
A Table with Different Settings of GAPTRON

Table 2: Settings of Gaptron

Surrogate Loss Gap map a Learning rate η Exploration γ Regret
logistic (1) 1− 1[p?t ≥ 0.5]p?t

ln(2)
2KX2 0 KX2‖U‖2

ln(2)

bandit logistic (4) 1− 1[p?t ≥ 0.5]p?t
ln(2) exp(−2DX)

2K2X2 0 exp(2DX)K2X2D2

ln(2)

bandit logistic (4) 1− 1[p?t ≥ 0.5]p?t
γ ln(2)
2K2X2

√
2K2X2

T 2KXD
√

T
ln(2)

hinge (2) 1−max{1[m?
t > β]} K−1

K2X2 0 K2X2‖U‖2
2(K−1)

bandit hinge (5) 1−max{1[m?
t > β]} γ(K−1)

K3X2

√
K4X2D2

2(K−1)2T 2KXD
√

T
2

smooth hinge (3) (1−min{1,m?
t })2 1

2KX2 0 2KX2‖U‖2

bandit smooth hinge (6) (1−min{1,m?
t })2

γ
2K2X2

√
4K2X2D2

T 2DKX
√
2T

B Details of Section 3

Proof of Lemma 1. As we said before, the updates of Wt are Online Gradient Descent (Zinkevich,
2003), which guarantees

T∑
t=1

`t(Wt)− `t(U) ≤ ‖U‖
2

2η
+

T∑
t=1

η

2
‖gt‖2. (7)

Now, by using (7) we find

E

[
T∑
t=1

(1[y′t 6= yt]− `t(U))

]

= E

[
T∑
t=1

(1[y′t 6= yt]]− `t(Wt)) +

T∑
t=1

(`t(Wt)− `t(U))

]

≤ ‖U‖
2

2η
+ E

[
T∑
t=1

(
Et[1[y′t 6= yt]]− `t(Wt) +

η

2
‖gt‖2

)]

=
‖U‖2

2η
+ E

[
T∑
t=1

(
(1−max{at, γ})1[y?t 6= yt] + max{at, γ}

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]

≤ ‖U‖
2

2η
+ γ

K − 1

K
T + E

[
T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]
,

(8)

where in the last inequality we used (1−max{at, γ}) ≤ (1−at) and max{at, γ} ≤ at+γ. Adding
E
[∑T

t=1 `t(U)]
]

to both sides of equation (8) completes the proof.

C Details of Full Information Multiclass Classification (Section 4)

C.1 Details of Section 4.1

Proof of Theorem 1. We will prove the Theorem by showing that the surrogate gap is bounded by 0
and then using Lemma 1. The gradient of the logistic loss evaluated at Wt is given by:

∇`t(Wt) =
1

ln(2)
(p̃t − eyt)⊗ xt,

where p̃t = (p̃t(1), . . . , p̃t(k))
> and p̃t(k) = σ(Wt,xt, k).
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We continue by writing out the surrogate gap:

(1− at)1[y?t 6= yt] + at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2

≤ (1− at)1[y?t 6= yt] + at
K − 1

K
− `t(Wt)−

η

ln(2)
‖xt‖2 log2(p̃t(yt))

≤ (1− at)1[y?t 6= yt] + at
K − 1

K
− `t(Wt)−

η

ln(2)
X2 log2(p̃t(yt))

=


0 + K−1

K + log2(p̃t(yt))−
η

ln(2)X
2 log2(p̃t(yt)) if p?t < 0.5

p?t + (1− p?t )K−1K + log2(p̃t(yt))−
η

ln(2)X
2 log2(p̃t(yt)) if y?t 6= yt and p?t ≥ 0.5

(1− p?t )K−1K + log2(p
?
t )−

η
ln(2)X

2 log2(p
?
t ) if y?t = yt and p?t ≥ 0.5,

(9)

where the first inequality is due to Lemma 2 below.

We now split the analysis into the cases in (9). We start with p?t < 0.5. In this case we use
1 ≤ − log2(x) for x ∈ [0, 12 ] and obtain

K − 1

K
+ log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

≤ −K − 1

K
log2(p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

=
1

K
log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt)),

which is bounded by 0 since η < ln(2)
KX2 .

