpose of our experiments is to demonstrate the empirical behavior of the proposed methods
against other methods that use the same information. Comparing against methods that leverage or
focus on reward predictors is therefore out of scope, as reward predictors can help/hurt any method.
Our experiments compare MSE of estimators (section 5.1), confidence interval coverage and width
(section 5.2), and utility of lower bound optimization for off-policy learning (section 5.3).

Replication instructions are available in the supplement, and replication software is available at
http://github.com/pmineiro/elfcb. All experiment details are in the appendix.

5.1 Off-Policy Estimation

Synthetic Data We begin with a synthetic example to build intuition. In appendix E we detail how
we sample w = π/h and r for each synthetic environment. Figure 2 shows the mean squared error
(MSE) over 10,000 environment samples for various estimators. The best constant predictor of 1/2
(“Constant”) has a MSE of 1/12, as expected. ClippedDR is the doubly robust estimator with the
best constant predictor of 1/2 clipped to the range [0, 1], i.e. min(1,max(0, 1

2 +
∑
n
wn

N (rn− 1/2))).
SNIPS is the self-normalized estimator IPS estimator. EMP is the estimator of [14]. For EL, we
use ρ = 1

2 . When a small number of large importance weight events is expected in a realization,
both ClippedDR and SNIPS suffer due to their poor handling of the E[w] = 1 constraint. EMP is an
improvement and EL is a further improvement. Asymptotically all estimators are similar.

7
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estimators on synthetic data. Asymptotics
are similar while EL dominates in the small
sample regime. Line width is 4 times the
standard error of the population mean.

EL vs. Exploration Wins Ties Losses

IPS
ε = 0.05 26 11 3
bags=10 13 19 8
cover=10 16 16 9

SNIPS
ε = 0.05 5 34 1
bags=10 7 30 3
cover=10 7 33 0

EMP
ε = 0.05 24 13 3
bags=10 8 26 6
cover=10 8 23 9

Table 1: Off-policy evaluation results where ε =
0.05 is ε-greedy exploration, bags=10 is bootstrap
exploration with 10 replicas, and cover=10 is online
cover [2] with 10 policies.

Exploration CI LB EL

Wins Ties Losses Wins Ties Losses

ε = 0.05 greedy 16 18 6 11 26 3
ε = 0.1 greedy 16 19 5 13 24 3
ε = 0.25 greedy 15 22 3 3 34 3

bagging, 10 bags 21 18 1 11 28 1
bagging, 32 bags 4 26 10 7 31 2

cover, 10 policies 18 21 1 6 30 4
cover, 32 policies 9 29 2 6 34 0

Table 2: Learning results. “CI LB” uses equation (9); “EL” uses equation (6). “EL” serves as an
ablation study, on whether the improvement in “CI LB” is due to distributional robustness, or the
estimator itself.

Realistic Data We employ an experimental protocol inspired by the operations of the Decision
Service [1], an industrial contextual bandit platform. Details are in appendix F. Succinctly, we
use 40 classification datasets from OpenML [31]; apply a supervised-to-bandit transform [9]; and
limit the datasets to 10,000 examples. Each dataset is randomly split 20%/60%/20% into Initial-
ize/Learn/Evaluate subsets, to learn h, learn π, and evaluate π respectively. Learning is via Vowpal
Wabbit [16] using various exploration strategies, with default parameters and π initialized to h.

We compare the MSE of EL, IPS, SNIPS, and EMP using the true value of π on the evaluation set
(available because the underlying dataset is fully observed and π(a|x) is known). For each dataset we
evaluate multiple times, each time resampling a ∼ h(·|x). Table 1 shows the results of a paired t-test
with 60 trials per dataset and 95% confidence level: “tie” indicates null result, and “win” or “loss”
indicates significantly better or worse. The EL is overall superior to IPS and SNIPS. It is similar to
EMP except when the data comes from 0.05-greedy exploration, where EL is better than EMP.

5.2 Confidence Intervals Table 3: Off-Policy Confidence Intervals

Technique Coverage Width Ratio
(Average) (Median)

EL 0.975 n/a

Binomial 0.996 2.89

AG 0.912 0.99

Synthetic Data We use the same synthetic ε-greedy
data as described above. Figure 1 shows the mean width
and empirical coverage over 10,000 environment sam-
ples for various CIs at 95% nominal coverage. Binomial
CI is the Clopper Pearson confidence interval on the ran-
dom variable w

wmax
R. This is an excessively wide CI.

