
A Retraction on the Stiefel manifold

The retraction on the Stiefel manifold has the following well-known properties [16, 60] which are
important to subsequent analysis in this paper.

Proposition A.1 For all Z ∈ St ≡ St(d, k) and ξ ∈ TZSt, there exist constants L1 > 0 and L2 > 0
such that the following two inequalities hold:

‖RetrZ(ξ)− Z‖F ≤ L1‖ξ‖F ,
‖RetrZ(ξ)− (Z + ξ)‖F ≤ L2‖ξ‖2F .

For the sake of completeness, we provide four popular restrictions [31, 90, 60, 18] on the Stiefel
manifold in practice. Determining which one is the most efficient in the algorithm is still an open
question; see the discussion after Liu et al. [60, Theorem 3] and before Chen et al. [18, Fact 3.6].

• Exponential mapping. It takes 8dk2 +O(k3) flops and has the closed-form expression:

Retrexp
Z (ξ) = [Z Q] exp

([
−Z>ξ −R>
R 0

])[
Ik
0

]
.

where QR = −(Ik − ZZ>)ξ is the unique QR factorization.
• Polar decomposition. It takes 3dk2 +O(k3) flops and has the closed-form expression:

Retrpolar
Z (ξ) = (Z + ξ)(Ik + ξ>ξ)−1/2.

• QR decomposition. It takes 2dk2 +O(k3) flops and has the closed-form expression:

Retrqr
Z(ξ) = qr(Z + ξ),

where qr(A) is the Q factor of the QR factorization of A.
• Cayley transformation. It takes 7dk2 +O(k3) flops and has the closed-form expression:

Retrcayley
Z (ξ) =

(
In −

1

2
W (ξ)

)−1(
In +

1

2
W (ξ)

)
Z,

where W (ξ) = (In − ZZ>/2)ξZ> − Zξ>(In − ZZ>/2).

B Further Technical Lemmas

We first show that fη is continuously differentiable over Rd×k and the classical gradient inequality
holds true over St(d, k). The derivation is novel and uncovers the structure of the computation of
entropic regularized PRW in Eq. (2.5). Let g : Rd×k ×Π(µ, ν)→ R be defined by

g(U, π) :=

n∑
i=1

n∑
j=1

πi,j‖U>xi − U>yj‖2 − ηH(π).

Lemma B.1 fη is differentiable over Rd×k and ‖∇fη(U)‖F ≤ 2‖C‖∞ for all U ∈ St(d, k).

Lemma B.2 For all U1, U2 ∈ St(d, k), the following statement holds true,

|fη(U1)− fη(U2)− 〈∇fη(U2), U1 − U2〉| ≤
(
‖C‖∞ +

2‖C‖2∞
η

)
‖U1 − U2‖2F .

Remark B.3 Lemma B.2 shows that fη satisfies the classical gradient inequality over the Stiefel
manifold. This is indeed stronger than the following statement,

‖∇fη(U1)−∇fη(U2)‖F ≤
(

2‖C‖∞ +
4‖C‖2∞
η

)
‖U1 − U2‖F , for all U1, U2 ∈ St(d, k),

and forms the basis for analyzing the complexity bound of Algorithm 1 and 2. The techniques used in
proving Lemma B.2 are new and may be applicable to analyze the structure of the robust variant of
the Wasserstein distance with other type of regularization [28, 11].
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Before proceeding to the main results, we present a technical lemma on the Hoffman’s bound [45, 54]
and the characterization of the Hoffman constant [41, 51, 88].

Lemma B.4 Consider a polyhedron set S = {x ∈ Rd | Ex = t, x ≥ 0}. For any point x ∈ Rd, we
have

‖x− projS(x)‖1 ≤ θ(E)

∥∥∥∥[max{0,−x}
Ex− t

]∥∥∥∥
1

,

where θ(E) is the Hoffman constant and can be represented by ()

θ(E) = sup
u,v∈Rd


∥∥∥∥[uv

]∥∥∥∥
∞

∣∣∣∣∣∣
‖E>v − u‖∞ = 1, u ≥ 0
The corresponding rows of E to v’s nonzero
elements are linearly independent.


We quantify the progress of RGAS algorithm (cf. Algorithm 1) using fη as a potential function and
then provide an upper bound for the number of iterations to return an ε-approximate optimal subspace
projection Ut ∈ St(d, k) satisfying dist(0, subdiff f(Ut)) ≤ ε in Algorithm 1.

Lemma B.5 Let {(Ut, πt)}t≥1 be the iterates generated by Algorithm 1. We have

1

T

(
T−1∑
t=0

‖grad fη(Ut)‖2F

)
≤ 4∆f

γT
+
ε2

5
,

where ∆f = maxU∈St(d,k) fη(U)− fη(U0) is the initial objective gap.

Theorem B.6 Letting {(Ut, πt)}t≥1 be the iterates generated by Algorithm 1, the number of itera-
tions required to reach dist(0, subdiff f(Ut)) ≤ ε satisfies that

t = Õ

(
k‖C‖2∞
ε2

(
1 +
‖C‖∞
ε

)2
)
.

We now provide analogous results for the RAGAS algorithm (cf. Algorithm 2).

Lemma B.7 Let {(Ut, πt)}t≥1 be the iterates generated by Algorithm 2. Then, we have

1

T

(
T−1∑
t=0

‖grad fη(Ut)‖2F

)
≤ 8‖C‖∞∆f

γT
+
ε2

10
,

where ∆f = maxU∈St(d,k) fη(U)− fη(U0) is the initial objective gap.

Theorem B.8 Letting {(Ut, πt)}t≥1 be the iterates generated by Algorithm 2, the number of itera-
tions required to reach dist(0, subdiff f(Ut)) ≤ ε satisfies

t = Õ

(
k‖C‖2∞
ε2

(
1 +
‖C‖∞
ε

)2
)
.

From Theorem B.6 and B.8, Algorithm 1 and 2 achieve the same iteration complexity. Furthermore,
the number of arithmetic operations at each loop of Algorithm 1 and 2 are also the same. Thus, the
complexity bound of Algorithm 2 is the same as that of Algorithm 1.

C Proofs

In this section, we present all of the remaining proofs.

C.1 Proof of Lemma 2.1

By Vial [85, Proposition 4.3], it suffices to show that the function f(U)− ‖C‖∞‖U‖2F is concave
for any U ∈ Rd×k. By the definition of f , we have

f(U) = min
π∈Π(µ,ν)

Trace
(
U>VπU

)
.
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Since {x1, x2, . . . , xn} ⊆ Rd and {y1, y2, . . . , yn} ⊆ Rd are two given groups of n atoms in Rd, the
coefficient matrix C is independent of U and π. Furthermore,

∑n
i=1

∑n
j=1 πi,j = 1 and πi,j ≥ 0 for

all i, j ∈ [n] since π ∈ Π(µ, ν). Putting these pieces together with Jensen’s inequality, we have

‖Vπ‖F ≤
n∑
i=1

n∑
j=1

πi,j‖(xi − yj)(xi − yj)>‖F ≤ max
1≤i,j≤n

‖xi − yj‖2 = ‖C‖∞.

This implies that U 7→ Trace(U>VπU) − ‖C‖∞‖U‖2F is concave for any π ∈ Π(µ, ν). Since
Π(µ, ν) is compact, Danskin’s theorem [72] implies the desired result.

C.2 Proof of Lemma 2.2

By the definition of the subdifferential ∂f , it suffices to show that ‖VπU‖F ≤ ‖C‖∞ for all
π ∈ Π(µ, ν) and U ∈ St(d, k). Indeed, by the definition, Vπ is symmetric and positive semi-definite.
Therefore, we have

max
U∈St(d,k)

‖VπU‖F ≤ ‖Vπ‖F ≤ ‖C‖∞.

Putting these pieces together yields the desired result.