The second case we consider is when y?t 6= yt and p?t ≥ 0.5. In this case we use x ≤ − 1
2 log2(1− x)

for x ∈ [0.5, 1] and 1− x ≤ − 1
2 log2(1− x) for x ∈ [0.5, 1] and obtain

p?t + (1− p?t )
K − 1

K
+ log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

≤ − 1
2 log2(1− p

?
t )−

K − 1

K
1
2 log2(1− p

?
t ) + log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

= − 1
2 log2

 K∑
k 6=yt

p̃t(k)

− K − 1

K
1
2 log2

 K∑
k 6=yt

p̃t(k)

+ log2(p̃t(yt))−
η

ln(2)
X2 log2(p̃t(yt))

≤ − 1
2 log2 (p̃t(yt))−

K − 1

K
1
2 log2 (p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

=
1

2K
log2 (p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt)),

which is 0 since η = ln(2)
2KX2 .

The last case we need to consider is y?t = yt and p?t ≥ 0.5. In this case we use 1− x ≤ − log2(x)
and obtain

(1− p?t )
K − 1

K
+ log2(p

?
t )−

η

ln(2)
X2 log2(p

?
t )

≤ −K − 1

K
log2(p

?
t ) + log2(p

?
t )−

η

ln(2)
X2 log2(p

?
t ),

which is bounded by 0 since η = ln(2)
2KX2 .
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We now apply Lemma 1, plug in γ = 0, and use the above to find:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤‖U‖

2

2η
+

T∑
t=1

`t(U) + γ
K − 1

K
T

+

T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)

≤‖U‖
2

2η
+

T∑
t=1

`t(U).

Using η = ln(2)
2KX2 completes the proof.

Lemma 2. Let `t be the logistic loss (1), then

‖∇`t(Wt)‖2 ≤
2

ln(2)
‖xt‖2`t(Wt).

Proof. We have

‖∇`t(Wt)‖2 =
1

ln(2)2
‖xt‖2

(
K∑
k=1

(1[yt = k]− p̃t(k))2
)

≤ 1

ln(2)2
‖xt‖2

(
K∑
k=1

|1[yt = k]− p̃t(k)|

)2

≤− 2
1

ln(2)
‖xt‖2 log2(p̃t(yt))

=2
1

ln(2)
‖xt‖2`t(Wt),

where the last inquality follows from Pinsker’s inequality (Cover and Thomas, 1991, Lemma 12.6.1).

C.2 Details of Section 4.2

Proof of Theorem 2. We will prove the Theorem by showing that the surrogate gap is bounded by 0
and then using Lemma 1. Let k̃ = argmaxk 6=yt〈W

k
t ,xt〉. The gradient of the smooth multiclass

hinge loss is given by

∇`t(Wt) =


(ek̃ − eyt)⊗ xt if y?t 6= yt
(ek̃ − eyt)⊗ xt if y?t = yt and m?

t ≤ β
0 if y?t = yt and m?

t > β.

We continue by writing out the surrogate gap:

(1− at)1[y?t 6= yt] + at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2

=


m?
t + (1−m?

t )
K−1
K − (1−mt(Wt, yt)) + η‖xt‖2 if y?t 6= yt and m?

t ≤ β
(1−m?

t )
K−1
K − (1−m?

t ) + η‖xt‖2 if y?t = yt and m?
t ≤ β

1− (1−mt(Wt, yt)) + η‖xt‖2 if y?t 6= yt and m?
t > β

0 if y?t = yt and m?
t > β.

(10)

In the remainder of the proof we will repeatedly use the following useful inequality for whenever
yt 6= y?t :

m?
t +mt(Wt, yt) =〈W

y?t
t ,xt〉 −max

k 6=y?t
〈W k

t ,xt〉+ 〈W
yt
t ,xt〉 −max

k 6=yt
〈W k

t ,xt〉

=〈W yt
t ,xt〉 −max

k 6=y?t
〈W k

t ,xt〉

≤〈W yt
t ,xt〉 − 〈W yt

t ,xt〉 = 0.

