
Appendix441

9 Preservation of Convexity and Submodularity442

Proposition 1. If f is convex, then gP (y, θ) = f(Py, θ) is convex.443

Proof. The convexity can be simply verified by computing the second-order derivative:444

d2g

dy2
=
d2f(Py, θ)

dy2
= P>

d2f

dx2
P � 0

where the last inequality comes from the convexity of f , i.e., d
2f
dx2 � 0.445

Proposition 2. If f is DR-submodular and P ≥ 0, then gP (y, θ) = f(Py, θ) is DR-submodular.446

Proof. Assume f has the property of diminishing return submodularity (DR-submodular) [7]. Ac-447

cording to definition of continuous DR-submodularity, we have:448

∇2
xi,xj

f(x, θ) ≤ 0 ∀i, j ∈ [n],y

After applying the reparameterization, we can write:449

gP (y, θ) = f(x, θ)

and the second-order derivative:450

∇2
ygP (y, θ) = P>∇2

xfP (x, θ)P ≤ 0

Since all the entries of P are non-negative and all the entries of ∇2
xfP (x, θ) are non-positive by451

DR-submodularity, the product∇2
ygP (y, θ) also has all the entries being non-positive, which satisfies452

the definition of DR-submodularity.453

10 Quasiconvexity in Reparameterization Matrix454

Proposition 3. OPT(θ, P ) = miny feasible gP (y, θ) is not globally quasiconvex in P .455

Proof. Without loss of generality, let us ignore the effect of θ and write gP (y) = f(Px). In this456

proof, we will construct a strongly convex function f where the induced optimal value function457

OPT(P ) := miny gP (y) is not quasiconvex.458

Consider x = [x1,x2,x3]
> ∈ R3. Define f(x) =

∥∥∥∥∥x−
(
1
1
1

)∥∥∥∥∥
2

≥ 0 for all x ∈ R3. Define P =459 (
1 0
1 0
0 2

)
and P ′ =

(
0 1
0 1
2 0

)
. Apparently, x∗ =

(
1
1
1

)
= P

(
1
0.5

)
and x∗ =

(
1
1
1

)
= P ′

(
0.5
1

)
are460

both achievable. So the optimal values OPT(P ) = OPT(P ′) = 0. But the combination P ′′ = 1
2P +461

1
2P
′ =

(
0.5 0.5
0.5 0.5
1 1

)
cannot, which results in an optimal value OPT (P ′′) = miny gP ′′(y) => 0462

since

(
1
1
1

)
6∈ span(P ′′). This implies OPT( 12P + 1

2P
′) = OPT(P ′′) > 0 = 1

2OPT(P )+ 1
2OPT(P ′).463

Thus OPT(P ) is not globally convex in the feasible domain.464

Theorem 1. If f(·, θ) is quasiconvex, then OPT(θ, P ) = miny feasible gP (y, θ) is quasiconvex in Pi465

for any 1 ≤ i ≤ m, where P = [P1, P2, . . . , Pm] ≥ 0.466

12



Proof. Let us assume P = [p1, p2, ..., pm] and P ′ = [p′1, p
′
2, ..., p

′
m], where pi = p′i ∀i 6= 1 with467

only the first column different. In the optimization problem parameterized by P , there is an optimal468

solution x =
m∑
i=1

piyi, yi ≥ 0 ∀i. Similarly, there is an optimal solution x′ =
m∑
i=1

p′iy
′
i, y
′
i ≥ 0 ∀i469

for the optimization problem parameterized by P ′. We know that f(x) = h(P ), f(x′) = h(P ′).470

Denote P ′′ = cP + (1− c)P ′ = [p′′1 , p
′′
2 , ..., p

′′
m] to be a convex combination of P and P ′. Clearly,471

p′′1 = cp1 + (1− c)p′1 and p′′i = pi = p′i ∀i 6= 1. Then we can construct a solution472

x′′ =
1

c
y1

+ 1−c
y′1

(
c

y1
x+

1− c
y′1

x′)

=
1

c
y1

+ 1−c
y′1

(
c

y1

m∑
i=1

piyi +
1− c
y′1

m∑
i=1

p′iy
′
i)