C.3 Proof of Lemma B.1

It is clear that we have fη(•) = minπ∈Π(µ,ν) g(•, π). Furthermore, π?(•) = argminπ∈Π(µ,ν) g(•, π)

is uniquely defined. Putting these pieces with the compactness of Π(µ, ν) and the smoothness of
g(•, π), Danskin’s theorem [72] implies fη is continuously differentiable and the gradient is

∇fη(U) = 2Vπ?(U)U for all U ∈ Rd×k.

Since U ∈ St(d, k) and π?(U) ∈ Π(µ, ν), we have

‖∇fη(U)‖F = 2‖Vπ?(U)U‖F ≤ 2‖Vπ?(U)‖F ≤ 2‖C‖∞.

This completes the proof.

C.4 Proof of Lemma B.2

It suffices to prove that

‖∇fη(αU1 + (1− α)U2)−∇fη(U2)‖F ≤
(

2‖C‖∞ +
4‖C‖2∞
η

)
α‖U1 − U2‖F ,

for any U1, U2 ∈ St(d, k) and any α ∈ [0, 1]. Indeed, let Uα = αU1 + (1− α)U2, we have

‖∇fη(Uα)−∇fη(U2)‖F ≤ 2‖Vπ?(Uα)‖F ‖Uα − U2‖F + 2‖Vπ?(Uα) − Vπ?(U2)‖F .

Since π?(Uα) ∈ Π(µ, ν), we have ‖Vπ?(Uα)‖F ≤ ‖C‖∞. By the definition of Vπ , we have

‖Vπ?(Uα)−Vπ?(U2)‖F ≤
n∑
i=1

n∑
j=1

|π?i,j(Uα)−π?i,j(U2)|‖xi−yj‖2 ≤ ‖C‖∞‖π?(Uα)−π?(U2)‖1.

Putting these pieces together yields that

‖∇fη(Uα)−∇fη(U2)‖F ≤ 2‖C‖∞‖Uα − U2‖F + 2‖C‖∞‖π?(Uα)− π?(U2)‖1. (C.1)

Using the property of the entropy regularization H(•), we have g(U, •) is strongly convex with
respect to `1-norm and the module is η. This implies that

g(Uα, π
?(U2))− g(Uα, π

?(Uα))− 〈∇πg(Uα, π
?(Uα)), π?(U2)− π?(Uα)〉

≥ (η/2)‖π?(Uα)− π?(U2)‖21,
g(Uα, π

?(Uα))− g(Uα, π
?(U2))− 〈∇πg(Uα, π

?(U2)), π?(Uα)− π?(U2)〉
≥ (η/2)‖π?(Uα)− π?(U2)‖21.
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Summing up these inequalities yields

〈∇πg(Uα, π
?(Uα))−∇πg(Uα, π

?(U2)), π?(Uα)− π?(U2)〉 ≥ η‖π?(Uα)− π?(U2)‖21. (C.2)

Furthermore, by the first-order optimality condition of π?(U1) and π?(U2), we have

〈∇πg(Uα, π
?(Uα)), π?(U2)− π?(Uα)〉 ≥ 0,

〈∇πg(U2, π
?(U2)), π?(Uα)− π?(U2)〉 ≥ 0.

Summing up these inequalities yields

〈∇πg(U2, π
?(U2))−∇πg(Uα, π

?(Uα)), π?(Uα)− π?(U2)〉 ≥ 0. (C.3)

Summing up Eq. (C.2) and Eq. (C.3) and further using Hölder’s inequality, we have

‖π?(Uα)− π?(U2)‖1 ≤ (1/η)‖∇πg(U2, π
?(U2))−∇πg(Uα, π

?(U2))‖∞.
By the definition of function g, we have

‖∇πg(U2, π
?(U2))−∇πg(Uα, π

?(U2))‖∞ ≤ max
1≤i,j≤n

|(xi − xj)>(U2U
>
2 − UαU>α )(xi − xj)|

≤
(

max
1≤i,j≤n

‖xi − yj‖2
)
‖U2U

>
2 − UαU>α ‖F

= ‖C‖∞‖U2U
>
2 − UαU>α ‖F .

Since U1, U2 ∈ St(d, k), we have

‖U2U
>
2 − UαU>α ‖F ≤ ‖U2(U2 − Uα)>‖F + ‖(U2 − Uα)U>α ‖F

≤ ‖U2 − Uα‖F + ‖(U2 − Uα)(αU1 + (1− α)U2)>‖F
≤ ‖U2 − Uα‖F + α‖(U2 − Uα)U>1 ‖F + (1− α)‖(U2 − Uα)U>2 ‖F
≤ 2‖U2 − Uα‖F .

Putting these pieces together yields that

‖π?(Uα)− π?(U2)‖1 ≤
2‖C‖∞
η
‖Uα − U2‖F . (C.4)

Plugging Eq. (C.4) into Eq. (C.1) yields the desired result.

C.5 Proof of Lemma B.5

Using Lemma B.2 with U1 = Ut+1 and U2 = Ut, we have

fη(Ut+1)− fη(Ut)− 〈∇fη(Ut), Ut+1 − Ut〉 ≥ −
(
‖C‖∞ +

2‖C‖2∞
η

)
‖Ut+1 − Ut‖2F . (C.5)

By the definition of Ut+1, we have

〈∇fη(Ut), Ut+1 − Ut〉 = 〈∇fη(Ut),RetrUt(γξt+1)− Ut〉
= 〈∇fη(Ut), γξt+1〉+ 〈∇fη(Ut),RetrUt(γξt+1)− (Ut + γξt+1)〉
≥ 〈∇fη(Ut), γξt+1〉 − ‖∇fη(Ut)‖F ‖RetrUt(γξt+1)− (Ut + γξt+1)‖F .

By Lemma B.1, we have ‖∇fη(U)‖F ≤ 2‖C‖∞. Putting these pieces with Proposition A.1 yields
that

〈∇fη(Ut), Ut+1 − Ut〉 ≥ γ〈∇fη(Ut), ξt+1〉 − 2γ2L2‖C‖∞‖ξt+1‖2F . (C.6)
Using Proposition A.1 again, we have

‖Ut+1 − Ut‖2F = ‖RetrUt(γξt+1)− Ut‖2F ≤ γ2L2
1‖ξt+1‖2F . (C.7)

Combining Eq. (C.5), Eq. (C.6) and Eq. (C.7) yields

fη(Ut+1)−fη(Ut) ≥ γ〈∇fη(Ut), ξt+1〉−γ2((L2
1+2L2)‖C‖∞+2η−1L2

1‖C‖2∞)‖ξt+1‖2F . (C.8)

Recall that grad fη(Ut) = PTUtSt(∇fη(Ut)) and ξt+1 = PTUtSt(2Vπt+1Ut), we have

〈∇fη(Ut), ξt+1〉 = 〈grad fη(Ut), ξt+1〉 = ‖grad fη(Ut)‖2F + 〈grad fη(Ut), ξt+1 − grad fη(Ut)〉
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Using Young’s inequality, we have

〈∇fη(Ut), ξt+1〉 ≥ (1/2)
(
‖grad fη(Ut)‖2F − ‖ξt+1 − grad fη(Ut)‖2F

)
.

Furthermore, we have ‖ξt+1‖2F ≤ 2‖grad fη(Ut)‖2F + 2‖ξt+1− grad fη(Ut)‖2F . Putting these pieces
together with Eq. (C.8) yields that

fη(Ut+1)− fη(Ut) ≥ γ

(
1

2
− γ(2L2

1‖C‖∞ + 4L2‖C‖∞ + 4η−1L2
1‖C‖2∞)

)
‖grad fη(Ut)‖2F

−γ
(

1

2
+ γ(2L2

1‖C‖∞ + 4L2‖C‖∞ + 4η−1L2
1‖C‖2∞)

)
‖ξt+1 − grad fη(Ut)‖2F .(C.9)

Since ξt+1 = PTUtSt(2Vπt+1
Ut) and grad fη(Ut) = PTUtSt(2Vπ̃?t Ut) where π̃?t is a minimizer of the

entropic regularized OT problem, i.e., π̃?t ∈ argminπ∈Π(µ,ν) {〈UtU>t , Vπ〉 − ηH(π)}, we have

‖ξt+1 − grad fη(Ut)‖F ≤ 2‖(Vπt+1
− Vπ̃?t )Ut‖F = 2‖Vπt+1

− Vπ̃?t ‖F .