(11)
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We now split the analysis into the cases in (10). We start with y?t 6= yt and m?
t ≤ β, in which case

the surrogate gap can be bounded by 0 when η ≤ 1
KX2 :

m?
t + (1−m?

t )
K − 1

K
− (1−mt(Wt, yt)) + η‖xt‖2

= m?
t +mt(Wt, yt) + (1−m?

t )
K − 1

K
− 1 + η‖xt‖2

≤ − 1

K
+ ηX2 (by equation (11))

≤ 0.

We continue with the case where y?t = yt and m?
t ≤ β. In this case we have:

(1−m?
t )
K − 1

K
− (1−m?

t ) + η‖xt‖2 = −(1−m?
t )

1

K
+ η‖xt‖2 ≤ −

1− β
K

+ ηX2,

which is zero since η = 1−β
KX2 .

Finally, in the case where y?t 6= yt and m?
t > β we have:

1− (1−mt(Wt, yt)) + η‖xt‖2 =mt(Wt, yt) + η‖xt‖2

≤−m?
t + η‖xt‖2 (by equation (11))

≤− β + ηX2,

which is bounded by zero since β = 1
K and η ≤ 1

KX2 .

We now apply Lemma 1, plug in γ = 0, and use the above to find:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤‖U‖

2

2η
+

T∑
t=1

`t(U) + γT

+

T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)

≤‖U‖
2

2η
+

T∑
t=1

`t(U).

Using η = 1−β
KX2 = K−1

K2X2 completes the proof.

C.3 Details of Section 4.3

Proof of Theorem 3. We will prove the Theorem by showing that the surrogate gap is bounded by 0
and then using Lemma 1. Let k̃ = argmaxk 6=yt〈W

k
t ,xt〉. The gradient of the smooth multiclass

hinge loss is given by

∇`t(Wt) =


2(ek̃ − eyt)⊗ xt if y?t 6= yt
2(ek̃ − eyt)(1−m?

t )⊗ xt if y?t = yt and m?
t < 1

0 if y?t = yt and m?
t ≥ 1.

We continue by writing out the surrogate gap:

(1− at)1[y?t 6= yt] + at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2

=


2m?

t −m?
t
2 + (1−m?

t )
2K−1

K − (1− 2mt(Wt, yt)) + η4‖xt‖2 if y?t 6= yt and m?
t < 1

(1−m?
t )

2K−1
K − (1−m?

t )
2 + η4‖xt‖2(1−m?

t )
2 if y?t = yt and m?

t < 1

1− (1− 2mt(Wt, yt)) + η4‖xt‖2 if y?t 6= yt and m?
t ≥ 1

0 if y?t = yt and m?
t ≥ 1.

(12)
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We now split the analysis into the cases in (12). We start with the case where y?t 6= yt and m?
t < 1.

By using (11) we can see that with η = 1
4KX2 the surrogate gap is bounded by 0:

2m?
t −m?

t
2 + (1−m?

t )
2K − 1

K
− (1− 2mt(Wt, yt)) + η4‖xt‖2

= 2(m?
t +mt(Wt, yt))−m?

t
2 + (1−m?

t )
2K − 1

K
− 1 + η4‖xt‖2

≤ −m?
t
2 + (1−m?

t )
2K − 1

K
− 1 + η4X2 (by equation (11))

≤ − 1

K
+ η4X2 ≤ 0.

The next case we consider is when y?t = yt and m?
t < 1. In this case we have

(1−m?
t )

2K − 1

K
− (1−m?

t )
2 + η4‖xt‖2(1−m?

t )
2 = −(1−m?

t )
2 1

K
+ η4‖xt‖2(1−m?

t )
2,

which is bounded by 0 since η = 1
4KX2 .