Asymptotic Gaussian is the standard z-score CI around
the empirical mean and standard deviation motivated by the central limit theorem. Intervals are
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narrow but typically violate nominal coverage. The EL interval is narrow and obeys nominal coverage
throughout the entire range despite only having asymptotic guarantees.

Once again there is a qualitative change when the sample size is comparable to the largest importance
weight. The Binomial CI interval only begins to make progress at this point. Meanwhile, the
asymptotic Gaussian interval widens as empirical variance increases.

Realistic Data We use the same datasets mentioned above, but produce a 95% confidence interval
for off-policy evaluation rather than the maximum likelihood estimate. With 40 datasets and 60
evaluations per dataset, we have 2400 confidence intervals from which we compute the coverage
and the ratio of the width of the interval to the EL in table 3. As expected from simulation, the
Binomial CI overcovers and has wider intervals. EL widths are comparable to asymptotic Gaussian
(AG) on this data, but AG undercovers. A 95% binomial confidence interval on the coverage of AG
is [90.0%, 92.3%], indicating sufficient data to conclude undercoverage.

5.3 Offline Contextual Bandit Learning

We use the same 40 datasets as above, but with a 20%/20%/60% Initialize/Learn/Evaluate split. We
made no effort to tune the confidence level setting it to 95% for all experiments. For optimizing the
policy parameters and the distribution dual variables, we alternate between solving the dual problem
with the policy fixed and then optimizing the policy with the dual variables fixed. To optimize the
policy we do a single pass over the data using Vowpal Wabbit as a black-box oracle for learning,
supplying different importance weights on each example depending upon the dual variables. We do 4
passes over the learning set and update the dual variables before each pass. Details are in appendix G.

We compare the true value of π on the evaluation set resulting from learning with the different
objectives. For each dataset we learn multiple times, with different actions chosen by the historical
policy h. Table 2 shows the results of a paired t-test with 60 trials per dataset and 95% confidence
level: “tie” indicates null result, and “win” or “loss” indicates significantly better or worse evaluation
value for the CI lower bound. Using the CI lower bound overall yields superior results. Using the EL
estimate also provides some lift but is less effective than using the CI lower bound.

6 Conclusions

We presented a practical estimator and a CI for contextual bandits with correct asymptotic coverage
and empirically valid coverage for small samples. To this end we used empirical likelihood techniques
which yielded computationally efficient and hyperparameter-free procedures for estimation, CIs and
learning. Empirically, our proposed CI is a substantial improvement over existing methods and the
learning algorithm is a useful improvement against techniques that optimize the value of a point
estimate. Our methods offer the largest advantage in regimes where existing methods struggle, such
as when the number of samples N is of the same order as the largest possible importance weight.

Broader Impact

Not applicable to this work.
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A Derivation of Profile Likelihood

For ease of exposition, we will start with a primal formulation and via duality show equivalence with
Dual Likelihood [22] applied to the Doléans-Dade multiplicative martingale corresponding to mn(v).

Starting from

sup
Q∈∆

{∑
n

log (Qwn,rn)

∣∣∣∣∣EQ[w] = 1,EQ[wr] = v

}
.

we form the Lagrangian dual

sup
β,γ,τ

inf
Q�0

{
β

(
−1 +

∑
w,r

wQw,r

)
+ γ

(
−1 +

∑
w,r

Qw,r

)

+ τ

(
−v +

∑
w,r

wrQw,r

)
−
∑
w,r

cw,r log (Qw,r)

}
,

where cw,r =
∑
n 1w=wn,r=rn . Collecting terms

sup
β,γ,τ

inf
Q�0
{−β − γ − τv

+
∑
w,r

(βw + γ + τwr)Qw,r − cw,r log (Qw,r)

}
.

Dual boundedness requires ∀w, r : βw + γ + τwr ≥ 0. The infimum over Q is separable yielding

Q∗w,r =
cw,r

βw + γ + τwr
,

if cw,r > 0 or βw + γ + τwr > 0, otherwise the contribution to the dual is zero. Substituting

sup
β,γ,τ

{
−β − γ − τv +

∑
n

log (βwn + γ)∣∣∣∣∀w : βw + γ + τwr ≥ 0

}
discarding constants.

Summing the KKT stationarity conditions yields
cw,r
Qw,r

= βw + γ + τwr,∑
w,r

cw,r = β
∑
w,r

wQw,r + γ
∑
w,r

Qw,r + τ
∑
w,r

wrQw,r,

N = β + γ + τv.