By the definition of Vπ and using the stopping criterion: ‖πt+1 − π̃?t ‖1 ≤ ε̂ = ε
10‖C‖∞ , we have

‖Vπt+1
− Vπ̃?t ‖F ≤ ‖C‖∞‖πt+1 − π̃?t ‖1 ≤

ε

10
.

Putting these pieces together yields that

‖ξt+1 − grad fη(Ut)‖F ≤
ε

5
. (C.10)

Plugging Eq. (C.10) into Eq. (C.9) with the definition of γ yields that

fη(Ut+1)− fη(Ut) ≥
γ‖grad fη(Ut)‖2F

4
− γε2

20
.

Summing and rearranging the resulting inequality yields that

1

T

(
T−1∑
t=0

‖grad fη(Ut)‖2F

)
≤ 4(fη(UT )− fη(U0))

γT
+
ε2

5
.

This together with the definition of ∆f implies the desired result.

C.6 Proof of Theorem B.6

Let π̃?t be a minimzer of entropy-regularized OT problem and π?t be the projection of π̃?t onto the
optimal solution set of unregularized OT problem. More specifically, the unregularized OT problem
is a LP and the optimal solution set is a polyhedron set (t? is an optimal objective value)

S = {π ∈ Rd×d | π ∈ Π(µ, ν), 〈UtU>t , Vπ〉 = t?}.

Then we have

π̃?t ∈ argmin
π∈Π(µ,ν)

〈UtU>t , Vπ〉 − ηH(π), π?t = proj(π̃?t ) ∈ argmin
π∈Π(µ,ν)

〈UtU>t , Vπ〉.

By definition, we have∇fη(Ut) = 2Vπ̃?t Ut and 2Vπ?t Ut ∈ ∂f(Ut). This together with the definition
of Riemannian gradient and Riemannian subdifferential yields that

grad fη(Ut) = PTUtSt(2Vπ̃?t Ut),

subdiff f(Ut) 3 PTUtSt(2Vπ?t Ut).

Therefore, we conclude that

dist(0, subdiff f(Ut)) ≤ ‖PTUtSt(2Vπ?t Ut)‖F
≤ ‖PTUtSt(2Vπ̃?t Ut)‖F + ‖PTUtSt(2Vπ?t Ut)− PTUtSt(2Vπ̃?t Ut)‖F
≤ ‖grad fη(Ut)‖F + 2‖(Vπ?t − Vπ̃?t )Ut‖F .
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Note that scaling the objective function by ‖C‖∞ will not change the optimal solution set. Since
Ut ∈ St(d, k), each entry of the coefficient in the normalized objective function is less than 1. By
Lemma B.4, we obtain that there exists a constant θ̄ independent of ‖C‖∞ such that

‖π̃?t − π?t ‖1 ≤ θ̄

∥∥∥∥〈UtU>t , Vπ̃?t − Vπ?t‖C‖∞

〉∥∥∥∥
1

.

By the definition of π̃?t , we have 〈UtU>t , Vπ̃?t 〉 − ηH(π̃?t ) ≤ 〈UtU>t , Vπ?t 〉 − ηH(π?t ). Since 0 ≤
H(π) ≤ 2 log(n) and η = εmin{1,1/θ̄}

40 log(n) , we have

π̃?t ∈ Π(µ, ν), 0 ≤ 〈UtU>t , Vπ̃?t − Vπ?t 〉 ≤ ε/(20θ̄).

Putting these pieces together yields that

‖π̃?t − π?t ‖1 ≤
ε

20‖C‖∞θ̄
.

By the definition of Ut and Vπ , we have

‖(Vπ?t − Vπ̃?t )Ut‖F = ‖Vπ?t − Vπ̃?t ‖F ≤ θ̄‖C‖∞‖π̃?t − π?t ‖1 ≤
ε

20
.

Putting these pieces together yields

dist(0, subdiff f(Ut)) ≤ ‖grad fη(Ut)‖F +
ε

10
.

Combining this inequality with Lemma B.5 and the Cauchy-Schwarz inequality, we have

1

T

(
T−1∑
t=0

[dist(0, subdiff f(Ut))]
2

)
≤ 2

T

(
T−1∑
t=0

‖grad fη(Ut)‖2F

)
+
ε2

50
≤ 8∆f

γT
+

2ε2

5
+
ε2

50

≤ 8∆f

γT
+
ε2

2
.

Given that dist(0, subdiff f(Ut)) > ε for all t = 0, 1, . . . , T − 1 and

1

γ
= (8L2

1+16L2)‖C‖∞+
16L2

1‖C‖2∞
η

= (8L2
1+16L2)‖C‖∞+

640L2
1 max{1, θ̄}‖C‖2∞ log(n)

ε
.

we conclude that the upper bound T must satisfy

ε2 ≤ 16∆f

T

(
(8L2

1 + 16L2)‖C‖∞ +
640L2

1 max{1, θ̄}‖C‖2∞ log(n)

ε

)
.

Using Lemma B.2, we have

∆f ≤
(
‖C‖∞ +

2‖C‖2∞
η

)(
max

U∈St(d,k)
‖U − U0‖2F

)
= k

(
2‖C‖∞ +

4‖C‖2∞
η

)
= k

(
2‖C‖∞ +

160 max{1, θ̄}‖C‖2∞ log(n)

ε

)
.

Putting these pieces together implies the desired result.

C.7 Proof of Lemma B.7

Using the same argument as in the proof of Lemma B.5, we have

fη(Ut+1)− fη(Ut) ≥ γ〈∇fη(Ut), ξt+1〉 − γ2((L2
1 + 2L2)‖C‖∞ + 2η−1L2

1‖C‖2∞)‖ξt+1‖2F .
(C.11)

Recall that grad fη(Ut) = PTUtSt(∇fη(Ut)) and the definition of ξt+1, we have

〈∇fη(Ut), ξt+1〉 = 〈grad fη(Ut), ξt+1〉
= 〈grad fη(Ut),Diag (p̂t+1)−1/4(grad fη(Ut))Diag (q̂t+1)−1/4〉

+〈grad fη(Ut),Diag (p̂t+1)−1/4(Gt+1 − grad fη(Ut))Diag (q̂t+1)−1/4〉.
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Using the Cauchy-Schwarz inequality and the nonexpansiveness of PTUtSt, we have

‖ξt+1‖2F ≤ 2‖PTUtSt(Diag (p̂t+1)−1/4(grad fη(Ut))Diag (q̂t+1)−1/4)‖2F
+2‖ξt+1 − PTUtSt(Diag (p̂t+1)−1/4(grad fη(Ut))Diag (q̂t+1)−1/4)‖2F

≤ 2‖Diag (p̂t+1)−1/4(grad fη(Ut))Diag (q̂t+1)−1/4‖2F
+2‖Diag (p̂t+1)−1/4(Gt+1 − grad fη(Ut))Diag (q̂t+1)−1/4‖2F .

Furthermore, by the definition of Gt+1, we have ‖Gt+1‖F ≤ 2‖C‖∞ and hence

0d ≤
diag(Gt+1G

>
t+1)

k
≤ 4‖C‖2∞1d, 0k ≤

diag(G>t+1Gt+1)

d
� 4‖C‖2∞1k.