Finally, if y?t 6= yt and m?
t ≥ 1 then

1− (1− 2mt(Wt, yt)) + η4‖xt‖2 =2mt(Wt, yt) + η4‖xt‖2

≤− 2m?
t + η4‖xt‖2 (by equation (11))

≤− 2 + η4X2,

which is bounded by 0 since η < 1
2X2 . We apply Lemma 1 with γ = 0 and use the above to find:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤‖U‖

2

2η
+

T∑
t=1

`t(U) + γ
K − 1

K
T

+

T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)

≤‖U‖
2

2η
+

T∑
t=1

`t(U).

Using η = 1
4KX2 completes the proof.

D Details of Bandit Multiclass Classification (Section 5)

D.1 Details of Section 5.1

Proof of Theorem 4. First, by straightforward calculations we can see that p′t(yt) ≥
(1−γ) exp(−2DX)+γ

K = δ. As in the full information case we will prove the Theorem by show-
ing that the surrogate gap is bounded by 0 and then using Lemma 1. We start by writing out the
surrogate gap:

E
[
(1− at)1[y?t 6= yt] + at

K − 1

K
− Et[`t(Wt)] +

η

2
Et
[
‖gt‖2

]]
= E

[
(1− at)1[y?t 6= yt] + at

K − 1

K
+ log2(p̃t(yt)) +

η

2 ln(2)2p′t(yt)
‖(p̃t − eyt)⊗ xt‖2

]
≤ E

[
(1− at)1[y?t 6= yt] + at

K − 1

K
+ log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))

]

=


K−1
K + E

[
log2(p̃t(yt))−

η
ln(2)p′t(yt)

X2 log2(p̃t(yt))
]

if p?t < 0.5

E
[
p?t + (1− p?t )K−1K + log2(p̃t(yt))−

η
ln(2)p′t(yt)

X2 log2(p̃t(yt))
]

if y?t 6= yt and p?t ≥ 0.5

E
[
(1− p?t )K−1K + log2(p

?
t )−

η
ln(2)p′t(y

?
t )
X2 log2(p

?
t )
]

if y?t = yt and p?t ≥ 0.5,

(13)

16



where the first inequality is due to Lemma 2.

We now split the analysis into the cases in (13). We start with p?t < 0.5. In this case we use
1 ≤ − log2(x) for x ∈ [0, 12 ] and obtain

K − 1

K
+ E[log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))]

≤ E
[
−K − 1

K
log2(p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))

]
≤ E

[
−K − 1

K
log2(p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)δ
X2 log2(p̃t(yt))

]

which is bounded by 0 when η ≤ ln(2)δ
KX2 .

The second case we consider is when y?t 6= yt and p?t ≥ 0.5. In this case we use x ≤ − 1
2 log2(1− x)

for x ∈ [0.5, 1] and 1− x ≤ − 1
2 log2(1− x) for x ∈ [0.5, 1] and obtain

E
[
p?t + (1− p?t )

K − 1

K
+ log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))

]
≤ E

[
− 1

2 log2(1− p
?
t )−

K − 1

K
1
2 log2(1− p

?
t ) + log2(p̃t(yt))−

η

ln(2)δ
X2 log2(p̃t(yt))

]

= E

− 1
2 log2

 K∑
k 6=yt

p̃t(k)

− K − 1

K
1
2 log2

 K∑
k 6=yt

p̃t(k)

+ log2(p̃t(yt))−
η

ln(2)δ
X2 log2(p̃t(yt))


≤ E

[
− 1

2 log2 (p̃t(yt))−
K − 1

K
1
2 log2 (p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)δ
X2 log2(p̃t(yt))

]
= E

[
1

2K
log2(p̃t(yt))−

η

ln(2)δ
X2 log2(p̃t(yt))

]
,

which is bounded by 0 since η = ln(2)δ
2KX2 .

The last case we need to consider is when y?t = yt and p?t ≥ 0.5. In this case we use 1−x ≤ − log2(x)
and obtain

E
[
(1− p?t )

K − 1

K
+ log2(p

?
t )−

η

ln(2)p′t(y
?
t )
X2 log2(p

?
t )

]
≤ E

[
−K − 1

K
log2(p

?
t ) + log2(p

?
t )−

η

ln(2)δ
X2 log2(p

?
t )

]
,

which is bounded by 0 when η ≤ ln(2)δ
KX2 .