Substituting, changing variables β ← Nβ and τ ← Nτ , and discarding constants yields

lv(β, τ) =
∑
n

log (1 + β(wn − 1) + τ(wnrn − v)) .

B Derivation of Value Estimate

From equation (5), {
v

∣∣∣∣ sup
(β,τ)∈C

lv(β, τ) = l∗mle

}
, (5)

we see any value estimate achieves the maximum dual likelihood value. Applying the duality
established in Appendix A to lv(β, 0) indicates all value estimates correspond to v = EQ[wr] where
Q achieves the primal maximum

sup
Q∈∆

{∑
n

log (Qwn,rn)

∣∣∣∣∣EQ [w] = 1

}
.
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Forming the Lagrangian dual

sup
β,γ

inf
Q�0

{
β

(
−1 +

∑
w,r

wQw,r

)
+ γ

(
−1 +

∑
w,r

Qw,r

)

−
∑
w,r

cw,r log (Qw,r)

}
,

where cw,r =
∑
n 1w=wn,r=rn . Collecting terms

sup
β,γ

inf
Q�0
{−β − γ

+
∑
w,r

(βw + γ)Qw,r − cw,r log (Qw,r)

}
.

Dual boundedness requires ∀w : βw + γ ≥ 0. The infimum over Q is separable yielding

Q∗w,r =
cw,r

βw + γ
,

if cw,r > 0 or βw + γ > 0, otherwise the contribution to the dual is zero. Substituting

sup
β,γ

{
−β − γ +

∑
n

log (βwn + γ)

∣∣∣∣∀w : βw + γ ≥ 0

}
discarding constants.

Summing the KKT stationarity conditions yields
cw,r
Qw,r

= βw + γ,∑
w,r

cw,r = β
∑
w,r

wQw,r + γ
∑
w,r

Qw,r,

N = β + γ.

Substituting, changing variables β ← Nβ, and discarding constants yields

sup
β

{∑
n

log (β(wn − 1) + 1)

∣∣∣∣∣∀w : β(w − 1) + 1 ≥ 0

}
.

If β∗ = 0 then Q∗ is supported only on the sample due to 1 = EQ[1]. Otherwise, Q∗ is entirely
supported on the sample except where 1 + β∗(w− 1) ≥ 0 is satisfied with equality. This can only be
at the smallest or largest possible value of w depending upon the sign of β∗; call this wex. Any r is
equally likely at this point; call it ρ.

Equation (6) follows via

V̂ (π) =
∑
w,r

wQw,rr

=
∑
n

wnQwn,rnrn + wexQwex,ρρ

=
∑
n

wnQwn,rnrn +

(
1−

∑
n

wnQwn,rn

)
ρ

= ρ+
∑
n

wnQwn,rn(rn − ρ)

= ρ+
1

N

∑
n

wn(rn − ρ)

1 + β∗(wn − 1)

where the first line is by definition, the third by 1 = EQ[w], and the fifth line by the primal-dual
relationship.
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C Derivation of Lower Bound

The lower bound is the infimum of the value set defined by equation (8),{
v

∣∣∣∣ sup
(β,τ)∈C

lv(β, τ)− l∗mle ≤
1

2
χ2,α

(1)

}
. (8)

Applying the duality established in Appendix A we get the equivalent primal formulation

inf
Q∈∆

{
EQ[wr]

∣∣∣EQ[w] = 1,
∑
n

log(Qwn,rn) ≥ φ

}
where φ =

∑
n log(Qmle

wn,rn)− 1
2χ

2,α
(1) . A Lagrangian dual is

sup
κ≥0
β,γ

inf
Q�0

{
β

(
−1 +

∑
w,r

wQw,r

)
+ γ

(
−1 +

∑
w,r

Qw,r

)

+ κ

(
φ−

∑
w,r

cw,r log (Qw,r)

)
+
∑
w,r

wrQw,r

}
,

where cw,r =
∑
n 1w=wn,r=rn . Collecting terms

sup
κ≥0
β,γ

inf
Q�0
{−β − γ + κφ

+
∑
w,r

(βw + γ + wr)Qw,r − κcw,r log (Qw,r)

}
.