By the definition of pt and qt, we have 0d � pt � 4‖C‖2∞1d and 0k � qt � 4‖C‖2∞1k. This
together with the definition of p̂t and q̂t implies that

α‖C‖2∞1d ≤ p̂t ≤ 4‖C‖2∞1d, α‖C‖2∞1k ≤ q̂t ≤ 4‖C‖2∞1k.
This inequality together with Young’s inequality implies that

〈∇fη(Ut), ξt+1〉 ≥
‖grad fη(Ut)‖2F

2‖C‖∞
− 1√

α‖C‖∞

(√
α‖grad fη(Ut)‖2F

4
+
‖Gt+1 − grad fη(Ut)‖2F√

α

)
=
‖grad fη(Ut)‖2F

4‖C‖∞
− ‖Gt+1 − grad fη(Ut)‖2F

α‖C‖∞
,

and

‖ξt+1‖2F ≤
2‖grad fη(Ut)‖2F

α‖C‖2∞
+

2‖Gt+1 − grad fη(Ut)‖2F
α‖C‖2∞

.

Putting these pieces together with Eq. (C.11) yields that

fη(Ut+1)− fη(Ut) ≥ γ

4‖C‖∞

(
1− 8γ

α

(
L2

1 + 2L2 + 2η−1L2
1‖C‖∞

))
‖grad fη(Ut)‖2F

− γ

α‖C‖∞
(
1 + γ(2L2

1 + 4L2 + 4η−1L2
1‖C‖∞)

)
‖Gt+1 − grad fη(Ut)‖2F . (C.12)

Recall that Gt+1 = PTUtSt(2Vπt+1
Ut) and grad fη(Ut) = PTUtSt(2Vπ̃?t Ut). Then we can apply the

same argument as in the proof of Lemma B.5 and obtain that

‖Gt+1 − grad fη(Ut)‖F ≤
ε
√
α

10
. (C.13)

Plugging Eq. (C.13) into Eq. (C.12) with the definition of γ yields that

fη(Ut+1)− fη(Ut) ≥
γ‖grad fη(Ut)‖2F

8‖C‖∞
− γε2

80‖C‖∞
.

Summing and rearranging the resulting inequality yields that

1

T

(
T−1∑
t=0

‖grad fη(Ut)‖2F

)
≤ 8‖C‖∞(fη(UT )− fη(U0))

γT
+
ε2

10
.

This together with the definition of ∆f implies the desired result.

C.8 Proof of Theorem B.8

Using the same argument as in the proof of Theorem B.6, we have

dist(0, subdiff f(Ut)) ≤ ‖grad fη(Ut)‖F +
ε

10
.

Combining this inequality with Lemma B.7 and the Cauchy-Schwarz inequality, we have

1

T

(
T−1∑
t=0

[dist(0, subdiff f(Ut))]
2

)
≤ 2

T

(
T−1∑
t=0

‖grad fη(Ut)‖2F

)
+
ε2

50

≤ 16‖C‖∞∆f

γT
+
ε2

5
+
ε2

50
≤ 16‖C‖∞∆f

γT
+
ε2

2
.
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Given that dist(0, subdiff f(Ut)) > ε for all t = 0, 1, . . . , T − 1 and

1

γ
= 16L2

1 + 32L2 +
1280L2

1 max{1, θ̄}‖C‖∞ log(n)

ε
,

we conclude that the upper bound T must satisfies

ε2 ≤ 64‖C‖∞∆f

T

(
16L2

1 + 32L2 +
1280L2

1 max{1, θ̄}‖C‖∞ log(n)

ε

)
.

Using Lemma B.2, we have

∆f ≤
(
‖C‖∞ +

2‖C‖2∞
η

)(
max

U∈St(d,k)
‖U − U0‖2F

)
= k

(
2‖C‖∞ +

4‖C‖2∞
η

)
= k

(
2‖C‖∞ +

160 max{1, θ̄}‖C‖2∞ log(n)

ε

)
.

Putting these pieces together implies the desired result.

C.9 Proof of Theorem 3.1

First, Theorem B.6 and B.8 imply that both algorithms achieve the same the iteration complexity as
follows,

t = Õ

(
k‖C‖2∞
ε2

(
1 +
‖C‖∞
ε

)2
)
. (C.14)

This implies that Ut is an ε-approximate optimal subspace projection of prob-
lem (2.7). By the definition of ε̂ and using the stopping criterion of the subroutine
REGOT({(xi, ri)}i∈[n], {(yj , cj)}j∈[n], Ut, η, ε̂), we have πt+1 ∈ Π(µ, ν) and

0 ≤ 〈UtU>t , Vπt+1
− Vπ̃?t 〉 ≤ ‖C‖∞‖πt+1 − π̃?t ‖1 ≤ ‖C‖∞ε̂ ≤ ε/2.

where π̃?t is an unique minimzer of entropy-regularized OT problem. Furthermore, by the definition
of π̃?t , we have 〈UtU>t , Vπ̃?t 〉 − ηH(π̃?t ) ≤ 〈UtU>t , Vπ?t 〉 − ηH(π?t ). Since 0 ≤ H(π) ≤ 2 log(n)

and η = εmin{1,1/θ̄}
40 log(n) , we have

π̃?t ∈ Π(µ, ν), 0 ≤ 〈UtU>t , Vπ̃?t − Vπ?t 〉 ≤ ε/2.

Putting these pieces together yields that πt+1 is an ε-approximate optimal transportation plan for
the subspace projection Ut. Therefore, we conclude that (Ut, πt+1) ∈ St(d, k) × Π(µ, ν) is an
ε-approximate pair of optimal subspace projection and optimal transportation plan of problem (2.3).

The remaining step is to analyze the complexity bound. Indeed, we first claim that the number of
arithmetic operations required by the Sinkhorn iteration at each loop is upper bounded by

Õ

(
n2‖C‖4∞

ε4
+
n2‖C‖8∞

ε8

)
. (C.15)

Furthermore, while Step 5 and Step 6 in Algorithm 1 can be implemented in O(dk2 + k3) arithmetic
operations, we still need to construct Vπt+1Ut. A naive approach suggests to first construct Vπt+1

using O(n2dk) arithmetic operations and then perform the matrix multiplication using O(d2k)
arithmetic operations. This is computationally prohibitive since d can be very large in practice. In
contrast, we observe that

Vπt+1
Ut =

n∑
i=1

n∑
j=1

(πt+1)i,j(xi − yj)(xi − yj)>Ut.

Since xi − yj ∈ Rd, it will take O(dk) arithmetic operations for computing (xi − yj)(xi − yj)>Ut
for all (i, j) ∈ [n] × n. This implies that the total number of arithmetic operations is O(n2dk).
Therefore, the number of arithmetic operations at each loop is

Õ

(
n2dk + dk2 + k3 +

n2‖C‖4∞
ε4

+
n2‖C‖8∞

ε8

)
. (C.16)

Putting Eq. (C.14) and Eq. (C.16) together with k = Õ(1) yields the desired result.
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Proof of claim (C.15). The proof is based on the combination of several existing results proved
by Altschuler et al. [3] and Dvurechensky et al. [30]. For the sake of completeness, we provide the
details. More specifically, we consider solving the entropic regularized OT problem as follows,

min
π∈Rn×n+

〈C, π〉 − ηH(π), s.t. r(π) = r, c(π) = c.

We leverage the Sinkhorn iteration which aims at maximizing the following function

f(u, v) = 1>nB(u, v)1n − 〈u, r〉 − 〈v, c〉, where B(u, v) := diag(u)e−
C
η diag(v).

From the update scheme of Sinkhorn iteration, it is clear that 1>nB(uj , vj)1n = 1 for each iteration j.
By a straightforward calculation, we have

〈C,B(uj , vj)〉 − ηH(B(uj , vj))− (〈C,B(u?, v?)〉 − ηH(B(u?, v?)))

≤ η(f(u?, v?)− f(uj , vj)) + ηR(‖r(B(uj , vj))− r‖1 + ‖c(B(uj , vj))− c‖1)

where (u?, v?) is a maximizer of f(u, v) over Rn × Rn and R > 0 is defined in Dvurechensky et al.
[30, Lemma 1]. Since the entropic regularization function is strongly convex with respect to `1-norm
over the probability simplex and B(uj , vj) can be vectorized as a probability vector, we have

‖B(uj , vj)−B(u?, v?)‖21 ≤ 2(f(u?, v?)−f(uj , vj))+2R(‖r(B(uj , vj))−r‖1+‖c(B(uj , vj))−c‖1).