We now apply Lemma 1 and use the above to find:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤‖U‖

2

2η
+ E

[
T∑
t=1

`t(U)

]
+ γ

K − 1

K
T

+ E

[
T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]

≤‖U‖
2

2η
+ γT + E

[
T∑
t=1

`t(U)

]
.

Using η = ln(2)δ
2KX2 gives us:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤ K2X2‖U‖2

ln(2)((1− γ) exp(−2DX) + γ)
+ γT + E

[
T∑
t=1

`t(U)

]
,
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Setting γ = 0 gives us

E

[
T∑
t=1

1[y′t 6= yt]

]
≤ K2X2D2

ln(2) exp(−2DX)
+ E

[
T∑
t=1

`t(U)

]
.

If instead we set γ = min
{
1,
√

K2X2D2

ln(2)T

}
we consider two cases. In the case where 1 ≤

√
K2X2D2

T

we have that T ≤ K2X2D2 and therefore

E

[
T∑
t=1

1[y′t 6= yt]

]
≤2K

2X2D2

ln(2)
+ E

[
T∑
t=1

`t(U)

]
.

In the case where 1 >
√

K2X2D2

T we have that

E

[
T∑
t=1

1[y′t 6= yt]

]
≤2KXD

√
T

ln(2)
+ E

[
T∑
t=1

`t(U)

]
,

which after combining the above completes the proof.

D.2 Details of Section 5.2

Proof of Theorem 5. First, note that p′t(yt) ≥
γ
K . The proof proceeds in a similar way as in the full

information setting (Theorem 2), except now we use that p′t(yt) ≥
γ
K to bound Et[‖gt‖2]. We will

prove the Theorem by showing that the surrogate gap is bounded by 0 and then using Lemma 1. We
start by splitting the surrogate gap in cases:

E
[
(1− at)1[y?t 6= yt] + at

K − 1

K
− Et[`t(Wt)] +

η

2
Et[‖gt‖2]

]

=


E
[
m?
t + (1−m?

t )
K−1
K − (1−mt(Wt, yt)) +

η
p′t(yt)

‖xt‖2
]

if y?t 6= yt and m?
t ≤ β

E
[
(1−m?

t )
K−1
K − (1−m?

t ) +
η

p′t(yt)
‖xt‖2

]
if y?t = yt and m?

t ≤ β

E
[
1− (1−mt(Wt, yt)) +

η
p′t(yt)

‖xt‖2
]

if y?t 6= yt and m?
t > β

0 if y?t = yt and m?
t > β.

(14)

We now split the analysis into the cases in (14). We start with y?t 6= yt and m?
t ≤ β. The surrogate

gap can now be bounded by 0 when η ≤ γ
K2X2 :

E
[
m?
t + (1−m?

t )
K − 1

K
− (1−mt(Wt, yt)) +

η

p′t(yt)
‖xt‖2

]
= E

[
m?
t +mt(Wt, yt) + (1−m?

t )
K − 1

K
− 1 +

η

p′t(yt)
‖xt‖2

]
≤ − 1

K
+
Kη

γ
X2 (equation (11))

≤ 0.

We continue with the case where y?t = yt and m?
t ≤ β. In this case we have:

E
[
(1−m?

t )
K − 1

K
− (1−m?

t ) + η‖xt‖2
]
= E

[
−(1−m?

t )
1

K
+

η

p′t(yt)
‖xt‖2

]
≤ −1− β

K
+
Kη

γ
X2,

which is bounded by zero since η = γ(1−β)
K2X2 .
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Finally, in the case where y?t 6= yt and m?
t > β we have:

E
[
1− (1−mt(Wt, yt)) +

η

p′t(yt)
‖xt‖2

]
=E

[
mt(Wt, yt) +

η

p′t(yt)
‖xt‖2

]
≤E

[
−m?

t +
η

p′t(yt)
‖xt‖2

]
(by equation (11))

≤− β +
Kη

γ
X2,

which is bounded by zero since η = γ(1−β)
K2X2 and β ≤ 0.5.