Dual boundedness requires ∀w, r : βw + γ + wr > 0 ∨ (βw + γ + wr = 0 ∧ cw,r = 0). The
infimum over Q is separable yielding

Q∗w,r = κ
cw,r

βw + γ + wr
,

if cw,r > 0 or βw + γ + wr > 0, otherwise the contribution to the dual is zero. Substituting and
changing variables φ← φ−1

N yields

sup
κ≥0
β,γ

−β − γ +
∑
n

(
−κ log κ+ κ

(
φ+ 1 + log (γ + βwn + wnrn)

))
discarding constants.

Q∗ is supported on the sample except where βw + γ + wr ≥ 0 is satisfied with equality. Because
wr ≥ 0, this implies equality can only happen at wr = 0 otherwise other violations occur. Thus all
constraints are implied by ∀w ∈ {wmin, wmax} : βw + γ ≥ 0. Denote Ξ to be the set of (w, r) pairs
where equality occurs.

Equation (9) follows via

vlb(π) =
∑
w,r

Qw,rwr

=
1

N

∑
n

Qwn,rnwnrn +
∑

(w,r)∈Ξ

Qw,rwr

=
1

N

∑
n

wnQwn,rnrn (∀(w, r) ∈ Ξ : wr = 0)

= κ∗
1

N

∑
n

wnrn
γ∗ + β∗wn + wnrn

,

where the first line is by definition, and the fourth line by the primal-dual relationship.
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D Proof of Theorem 1

Lemma 1. Let β∗ solve

sup
β

{∑
n

log (1 + β(wn − 1))

∣∣∣∣∣∀w : 1 + β(w − 1) ≥ 0

}
.

Then

|β∗|
∑
n

(wn − 1)2

1 + β∗(wn − 1)
≤

∣∣∣∣∣∑
n

(wn − 1)

∣∣∣∣∣ .
Proof. For the unconstrained maximizer,

0 =
∑
n

wn − 1

1 + β∗(wn − 1)

=
∑
n

(wn − 1)

(
1− β∗(wn − 1)

1 + β∗(wn − 1)

)
,

β∗
∑
n

(wn − 1)2

1 + β∗(wn − 1)
=
∑
n

(wn − 1),

|β∗|
∑
n

(wn − 1)2

1 + β∗(wn − 1)
=

∣∣∣∣∣∑
n

(wn − 1)

∣∣∣∣∣ .
For the constrained maximizer, first note the sign of β∗ is the sign of

∑
n(wn − 1) because β = 0 is

feasible and
∂

∂β

∑
n

log (1 + β(wn − 1))

∣∣∣∣∣
β=0

=
∑
n

(wn − 1).

If the constrained maximizer is positive than

0 <
∂

∂β

∑
n

log (1 + β(wn − 1))

∣∣∣∣∣
β=β∗

=
∑
n

wn − 1

1 + β∗(wn − 1)

=
∑
n

(wn − 1)

(
1− β∗(wn − 1)

1 + β∗(wn − 1)

)
,

β∗
∑
n

(wn − 1)2

1 + β∗(wn − 1)
<
∑
n

(wn − 1),

|β∗|
∑
n

(wn − 1)2

1 + β∗(wn − 1)
<

∣∣∣∣∣∑
n

(wn − 1)

∣∣∣∣∣ .
If the constrained maximizer is negative than

0 >
∂

∂β

∑
n

log (1 + β(wn − 1))

∣∣∣∣∣
β=β∗

=
∑
n

wn − 1

1 + β∗(wn − 1)

=
∑
n

(wn − 1)

(
1− β∗(wn − 1)

1 + β∗(wn − 1)

)
,
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β∗
∑
n

(wn − 1)2

1 + β∗(wn − 1)
>
∑
n

(wn − 1),

|β∗|
∑
n

(wn − 1)2

1 + β∗(wn − 1)
<

∣∣∣∣∣∑
n

(wn − 1)

∣∣∣∣∣ .
.

Lemma 2. Let {
∑
k≤n(wk − 1)}n∈N be a martingale sequence adapted to the filtration {Fn}n∈N

where a.s. ∀n : 0 ≤ wn ≤ wmax with wmax ≥ 1. Then

E

 1

N

∣∣∣∣∣∣
∑
n≤N

(wn − 1)

∣∣∣∣∣∣
 ≤ 5

√
y

N
+ 8

wmax

N
,

where a.s.
y ≥ 1

N

∑
n≤N

E
[
(wn − 1)2|Fn

]
.