On one hand, by the definition of (u?, v?) and B(·, ·), it is clear that B(u?, v?) is an unique optimal
solution of the entropic regularized OT problem and we further denote it as π̃?. On the other hand, the
final output π ∈ Π(µ, ν) is achieved by rounding B(uj , vj) to Π(µ, ν) for some j using Altschuler
et al. [3, Algorithm 2] and Altschuler et al. [3, Lemma 7] guarantees that

‖π̃ −B(uj , vj)‖1 ≤ 2(‖r(B(uj , vj))− r‖1 + ‖c(B(uj , vj))− c‖1).

Again, from the update scheme of Sinkhorn iteration and By Pinsker’s inequality, we have√
2 (f(u?, v?)− f(uj , vj)) ≥ ‖r(B(uj , vj))− r‖1 + ‖c(B(uj , vj))− c‖1.

Putting these pieces together yields that

‖π̃ − π̃?‖1 ≤ c1 (f(u?, v?)− f(uj , vj))
1/2

+ c2
√
R (f(u?, v?)− f(uj , vj))

1/4

where c1, c2 > 0 are constants. Then, by using Eq.(12) in Dvurechensky et al. [30, Theorem 1], we
have f(u?, v?)− f(uj , vj) ≤ 2R2

j . This together with the definition of R yields that the number of
iterations required by the Sinkhorn iteration is

Õ

(
‖C‖4∞
ε4

+
‖C‖8∞
ε8

)
.

This completes the proof.

D Further Background Materials on Riemannian Optimization

The problem of optimizing a smooth function over the Riemannian manifold has been the subject of
a large literature. Absil et al. [2] provide a comprehensive treatment, showing how first-order and
second-order algorithms are extended to the Riemannian setting and proving asymptotic convergence
to first-order stationary points. Boumal et al. [16] have established global sublinear convergence
results for Riemannian gradient descent and Riemannian trust region algorithms, and further showed
that the latter approach converges to a second order stationary point in polynomial time; see also Kasai
and Mishra [49], Hu et al. [46, 47]. In contradistinction to the Euclidean setting, the Riemannian trust
region algorithm requires a Hessian oracle. There have been also several recent papers on problem-
specific algorithms [90, 37, 60] and primal-dual algorithms [95] for Riemannian optimization.

Compared to the smooth setting, Riemannian nonsmooth optimization is harder and relatively less
explored [1]. There are two main lines of work. In the first category, one considers optimizing
geodesically convex function over a Riemannian manifold with subgradient-type algorithms; see,
e.g., Ferreira and Oliveira [32], Zhang and Sra [93], Bento et al. [7]. In particular, Ferreira and
Oliveira [32] first established an asymptotic convergence result while Zhang and Sra [93], Bento
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et al. [7] derived a global convergence rate of O(ε−2) for the Riemannian subgradient algorithm.
Unfortunately, these results are not useful for understanding the computation of the PRW distance
in Eq. (2.3) since the Stiefel manifold is compact and every continuous and geodesically convex
function on a compact Riemannian manifold must be a constant; see Bishop and O’Neill [10,
Proposition 2.2]. In the second category, one assumes the tractable computation of the proximal
mapping of the objective function over the Riemannian manifold. Ferreira and Oliveira [33] proved
that the Riemannian proximal point algorithm converges globally at a sublinear rate.

When specialized to the Stiefel manifold, Chen et al. [18] consider the composite objective and
proposed to compute the proximal mapping of nonsmooth component function over the tangent
space. The resulting Riemannian proximal gradient algorithm is practical in real applications while
achieving theoretical guarantees. Li et al. [55] extended the results in Davis and Drusvyatskiy [27] to
the Riemannian setting and proposed a family of Riemannian subgradienttype methods for optimizing
a weakly convex function over the Stiefel manifold. They also proved that their algorithms have an
iteration complexity of O(ε−4) for driving a near-optimal stationarity measure below ε. Following up
the direction proposed by Li et al. [55], we derive a near-optimal condition (Definition E.1 and E.2)
for the max-min optimization model in Eq. (2.4) and propose an algorithm with the finite-time
convergence under this stationarity measure.

Finally, there are several results on stochastic optimization over the Riemannian manifold. Bonnabel
[12] proved the first asymptotic convergence result for Riemannian stochastic gradient descent, which
is further extended by Zhang et al. [94], Tripuraneni et al. [84], Becigneul and Ganea [5]. If the
Riemannian Hessian is not positive definite, a few recent works have developed frameworks to escape
saddle points [81, 22].

E Near-Optimality Condition

In this section, we derive a near-optimal condition (Definition E.1 and E.2) for the max-min opti-
mization model in Eq. (2.3) and the maximization of f over St(d, k) in Eq. (2.7). Following Davis
and Drusvyatskiy [27], Li et al. [55], we define the proximal mapping of f over St(d, k) in Eq. (2.7),
which takes into account both the Stiefel manifold constraint and max-min structure5:

p(U) ∈ argmax
Ū∈St(d,k)

{
f(Ū)− 6‖C‖∞‖Ū − U‖2F

}
for all U ∈ St(d, k).

After a simple calculation, we have

Θ(U) := 12‖C‖∞‖p(U)− U‖F ≥ dist(0, subdiff f(proxρf (U))),

Therefore, we conclude from Definition 2.6 that p(U) ∈ St(d, k) is ε-approximate optimal subspace
projection of f over St(d, k) in Eq. (2.7) if Θ(U) ≤ ε. We remark that Θ(•) is a well-defined
surrogate stationarity measure of f over St(d, k) in Eq. (2.7). Indeed, if Θ(U) = 0, then U ∈ St(d, k)
is an optimal subspace projection. This inspires the following ε-near-optimality condition for any
Û ∈ St(d, k).

Definition E.1 A subspace projection Û ∈ St(d, k) is called an ε-approximate near-optimal subspace
projection of f over St(d, k) in Eq. (2.7) if it satisfies Θ(Û) ≤ ε.

Equipped with Definition 2.2 and E.1, we define an ε-approximate pair of near-optimal subspace
projection and optimal transportation plan for the computation of the PRW distance in Eq. (2.3).

Definition E.2 The pair of subspace projection and transportation plan (Û , π̂) ∈ St(d, k)×Π(µ, ν)
is an ε-approximate pair of near-optimal subspace projection and optimal transportation plan for the
computation of the PRW distance in Eq. (2.3) if the following statements hold true:

• Û is an ε-approximate near-optimal subspace projection of f over St(d, k) in Eq. (2.7).

• π̂ is an ε-approximate optimal transportation plan for the subspace projection Û .
5The proximal mapping p(U) must exist since the Stiefel manifold is compact, yet may not be uniquely

defined. However, this does not matter since p(U) only appears in the analysis for the purpose of defining the
surrogate stationarity measure; see Li et al. [55].
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Algorithm 3 Riemannian SuperGradient Ascent with Network Simplex Iteration (RSGAN)

1: Input: measures {(xi, ri)}i∈[n] and {(yj , cj)}j∈[n], dimension k = Õ(1) and tolerance ε.
2: Initialize: U0 ∈ St(d, k), ε̂← ε

10‖C‖∞ and γ0 ← 1
k‖C‖∞ .

3: for t = 0, 1, 2, . . . , T − 1 do
4: Compute πt+1 ← OT({(xi, ri)}i∈[n], {(yj , cj)}j∈[n], Ut, ε̂).
5: Compute ξt+1 ← PTUtSt(2Vπt+1

Ut).
6: Compute γt+1 ← γ0/

√
t+ 1.