We now apply Lemma 1 and use the above to find:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤‖U‖

2

2η
+ E

[
T∑
t=1

`t(U)

]
+ γ

K − 1

K
T

+ E

[
T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]

≤D
2

2η
+ γ

K − 1

K
T + E

[
T∑
t=1

`t(U)

]
.

Plugging in η = γ(1−β)
K2X2 and β = 1

K gives us:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤ K3X2D2

2γ(K − 1)
+ γ

K − 1

K
T + E

[
T∑
t=1

`t(U)

]
.

We now set γ = min
{
1,
√

K3X2D2

2(1−β)(K−1)T

}
. In the case where 1 ≤

√
K3X2D2

2(1−β)(K−1)T we have

E

[
T∑
t=1

1[y′t 6= yt]

]
≤K

3X2D2

K − 1
+ E

[
T∑
t=1

`t(U)

]
.

In the case where 1 >
√

K3X2D2

2(1−β)(K−1)T we have

E

[
T∑
t=1

1[y′t 6= yt]

]
≤2KXD

√
T

2
+ E

[
T∑
t=1

`t(U)

]
,

which completes the proof.

D.3 Details of Section 5.3

Proof of Theorem 6. First, note that p′t(yt) ≥
γ
K . The proof proceeds in a similar way as in the full

information case. We will prove the Theorem by showing that the surrogate gap is bounded by 0 and
then using Lemma 1. We start by writing out the surrogate gap:

E
[
(1− at)1[y?t 6= yt] + at

K − 1

K
− Et[`t(Wt)] +

η

2
Et[‖gt‖2]

]

=


E
[
2m?

t −m?
t
2 + (1−m?

t )
2K−1

K − (1− 2mt(Wt, yt)) +
η

p′t(yt)
4‖xt‖2

]
if y?t 6= yt and m?

t < 1

E
[
(1−m?

t )
2K−1

K − (1−m?
t )

2 + η
p′t(yt)

4‖xt‖2(1−m?
t )

2
]

if y?t = yt and m?
t < 1

E
[
1− (1− 2mt(Wt, yt)) +

η
p′t(yt)

4‖xt‖2
]

if y?t 6= yt and m?
t ≥ 1

0 if y?t = yt and m?
t ≥ 1.

(15)
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We now split the analysis into the cases in (15). We start with the case where y?t 6= yt and m?
t < 1.

By using (11) we can see that for η = γ
4K2X2

E
[
2m?

t −m?
t
2 + (1−m?

t )
2K − 1

K
− (1− 2mt(Wt, yt)) +

η

p′t(yt)
4‖xt‖2

]
= E

[
2(m?

t +mt(Wt, yt))−m?
t
2 + (1−m?

t )
2K − 1

K
− 1 +

η

p′t(yt)
4‖xt‖2

]
≤ E

[
−m?

t
2 + (1−m?

t )
2K − 1

K
− 1 +

η

p′t(yt)
4X2

]
(by equation (11))

≤ − 1

K
+
Kη

γ
4X2 ≤ 0.

The next case we consider is when y?t = yt and m?
t < 1. In this case we have

E
[
(1−m?

t )
2K − 1

K
− (1−m?

t )
2 +

η

p′t(yt)
4‖xt‖2(1−m?

t )
2

]
= E

[
−(1−m?

t )
2 1

K
+

η

p′t(yt)
4‖xt‖2(1−m?

t )
2

]
= E

[
−(1−m?

t )
2 1

K
+
Kη

γ
4X2(1−m?

t )
2

]
,

which is bounded by 0 since η = γ
4K2X2 .

Finally, if y?t 6= yt and m?
t ≥ 1 then

E
[
1− (1− 2mt(Wt, yt)) +

η

p′t(yt)
4‖xt‖2

]
=E

[
2mt(Wt, yt) +

η

p′t(yt)
4‖xt‖2

]
≤E

[
−2m?

t +
η

p′t(yt)
4‖xt‖2

]
(by equation (11))

≤− 2 +
Kη

γ
4X2,

which is bounded by 0 since η < γ
2K2X2 . We apply Lemma 1 and use the above to find:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤‖U‖

2

2η
+ E

[
T∑
t=1

`t(U)

]
+ γT

+ E

[
T∑
t=1

(
(1− at)1[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]

≤D
2

2η
+ γT + E

[
T∑
t=1

`t(U)

]
.