Proof. Freedman’s inequality indicates

Pr (|MN | ≥ x, 〈M〉N ≤ y) ≤ 2 exp

(
− x2

2(y + wmaxx)

)
,

where MN
.
=
∑
n ∆Mn, ∆Mn

.
= wn − 1, 〈M〉N

.
=
∑
n≤N E

[
∆M2

n|Fn−1

]
. Let E denote the

event 〈M〉N ≤ y. Then

E [|MN | 1E ] =

∫ ∞
0

dx Pr (|MN | ≥ x, E) .

We do the integration in pieces. For x ≥ y
wmax

, we have∫ ∞
y

wmax

dx Pr (|MN | ≥ x, E)

=

∫ ∞
y

wmax

dx 2 exp

(
− x2

2(y + wmaxx)

)
≤
∫ ∞

y
wmax

dx 2 exp

(
− x

4wmax

)
= 8wmax exp

(
− y

4w2
max

)
≤ 8wmax.

Therefore
E [|MN | 1E ]

≤ 8wmax +

∫ y
wmax

0

2 exp

(
− x2

2(y + wmaxx)

)
≤ 8wmax + a+

∫ y
wmax

a

2 exp

(
− x2

2(y + wmaxx)

)
≤ 8wmax + a+

∫ y
wmax

a

2 exp

(
−x

2

4y

)
≤ 8wmax + a+ 2

√
π
√
y

(
1− erf

(
a

2
√
y

))
≤ 8wmax + 2

√
y
(√

π
(

1 + erf
(√

log(2)
))
−
√

log(2)
)

≤ 5
√
y + 8wmax.

Dividing by N completes the proof.
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Theorem 1. Let R̂(π)
.
= 1

N

∑
n

(wn−1)(rn−ρ)
1+β∗(wn−1) with β∗ as in eq. (7), and let a.s. ∀n : 0 ≤ wn ≤

wmax with wmax ≥ 1. Then∣∣∣E [R̂(π)
]
−R(π)

∣∣∣ ≤ 10

√
wmax

N
+ 16

wmax

N

where R(π)
.
= V (π)− V (h) is the true policy value difference between π and {hn}n∈N .

Proof. Consider the random variable

∆R̂(π) = R̂(π)− 1

N

∑
n

(wn − 1)(rn − ρ)

=
1

N

∑
n

β∗(wn − 1)2

1 + β∗(wn − 1)
(rn − ρ).

∆R̂(π) is the difference of R̂(π) and an unbiased estimator, therefore its expectation is the bias of
R̂(π). ∣∣∣E [∆R̂(π)

]∣∣∣
≤ E

[∣∣∣∆R̂(π)
∣∣∣]

≤ 2E

[
1

N
|β∗|

∑
n

(wn − 1)2

1 + β∗(wn − 1)

]

≤ 2E

[
1

N

∣∣∣∣∣∑
n

(wn − 1)

∣∣∣∣∣
]

≤ 10

√
y

N
+ 16

wmax

N
.

Finally we can bound y via E[(wn − 1)2|Fn−1] ≤ E[w2
n|Fn−1] ≤ wmaxE[wn|Fn−1] ≤ wmax.

E Off-Policy Evaluation, Synthetic Data

First, an environment is sampled. For all environments, the historical logging policy is ε-greedy with
possible importance weights (0, 2, 1000). We choose π to induce the maximum entropy distribution
over importance weights consistent with E[w2] = 100. Rewards are binary with the conditional
distribution of reward varying per environment draw such that the value of π is uniformly distributed
on [0, 1]. Once an environment is drawn a set of examples is sampled from that environment, and the
squared error of the value estimate is computed.

F Off-Policy Evaluation, Realistic Data

We use the following 40 datasets from OpenML [31] identified by their OpenML dataset id: 1216,
1217, 1218, 1233, 1235, 1236, 1237, 1238, 1241, 1242, 1412, 1413, 1441, 1442, 1443, 1444, 1449,
1451, 1453, 1454, 1455, 1457, 1459, 1460, 1464, 1467, 1470, 1471, 1472, 1473, 1475, 1481, 1482,
1483, 1486, 1487, 1488, 1489, 1496, 1498. For each dataset we convert to Vowpal Wabbit format,
shuffle the dataset, and utilize up to the first 10,000 examples as data. We utilize a 20%/60%/20%
Initialize/Learn/Evaluate split sequentially by line number. Note the shuffle and split is done only
once per dataset. We create a historical policy h using on-policy learning on the Initialize dataset,
and then learn a new policy π on the Learn dataset using off-policy learning with data drawn from h.
These Initialize and Learn steps are done once per dataset. Only the off-policy evaluation step is done
multiple times per dataset, and the random variations are due to the different actions selected by h
over the Evaluate set. For each evaluation, we compute the squared error of the different predictors,
i.e., the squared difference between the off-policy value estimate and the true value of π. Note the
true value of π can be computed (and is independent of the choices of h on the evaluation set) because
the underlying datasets are fully observed. Using the squared error as the random variable, we apply
a paired t-test between EL and the other predictors to determine win, loss, or tie for each dataset. We
use default settings for Vowpal Wabbit except for the choice of exploration strategy.
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G Learning from Logged Bandit Feedback