7: Compute Ut+1 ← RetrUt(γt+1ξt+1).
8: end for

Finally, we prove that the stationary measure in Definition E.2 is a local surrogate for the stationary
measure in Definition 2.7 in the following proposition.

Proposition E.1 If (U, π) ∈ St(d, k) × Π(µ, ν) is an ε-approximate pair of optimal subspace
projection and optimal transportation plan of problem (2.3), it is an 3ε-approximate pair of optimal
subspace projection and optimal transportation plan.

Proof. By the definition, (U, π) ∈ St(d, k) × Π(µ, ν) satisfies that π is an ε-approximate optimal
transportation plan for the subspace projection U . Thus, it suffices to show that Θ(U) ≤ 3ε. By the
definition of p(U), we have

f(p(U))− 6‖C‖∞‖p(U)− U‖2F ≥ f(U).

Since f is 2‖C‖∞-weakly concave and each element of the subdifferential ∂f(U) is bounded by
2‖C‖∞ for all U ∈ St(d, k), the Riemannian subgradient inequality [55, Theorem 1] implies that

f(proxρf (U))−f(U) ≤ 〈ξ, proxρf (U)−U〉+2‖C‖∞‖proxρf (U)−U‖2 for any ξ ∈ subdiff f(U).

Since dist(0, subdiff f(U)) ≤ ε, we have

f(proxρf (U))− f(U) ≤ ε‖proxρf (U)− U‖F + 2‖C‖∞‖proxρf (U)− U‖2.
Putting these pieces together with the definition of Θ(U) yields the desired result. �

F Riemannian Supergradient meets Network Simplex Iteration

In this section, we propose a new algorithm, named Riemannian SuperGradient Ascent with Network
simplex iteration (RSGAN), for computing the PRW distance in Eq. (2.3). The iterates are guaranteed
to converge to an ε-approximate pair of near-optimal subspace projection and optimal transportation
plan (cf. Definition E.2). The complexity bound is Õ(n2(d+ n)ε−4) if k = Õ(1).

F.1 Algorithmic scheme

We start with a brief overview of the Riemannian supergradient ascent algorithm for nonsmooth
Stiefel optimization. Letting F : Rd×k → R be a nonsmooth but weakly concave function, we
consider

max
U∈St(d,k)

F (U).

A generic Riemannian supergradient ascent algorithm for solving this problem is given by
Ut+1 ← RetrUt(γt+1ξt+1) for any ξt+1 ∈ subdiffF (Ut),

where subdiffF (Ut) is Riemannian subdifferential of F at Ut and Retr is any retraction on St(d, k).
For the nonconvex nonsmooth optimization, the stepsize setting γt+1 = γ0/

√
t+ 1 is widely accepted

in both theory and practice [27, 55].

By the definition of Riemannian subdifferential, ξt can be obtained by taking ξ ∈ ∂F (U) and by
setting ξt = PTUSt(ξ). Thus, it is necessary for us to specify the subdifferential of f in Eq. (2.7).
Using the symmetry of Vπ , we have

∂f(U) = Conv

{
2Vπ?U | π? ∈ argmin

π∈Π(µ,ν)

〈UU>, Vπ〉

}
, for any U ∈ Rd×k.
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The remaining step is to solve an OT problem with a given U at each inner loop of the maximization
and use the output π(U) to obtain an inexact supergradient of f . Since the OT problem with a given U
is exactly an LP, this is possible and can be done by applying the variant of network simplex method
in the POT package [34]. While the simplex method can exactly solve this LP, we adopt the inexact
solving rule as a practical matter. More specifically, the output πt+1 satisfies that πt+1 ∈ Π(µ, ν) and
‖πt+1 − π?t ‖1 ≤ ε̂ where π?t is an optimal solution of unregularized OT problem with Ut ∈ St(d, k).
With the inexact solving rule, the interior-point method and some first-order methods can be adopted
to solve the unregularized OT problem. To this end, we summarize the pseudocode of the RSGAN
algorithm in Algorithm 3.

F.2 Complexity analysis for Algorithm 3

We define a function which is important to the subsequent analysis of Algorithm 3:

Φ(U) := max
U ′∈St(d,k)

{
f(U ′)− 6‖C‖∞‖U ′ − U‖2F

}
for all U ∈ St(d, k).

Our first lemma provides a key inequality for quantifying the progress of the iterates {(U t, πt)}t≥1

generated by Algorithm 3 using Φ(•) as the potential function.

Lemma F.1 Letting {(Ut, πt)}t≥1 be the iterates generated by Algorithm 3, we have

Φ(Ut+1) ≥ Φ(Ut)− 12γt+1‖C‖∞
(
f(Ut)− f(p(Ut)) + 4‖C‖∞‖p(Ut)− Ut‖2F +

ε2

200‖C‖∞

)
− 200γ2

t+1‖C‖3∞(γ2
t+1L

2
2‖C‖2∞ + γt+1‖C‖∞ +

√
k).

Proof. Since p(Ut) ∈ St(d, k), we have

Φ(Ut+1) ≥ f(p(Ut))− 6‖C‖∞‖p(Ut)− Ut+1‖2F . (F.1)

Using the update formula of Ut+1, we have

‖p(Ut)− Ut+1‖2F = ‖p(Ut)− RetrUt(γt+1ξt+1)‖2F .

Using the Cauchy-Schwarz inequality and Proposition A.1, we have

‖p(Ut)− RetrUt(γt+1ξt+1)‖2F
= ‖(Ut + γt+1ξt+1 − p(Ut)) + (RetrUt(γt+1ξt+1)− Ut − γt+1ξt+1)‖2F
≤ ‖Ut + γt+1ξt+1 − p(Ut)‖2F + ‖RetrUt(γt+1ξt+1)− (Ut + γt+1ξt+1)‖2F

+2‖Ut + γt+1ξt+1 − p(Ut)‖F ‖RetrUt(γt+1ξt+1)− (Ut + γt+1ξt+1)‖F
≤ ‖Ut + γt+1ξt+1 − p(Ut)‖2F + γ4

t+1L
2
2‖ξt+1‖4F + 2γ2

t+1‖Ut + γt+1ξt+1 − p(Ut)‖F ‖ξt+1‖2F
≤ ‖Ut − p(Ut)‖2F + 2γt+1〈ξt+1, Ut − p(Ut)〉+ γ2

t+1‖ξt+1‖2F + γ4
t+1L

2
2‖ξt+1‖4F

+2γ2
t+1‖Ut + γt+1ξt+1 − p(Ut)‖F ‖ξt+1‖2F .

Since Ut ∈ St(d, k) and p(Ut) ∈ St(d, k), we have ‖Ut‖F ≤
√
k and ‖p(Ut)‖F ≤

√
k. By the

update formula for ξt+1, we have

‖ξt+1‖F = ‖PTUt−1
St(2Vπt+1

Ut)‖F ≤ 2‖Vπt+1
Ut‖F .

Since Ut ∈ St(d, k) and πt+1 ∈ Π(µ, ν), we have ‖ξt+1‖F ≤ 2‖C‖∞. Putting all these pieces
together yields that

‖p(Ut)− Ut+1‖2F ≤ ‖Ut − p(Ut)‖2F + 2γt+1〈ξt+1, Ut − p(Ut)〉+ 4γ2
t+1‖C‖2∞ (F.2)

+16γ4
t+1L

2
2‖C‖4∞ + 16γ3

t+1‖C‖3∞ + 16γ2
t+1

√
k‖C‖2∞.

Plugging Eq. (F.2) into Eq. (F.1) and simplifying the inequality using k ≥ 1, we have

Φ(Ut+1) ≥ f(p(Ut))− 6‖C‖∞‖Ut − p(Ut)‖2F − 12γt+1‖C‖∞〈ξt+1, Ut − p(Ut)〉

−200γ2
t+1‖C‖3∞

(
γ2
t+1L

2
2‖C‖2∞ + γt+1‖C‖∞ +

√
k
)
.
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By the definition of Φ(•) and p(•), we have

Φ(Ut+1) ≥ Φ(Ut)− 12γt+1‖C‖∞〈ξt+1, Ut − p(Ut)〉 (F.3)

−200γ2
t+1‖C‖3∞

(
γ2
t+1L

2
2‖C‖2∞ + γt+1‖C‖∞ +

√
k
)
.