=
1

c
y1

+ 1−c
y′1

(cp1 + (1− c)p′1) +
1

c
y1

+ 1−c
y′1

m∑
i=2

pi(
yi
y1

+
y′i
y′1

)

∈ Span(P ′′)

Thus, x′′ is a feasible solution in the optimization problem parameterized by P ′′. By the convexity of473

f , we also know that474

h(cP + (1− c)P ′) = h(P ′′) ≤ f(x′′)

= f(
1

c
y1

+ 1−c
y′1

(
c

y1
x+

1− c
y′1

x′))

≤ max(f(x), f(x′))

= max(h(P ), h(P ′))

When one of y1, y′1 is 0, without loss of generality we assume y1 = 0. Then we can construct475

a solution x′′ = x which is still feasible in the optimization problem parameterized by P ′′ =476

cP + (1− c)P ′. Then we have the following:477

h(P ′′) ≤ f(x′′) = f(x) = h(P ) ≤ max(h(P ), h(P ′))

which concludes the proof.478

11 Sample Complexity of Learning Predictive Model in Surrogate Problem479

Theorem 2. Let Hlin be the hypothesis class of all linear function mappings from ξ ∈ Ξ ⊂ Rp to480

θ ∈ Θ ∈ Rn, and let P ∈ Rn×m be a linear reparameterization used to construct the surrogate. The481

expected Rademacher complexity over t i.i.d. random samples drawn from D can be bounded by:482

Radt(Hlin) ≤ 2mC

√
2p log(2mt ‖P+‖ ρ2(S))

t
+O(

1

t
) (4)

where C is the gap between the optimal solution quality and the worst solution quality, ρ2(S) is the483

diameter of the set S, and P+ is the pseudoinverse.484

The proof of Theorem 2 relies on the results given by Balghiti et al. [11]. Balghiti et al. analyzed485

the sample complexity of predict-then-optimize framework when the optimization problem is a486

constrained linear optimization problem.487

The sample complexity depends on the hypothesis class H, mapping from the feature space Ξ to488

the parameter space Θ. x∗S(θ) = argminx∈S f(x, θ) characterizes the optimal solution with given489

parameter θ ∈ Θ and feasible region S. This can be obtained by solving any linear program solver490

with given parameters θ. The optimization gap with given parameter P is defined as ωS(θ) :=491

maxx∈S f(x, θ)−minx∈S f(x, θ), and ωS(Θ) := supθ∈Θ ωS(θ) is defined as the upper bound on492

optimization gap of all the possible parameter θ ∈ Θ. x∗(H) := {ξ → x∗(Φ(ξ))|Φ ∈ H} is the493

set of all function mappings from features ξ to the predictive parameters θ = Φ(ξ) and then to the494

optimal solution x∗(θ).495
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Definition 1 (Natarajan dimension). Suppose that S is a polyhedron and S is the set of its extreme496

points. Let F ∈ SΞ be a hypothesis space of function mappings from Ξ to S, and let A ∈ Ξ to be497

given. We say that F shatters A if there exists g1, g2 ∈ F such that498

• g1(ξ) 6= g2(ξ) ∀ξ ∈ A.499

• For all B ⊂ A, there exists g ∈ F such that (i) for all ξ ∈ B, g(ξ) = g1(ξ) and (ii) for all500

ξ ∈ A\B, g(ξ) = g2(ξ).501

The Natarajan dimension of F , denoted by dN (F), is the maximum cardinality of a set N-shattered502

by F .503

We first state their results below:504

Theorem 3 (Balghiti et al. [11] Theorem 2). Suppose that S is a polyhedron and S is the set of its505

extreme points. LetH be a family of functions mapping from features Ξ to parameters Θ ∈ Rn with506

decision variable x ∈ Rn and objective function f(x, θ) = θ>x. Then we have that507

Radt(H) ≤ ω∗S(Θ)