Plugging in η = γ
4K2X2 gives us:

E

[
T∑
t=1

1[y′t 6= yt]

]
≤2K2X2D2

γ
+ γT + E

[
T∑
t=1

`t(U)

]
.

Now we set γ = min

{
1,
√

2K2X2D2

T

}
. In the case where 1 ≤

√
2K2X2D2

T we have

E

[
T∑
t=1

1[y′t 6= yt]

]
≤4K2X2D2 + E

[
T∑
t=1

`t(U)

]
.

In the case where 1 >
√

2K2X2D2

T we have

E

[
T∑
t=1

1[y′t 6= yt]

]
≤2DKX

√
2T + E

[
T∑
t=1

`t(U)

]
,
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Algorithm 2 ADAHEDGE with abstention
Input: ADAHEDGE

1: for t = 1 . . . T do
2: Obtain expert predictions yt = (y1t , . . . , y

d
t )
> ∈ [−1, 1]d

3: Obtain expert distribution p̂t from ADAHEDGE
4: Set ŷt = 〈p̂t,yt〉
5: Let y?t = sign(ŷt)
6: Set bt = 1− |ŷt|
7: Predict y′t = y?t with probability 1− bt and predict y′t = ∗ with probability bt
8: Obtain `t and send `t to ADAHEDGE
9: end for

which completes the proof.

E Online Classification with Abstention

The online classification with abstention setting was introduced by Neu and Zhivotovskiy (2020) and
is a special case of the prediction with expert advice setting Vovk (1990); Littlestone and Warmuth
(1994). For brevity we only consider the case where there are only 2 labels, -1 and 1. The online
classification with abstention setting is different from the standard classification setting in that the
learner has access to a third option, abstaining. Neu and Zhivotovskiy (2020) show that when the
cost for abstaining is smaller than 1

2 in all rounds it is possible to tune Exponential Weights such that
it suffers constant regret with respect to the best expert in hindsight. Neu and Zhivotovskiy (2020)
only consider the zero-one loss, but we show that a similar bound also holds for the hinge loss (and
also for the zero-one loss as a special case of the hinge loss). We use a different proof technique
from Neu and Zhivotovskiy (2020), which was the inspiration for the proofs of the mistake bounds
of GAPTRON. Instead of vanilla Exponential Weights we use a slight adaptation of ADAHEDGE
(De Rooij et al., 2014) to prove constant regret bounds when all abstention costs ct are smaller than
1
2 . In online classification with abstention, in each round t

1 the learner observes the predictions yit ∈ [−1, 1] of experts i = 1, . . . , d

2 based on the experts’ predictions the learner predicts y′t ∈ [−1, 1] ∪ ∗, where ∗ stands for
abstaining

3 the environment reveals yt ∈ {−1, 1}
4 the learner suffers loss `t(y′t) =

1
2 (1− yty

′
t) if y′t ∈ [−1, 1] and ct otherwise.

The algorithm we use can be found in Algorithm 2. A parallel result to Lemma 1 can be found in
Lemma 3, which we will use to derive the regret of Algorithm 2.

Lemma 3. For any expert i, the expected loss of Algorithm 2 satisfies:

T∑
t=1

((1− bt)`t(y?t ) + btct) ≤
T∑
t=1

`t(y
i
t) + inf

η>0

 ln(d)

η
+

T∑
t=1

((1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt))︸ ︷︷ ︸
Abstention gap


+

4

3
ln(d) + 2,

where vt = Ei∼p̂t
[(`t(ŷt)− `t(yit))2].

Before we prove Lemma 3 let us compare Algorithm 2 with GAPTRON. The updates of weight matrix
Wt in GAPTRON are performed with OGD. In Algorithm 2 the updates or p̂t are performed using
ADAHEDGE. The roles of at in GAPTRON and bt in Algorithm 2 are similar. The role of at is to
ensure that the surrogate gap is bounded by 0, the role of bt is to ensure that the abstention gap is
bounded by 0.
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Proof of Lemma 3. First, ADAHEDGE guarantees that

T∑
t=1

`t(ŷt)− `t(yit) ≤ 2

√√√√ln(d)

T∑
t=1

vt + 4/3 ln(d) + 2.