Now we proceed to bound the term 〈ξt+1, Ut − p(Ut)〉. Letting ξ?t = PTUtSt(2Vπ?t Ut) where π?t is a
minimizer of unregularized OT problem, i.e., π?t ∈ argminπ∈Π(µ,ν) 〈UtU>t , Vπ〉, we have

〈ξt+1, Ut − p(Ut)〉 ≤ 〈ξ?t , Ut − p(Ut)〉+ ‖ξt+1 − ξ?t ‖F ‖Ut − p(Ut)‖F . (F.4)

Since f(U) = minπ∈Π(µ,ν) 〈UtU>t , Vπ〉 is 2‖C‖∞-weakly concave over Rd×k (cf. Lemma 2.1),
ξ?t ∈ subdiff f(Ut) and each element in the subdifferential ∂f(U) is bounded by 2‖C‖∞ for all
U ∈ St(d, k) (cf. Lemma 2.2), the Riemannian subgradient inequality [55, Theorem 1] holds true
and implies that

f(p(Ut)) ≤ f(Ut) + 〈ξ?t , p(Ut)− Ut〉+ 2‖C‖∞‖p(Ut)− Ut‖2F .

This implies that

〈ξ?t , Ut − p(Ut)〉 ≤ f(Ut)− f(p(Ut)) + 2‖C‖∞‖p(Ut)− Ut‖2F . (F.5)

By the definition of ξt+1 and ξ?t , we have

‖ξt+1 − ξ?t ‖F = ‖PTUtSt(2Vπt+1
Ut)− PTUtSt(2Vπ?t Ut)‖F ≤ 2‖(Vπt+1

− Vπ?t )Ut‖F .

By the definition of the subroutine OT({(xi, ri)}i∈[n], {(yj , cj)}j∈[n], U, ε̂) in Algorithm 3, we have
πt+1 ∈ Π(µ, ν) and ‖πt+1 − π?t ‖1 ≤ ε̂. Thus, we have

‖ξt+1 − ξ?t ‖F ≤ 2‖C‖∞ε̂ ≤
ε

5
.

Using Young’s inequality, we have

‖ξt+1 − ξ?t ‖F ‖Ut − p(Ut)‖F ≤ ‖ξt+1 − ξ?t ‖2F
8‖C‖∞

+ 2‖C‖∞‖Ut − p(Ut)‖2F (F.6)

≤ ε2

200‖C‖∞
+ 2‖C‖∞‖Ut − p(Ut)‖2F .

Combining Eq. (F.3), Eq. (F.4), Eq. (F.5) and Eq. (F.6) yields the desired result. �

Putting Lemma F.1 together with the definition of p(•), we have the following consequence:

Proposition F.2 Letting {(Ut, πt)}t≥1 be the iterates generated by Algorithm 3, we have

24‖C‖2∞
∑T−1
t=0 γt+1‖p(Ut)− Ut‖2F∑T−1

t=0 γt+1

≤ γ−1
0 ∆Φ + 200γ0‖C‖3∞(γ2

0L
2
2‖C‖2∞ + γ0‖C‖∞ +

√
k(log(T ) + 1))

2
√
T

+
ε2

12
,

where ∆Φ = maxU∈St(d,k) Φ(U)− Φ(U0) is the initial objective gap.

Proof. By the definition of p(•), we have

f(Ut)− f(p(Ut)) + 4‖C‖∞‖p(Ut)− Ut‖2F
= f(Ut)−

(
f(p(Ut))− 6‖C‖∞‖p(Ut)− Ut‖2F

)
− 2‖C‖∞‖p(Ut)− Ut‖2F

≤ −2‖C‖∞‖p(Ut)− Ut‖2F .

Using Lemma F.1, we have

Φ(Ut+1) ≥ Φ(Ut) + 24γt+1‖C‖2∞‖p(Ut)− Ut‖2F −
γt+1ε

2

12

−200γ2
t+1‖C‖3∞(γ2

t+1L
2
2‖C‖2∞ + γt+1‖C‖∞ +

√
k).
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Rearranging this inequality, we have

24γt+1‖C‖2∞‖p(Ut)− Ut‖2F ≤ Φ(Ut+1)− Φ(Ut) +
γt+1ε

2

12

+200γ2
t+1‖C‖3∞(γ2

t+1L
2
2‖C‖2∞ + γt+1‖C‖∞ +

√
k).

Summing up over t = 0, 1, 2, . . . , T − 1 yields that

24‖C‖2∞
∑T−1
t=0 γt+1‖p(Ut)− Ut‖2F∑T−1

t=0 γt+1

≤
∆Φ + 200‖C‖3∞(

∑T
t=1 γ

2
t (γ2

tL
2
2‖C‖2∞ + γt‖C‖∞ +

√
k))

2
∑T
t=1 γt

+
ε2

12
.

By the definition of {γt}t≥1, we have

T∑
t=1

γt ≥ γ0

√
T ,

T∑
t=1

γ2
t ≤ γ2

0(log(T ) + 1),

T∑
t=1

γ3
t ≤ 3γ3

0 ,

T∑
t=1

γ4
t ≤ 2γ4

0 .

Putting these pieces together yields the desired result. �

We proceed to provide an upper bound for the number of iterations needed to return an ε-approximate
near-optimal subspace projection Ut ∈ St(d, k) satisfying Θ(Ut) ≤ ε in Algorithm 3.

Theorem F.3 Letting {(Ut, πt)}t≥1 be the iterates generated by Algorithm 3, the number of itera-
tions required to reach Θ(Ut) ≤ ε satisfies

t = Õ

(
k2‖C‖4∞

ε4

)
.

Proof. By the definition of Θ(•) and p(•), we have Θ(Ut) = 12‖C‖∞‖p(Ut) − Ut‖F . Using
Proposition F.2, we have∑T−1

t=0 γt+1(Θ(Ut))
2∑T−1

t=0 γt+1

≤ 3γ−1
0 ∆Φ + 600γ0‖C‖3∞(γ2

0L
2
2‖C‖2∞ + γ0‖C‖∞ +

√
k(log(T ) + 1))√

T
+
ε2

2
.

Furthermore, by the definition Φ(•), we have

|Φ(U)| ≤ max
U ′∈St(d,k)

|f(U ′) + 6‖C‖∞‖U ′ − U‖2F |

≤ max
U∈St(d,k)

max
U ′∈St(d,k)

|f(U ′) + 6‖C‖∞‖U ′ − U‖2F |

≤ max
U∈St(d,k)

|f(U)|+ 12k‖C‖∞.

By the definition of f(•), we have maxU∈St(d,k) |f(U)| ≤ ‖C‖∞. Putting these pieces together with
k ≥ 1 implies that |Φ(U)| ≤ 20k‖C‖∞. By the definition of ∆Φ, we conclude that ∆Φ ≤ 40k‖C‖∞.
Given that γ0 = 1/‖C‖∞ and Θ(Ut) > ε for all t = 0, 1, . . . , T − 1, the upper bound T must satisfy

ε2 ≤ 240k‖C‖2∞ + 1200‖C‖2∞(L2
2 +
√
k log(T ) +

√
k + 1)√

T
.

This implies the desired result. �

Equipped with Theorem F.3 and Algorithm 3, we establish the complexity bound of Algorithm 3.

Theorem F.4 The RSGAN algorithm (cf. Algorithm 3) returns an ε-approximate pair of near-optimal
subspace projection and optimal transportation plan of computing the PRW distance in Eq. (2.3) (cf.
Definition E.2) in

Õ

(
n2(n+ d)‖C‖4∞

ε4

)
arithmetic operations.
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Figure 7: Fragmented hypercube with (n, d) = (100, 30) (above) and (n, d) = (250, 30) (bottom).
Optimal mappings in the Wasserstein space (left), in the SRW space (middle) and the PRW space
(right). Geodesics in the PRW space are robust to statistical noise.