We first utilize the same 40 datasets as above, but with a 20%/20%/60% Initialize/Learn/Evaluate
split. The Initialize step is done once per dataset, then the Learn and Evaluate steps are done multiple
times per dataset. Note the Evaluate step here is using the true value of π, i.e., is deterministic and
independent of h given π. Using the evaluation score as the random variable, we apply a paired t-test
between MLE and the other predictors to determine win, loss, or tie for each dataset. We use Vowpal
Wabbit in IPS learning mode with default settings, and do 4 passes over the data. At the beginning
of each pass, we optimize the dual variables holding the policy fixed, then use the resulting dual
variables during the learning pass to compute importance weights.

H Cressie-Read Divergence Results

We describe variants of the estimator and confidence interval utilizing the Cressie-Read power
divergence, which takes the form

CR(λ) =
2

λ(λ+ 1)

∑
n

(
(NQwn,rn)

−λ − 1
)

with parameter λ. The choice λ = −2 is of practical interest because it yields closed-form solutions
driven by sufficient statistics that are easily maintained online.

H.1 Estimator

The primal formulation for the estimator is

sup
Q∈∆

{∑
n

(
(NQwn,rn)

2 − 1
)∣∣∣∣∣EQ[w] = 1

}
.

When optimizing over all distributions this can result in all the mass placed outside the sample, so we
constrain the distributions to be supported on the empirical support plus an additional importance
weight wundata, with arbitrary associated reward ρ, corresponding to where the KL divergence places
additional support:

wundata =

{
wmin

1
N

∑
n wn ≥ 1

wmax otherwise
.

This results in closed form solution

Qw,r = −γ
∗ + β∗w

2(N + 1)
,

where (
γ∗

β∗

)
=

(
b

b−a2
− a
b−a2

)
,

a
.
=

1

N + 1

∑
n∪{undata}

(wn − 1),

b
.
=

1

N + 1

∑
n∪{undata}

(wn − 1)2.

The resulting value estimate interval is

V̂ (π) = ρ+
1

N

∑
n

((
N

1 +N

)
γ∗wn +

(
N

1 +N

)
β∗(wn − 1)2

)
(rn − ρ)

where ρ ∈ [0, 1]. Sufficient statistics for the estimator areN and the (unaugmented support) empirical
sums of w and w2.
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H.2 Confidence Interval

The primal formulation for the lower bound is

inf
Q∈∆

{
EQ[wr]

∣∣∣EQ[w] = 1,
∑
n

(NQwn,rn)
2 − 1 ≥ φ

}

where φ = 1
2χ

2,α
(1) −

(∑
n

(
NQmle

wn,rn

)2 − 1
)

.

When optimizing over all distributions this can result in all the mass placed outside the sample, so we
constrain the distributions to be supported on the empirical support plus an additional importance
weight and reward pair. We consider both extreme points {(w, 0)|w ∈ {wmin, wmax}} corresponding
to where the KL divergence might place additional support, and use the minimum value as the lower
bound. This results in a closed-form solution

Qw,r = −γ
∗ + β∗w + wr

(N + 1)κ∗
,

where (
γ∗

β∗

)
= κ∗~a+~b,

~a
.
=

1

w2 − w2

(
−w2 w
w −1

)
~1,

~b
.
=

1

w2 − w2

(
−w2 w
w −1

)(
wr

w2r

)
,

x
.
= wr +

(1− w)
(
w2r − w wr

)
w2 − w2

,

y
.
=

(
w2r − w wr

)2

w2 − w2
−
(
w2r2 − wr2

)
,

z
.
= φ+

(1− w)
2

2
(
w2 − (w)2

) ,
κ∗ =

√
y

2z
,

where (·) denotes empirical mean including augmented support. The resulting lower bound is
vlb(π) = x−

√
2yz.

Sufficient statistics for the lower bound are N and the (unaugmented support) empirical sums of w,
w2, wr, w2r, and w2r2.
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