Using the regret bound of ADAHEDGE we can upper bound the expectation of the loss of the learner
as

T∑
t=1

((1− bt)`t(y?t ) + btct)

=

T∑
t=1

(
(1− bt)`t(y?t ) + btct + `t(y

i
t)− `t(ŷt)

)
+

T∑
t=1

(
`t(ŷt)− `t(yit)

)

≤
T∑
t=1

(
(1− bt)`t(y?t ) + btct + `t(y

i
t)− `t(ŷt)

)
+ 2

√√√√ln(d)

T∑
t=1

vt + 4/3 ln(d) + 2

=

T∑
t=1

`t(y
i
t) + inf

η>0

{
ln(d)

η
+

T∑
t=1

((1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt))

}
+ 4/3 ln(d) + 2.

To upper bound the abstention gap by 0 is more difficult than to upper bound the surrogate gap as the
negative term is no longer an upper bound on the zero-one loss. Hence, the abstention cost has to be
strictly better than randomly guessing as otherwise there is no η or bt such that the abstention gap is
smaller than 0. The result for abstention can be found in Theorem 7 below.

Theorem 7. Suppose maxt ct <
1
2 for all T . Then Algorithm 2 guarantees

T∑
t=1

((1− bt)`t(y?t ) + btct) ≤
T∑
t=1

`t(y
i
t)+min

 ln(d)

1− 2maxt ct
, 2

√√√√ln(d)

T∑
t=1

vt

+4/3 ln(d)+2.

Proof. We start by upper bounding the vt term. We have

vt =
1

4
Ep̂t

[
(yit − ŷt)2

]
≤ 1

4
(1− ŷt)(ŷt + 1) ≤ 1

2 (1− |ŷt|),

where the first inequality is the Bhatia-Davis inequality (Bhatia and Davis, 2000). As with the proofs
of GAPTRON we split the abstention gap in cases:

(1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt)
≤ (1− bt)`t(y?t ) + ctbt + η 1

2 (1− |ŷt|)− `t(ŷt)

=

{
ct(1− |ŷt|) + η 1

2 (1− |ŷt|)−
1
2 (1− |ŷt|) if y?t = yt

|ŷt|+ ct(1− |ŷt|) + η 1
2 (1− |ŷt|)−

1
2 (1 + |ŷt|) if y?t 6= yt.

(16)

Note that regardless of the true label (1 − bt)`t(y?t ) + ctbt − `t(ŷt) ≤ 0 since ct < 1
2 . Hence, by

using Lemma 3, we can see that as long as ct < 1
2

T∑
t=1

(1− bt)`t(y?t ) + btct ≤
T∑
t=1

`t(y
i
t) + 2

√√√√ln(d)

T∑
t=1

vt + 4/3 ln(d) + 2.

Now consider the case where y?t = yt. In this case, as long as η ≤ 1 − 2ct the abstention gap is
bounded by 0. If y?t 6= yt then

|ŷt|+ ct(1− |ŷt|) + η 1
2 (1− |ŷt|)−

1
2 (1 + |ŷt|) = ct(1− |ŷt|) + η 1

2 (1− |ŷt|)−
1
2 (1− |ŷt|).
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So as long as η ≤ 1− 2ct the abstention gap is bounded by 0. Applying Lemma 3 now gives us

T∑
t=1

(1− bt)`t(y?t ) + btct − `t(yit) ≤ inf
η>0

{
ln(d)

η
+

T∑
t=1

((1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt))

}
+ 4/3 ln(d) + 2

≤ ln(d)

1− 2maxt ct
+ 4/3 ln(d) + 2,

which completes the proof.

With a slight modification of the proof of Theorem 7 one can also show a similar result as Theorem 8
by Neu and Zhivotovskiy (2020), albeit with slightly worse constants. We leave this as an exercise
for the reader.
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