√
2dN (x∗(H)) log(t|S|2)

t
. (5)

where Radt denotes the Radamacher complexity averaging over all the possible realization of t i.i.d.508

samples drawn from distribution D.509

The following corollary provided by Balghiti et al. [11] introduces a bound on Natarajan dimension510

of linear hypothesis classH, mapping from Ξ ∈ Rp to Θ ∈ Rn:511

Corollary 1 (Balghiti et al. [11] Corollary 1). Suppose that S is a polyhedron and S is the set of its512

extreme points. Let Hlin be the hypothesis class of all linear functions, i.e., Hlin = {ξ → Bξ|B ∈513

Rn×p}. Then we have514

dN (x∗(Hlin)) ≤ np (6)

Also |S| can be estimated by constructing an ε-covering of the feasible region by open balls with515

radius ε. Let Ŝε be the centers of all these open balls. We can choose ε = 1
t and the number of open516

balls required to cover S can be estimated by517

|Ŝε| ≤
(
2tρ2(S)

√
n
)n

(7)

Combining Equation 5, 6, and 7, the Radamacher complexity can be bounded by:518

Corollary 2 (Balghiti et al. [11] Corollary 2).

Radt(Hlin) ≤ 2nωS(Θ)

√
2p log(2ntρ2(S))

t
+O(

1

t
) (8)

Now we are ready to prove Theorem 2:519

Proof of Theorem 2. Now let us consider our case. We have a linear mapping from features ξ ∈520

Xi ⊂ Rp to the parameters θ = Bξ ∈ Θ ∈ Rn with B ∈ Rn×p. The objective function is formed by521

gP (y, θ) = f(Py, θ) = θ>Py = (P>θ)>y = (P>Bξ)>y (9)

This is equivalent to have a linear mapping from ξ ∈ Ξ ⊂ Rp to θ′ = P>Bξ where P>B ∈ Rm×p,522

and the objective function is just gP (y, θ′) = θ′>y. This yields a similar bound but with a smaller523

dimension m� n as in Equation 10:524

]Radt(Hlin) ≤ 2mωS(Θ)

√
2p log(2mtρ2(S′))

t
+O(

1

t
) (10)

where ωS(Θ) is unchanged because the optimality gap is not changed by the reparameterization. The525

only thing changed except for the substitution of m is that the feasible region S′ is now defined in a526
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lower-dimensional space under reparameterization P . But since ∀y ∈ S′, we have Py ∈ S too. So527

the diameter of the new feasible region can also be bounded by:528

ρ(S′) = maxy,y′∈S′ ‖y − y′‖
= maxy,y′∈S′

∥∥P+P (y − y′)
∥∥

= maxy,y′∈S′
∥∥P+(Py − Py′)

∥∥
≤ maxx,x′∈S′

∥∥P+(x− x′)
∥∥

≤
∥∥P+

∥∥maxx,x′∈S′ ‖x− x′‖
=
∥∥P+

∥∥ ρ(S)
where P+ ∈ Rm×n is the pseudoinverse of the reparameterization matrix P with P+P = I ∈ Rm×m529

(assuming the matrix does not collapse). Substituting the term ρ(S′) in Equation 10, we can get the530

bound on the Radamacher complexity in Equation 4, which concludes the proof of Theorem 2.531

12 Non-linear Reparameterization532

The main reason that we use a linear reparameterization is to maintain the convexity of the inequality533

constraints and the linearity of the equality constraints. Instead, if we apply a convex reparameteriza-534

tion x = P (y), e.g., an input convex neural network [3], then the inequality constraints will remain535

convex but the equality constraints will no longer be affine anymore. So such convex reparameter-536

ization can be useful when there is no equality constraint. Lastly, we can still apply non-convex537

reparameterization but it can create non-convex inequality and equality constraints, which can be538

challenging to solve. All of these imply that the choice of reparameterization should depend on the539

type of optimization problem to make sure we do not lose the scalability while solving the surrogate540

problem.541

13 Computing Infrastructure542

All experiments were run on the computing cluster, where each node configured with 2 Intel Xeon543

Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local scratch space. Within each experiment,544

we did not implement parallelization. So each experiment was purely run on a single CPU core. The545

main bottleneck of the computation is on solving the optimization problem, where we use Scipy [41]546

blackbox optimization solver. No GPU was used to train the neural network and throughout the547

experiments.548
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