Proof. First, Theorem F.3 implies that the iteration complexity of Algorithm 3 is

Õ

(
k2‖C‖4∞

ε4

)
. (F.7)

This implies that Ut is an ε-approximate near-optimal subspace projection of problem (2.7). Fur-
thermore, ε̂ = min{ε, ε2/144‖C‖∞}. Since πt+1 ← OT({(xi, ri)}i∈[n], {(yj , cj)}j∈[n], Ut, ε̂),
we have πt+1 ∈ Π(µ, ν) and 〈UtU>t , Vπt+1 − Vπ?t 〉 ≤ ε̂ ≤ ε. This implies that πt+1 is an ε-
approximate optimal transportation plan for the subspace projection Ut. Therefore, we conclude that
(Ut, πt+1) ∈ St(d, k)×Π(µ, ν) is an ε-approximate pair of near-optimal subspace projection and
optimal transportation plan of problem (2.3).

The remaining step is to analyze the complexity bound. Note that the most of software packages, e.g.,
POT [34], implement the OT subroutine using a variant of the network simplex method with a block
search pivoting strategy [26, 13]. The best known complexity bound is provided in Tarjan [82] and is
Õ(n3). Using the same argument in Theorem 3.1, the number of arithmetic operations at each loop is

Õ
(
n2dk + dk2 + k3 + n3

)
. (F.8)

Putting Eq. (F.7) and Eq. (F.8) together with k = Õ(1) yields the desired result. �

Remark F.5 The complexity bound of Algorithm 3 is better than that of Algorithm 1 and 2 in terms of
ε and ‖C‖∞. This makes sense since Algorithm 3 only returns an ε-approximate pair of near-optimal
subspace projection and optimal transportation plan which is weaker than an ε-approximate pair of
optimal subspace projection and optimal transportation plan. Furthermore, Algorithm 3 implements
the network simplex method as the inner loop which might suffer when n is large and yield unstable
performance in practice.

G Implementation Details

Experimental setup. For the experiments on the MNIST digits, we run the feature extractor
pretrained in PyTorch 1.5. All the experiments are implemented in Python 3.7 with Numpy 1.18 on a
ThinkPad X1 with an Intel Core i7-10710U (6 cores and 12 threads) and 16GB memory, equipped
with Ubuntu 20.04.

Fragmented hypercube. We consider the fragmented hypercube which is also used to evaluate
the SRW distance [69] and FactoredOT [35]. In particular, we consider µ = U([−1, 1]d) which is
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Figure 8: Optimal 2-dimensional projections between “Dunkirk" and “Interstellar" (left) and optimal
2-dimensional projections between “Julius Caesar" and “The Merchant of Venice" (right). Common
words of two items are displayed in violet and the 30 most frequent words of each item are displayed.

an uniform distribution over an hypercube and ν = T#µ which is the push-forward of µ under the
map T (x) = x + 2sign(x) � (

∑k∗

k=1 ek). Note that sign(·) is taken element-wise, k∗ ∈ [d] and
(e1, . . . , ed) is the canonical basis of Rd. By the definition, T divides [−1, 1]d into four different
hyper-rectangles, as well as serves as a subgradient of convex function. This together with Brenier’s
theorem (cf. Villani [86, Theorem 2.12]) implies that T is an optimal transport map between µ and
ν = T#µ withW2

2 (µ, ν) = 4k∗. Notice that the displacement vector T (x) − x is optimal for any
x ∈ Rd and always belongs to the k∗-dimensional subspace spanned by {ej}j∈[k∗]. Putting these
pieces together yields that P2

k(µ, ν) = 4k∗ for any k ≥ k∗.

Robustness of Pk to noise. We consider the Gaussian distribution6. In particular, we consider
µ = N (0,Σ1) and ν = N (0,Σ2) where Σ1,Σ2 ∈ Rd×d are positive semidefinite matrices of rank
k∗. This implies that either of the support of µ and ν is the k∗-dimensional subspace of Rd. Even
though the supports of µ and ν can be different, their union is included in a 2k∗-dimensional subspace.
Putting these pieces together yields that P2

k(µ, ν) =W2
2 (µ, ν) for any k ≥ 2k∗. In our experiment,

we set d = 20 and sample 100 independent couples of covariance matrices (Σ1,Σ2), where each
has independently a Wishart distribution with k∗ = 5 degrees of freedom. Then we construct the
empirical measures µ̂ and ν̂ by drawing n = 100 points from N (0,Σ1) and N (0,Σ2).

H Additional Experimental Results

Fragmented hypercube. Figure 7 presents the optimal transport plan in the Wasserstein space
(left), the optimal transport plan in the SRW space (middle), and the optimal transport plan in the PRW
space (right) between µ̂ and ν̂. We consider two cases: n = 100 and n = 250, in our experiment and
observe that our results are consistent with Paty and Cuturi [69, Figure 5], showing that both PRW
and SRW distances share important properties with the Wasserstein distance.

Experiments on Movie and Shakespeare operas. Figure 8 displays the projection of two mea-
sures associated with Dunkirk versus Interstellar (left) and Julius Caesar versus The Merchant of
Venice (right) onto their optimal 2-dimensional projection.

Experiments on MNIST data. To further show the versatility of SRW and PRW distances, we
extract the features of different MNIST digits using a convolutional neural network (CNN) and
compute the scaled SRW and PRW distances between all pairs of MNIST digits. In particular, we use
an off-the-shelf PyTorch implementation7 and pretrain on MNIST with 98.6% classification accuracy

6 Paty and Cuturi [69] conducted this experiment with their projected supergradient ascent algorithm (cf.
Paty and Cuturi [69, Algorithm 1]) with the EMD solver from the POT software package. For a fair comparison,
we use Riemannian supergradient ascent algorithm (cf. Algorithm 3) with the EMD solver here; see Appendix
for the details.

7https://github.com/pytorch/examples/blob/master/mnist/main.py
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D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
D0 0/0 0.97/0.79 0.80/0.59 1.20/0.92 1.23/0.90 1.03/0.71 0.81/0.59 0.86/0.66 1.06/0.79 1.09/0.81
D1 0.97/0.79 0/0 0.66/0.51 0.86/0.72 0.68/0.54 0.84/0.70 0.80/0.66 0.58/0.47 0.88/0.71 0.85/0.72
D2 0.80/0.59 0.66/0.51 0/0 0.73/0.54 1.08/0.79 1.08/0.83 0.90/0.70 0.70/0.53 0.68/0.52 1.07/0.81
D3 1.20/0.92 0.86/0.72 0.73/0.54 0/0 1.20/0.87 0.58/0.43 1.23/0.91 0.72/0.55 0.88/0.64 0.83/0.65
D4 1.23/0.90 0.68/0.54 1.08/0.79 1.20/0.87 0/0 1.00/0.75 0.85/0.62 0.79/0.61 1.09/0.78 0.49/0.38
D5 1.03/0.71 0.84/0.70 1.08/0.83 0.58/0.43 1.00/0.75 0/0 0.72/0.51 0.91/0.68 0.72/0.53 0.78/0.59
D6 0.81/0.59 0.80/0.66 0.90/0.70 1.23/0.91 0.85/0.62 0.72/0.51 0/0 1.11/0.83 0.92/0.66 1.22/0.83
D7 0.86/0.66 0.58/0.47 0.70/0.53 0.72/0.55 0.79/0.61 0.91/0.68 1.11/0.83 0/0 1.07/0.78 0.62/0.46
D8 1.06/0.79 0.88/0.71 0.68/0.52 0.88/0.64 1.09/0.78 0.72/0.53 0.92/0.66 1.07/0.78 0/0 0.87/0.63
D9 1.09/0.81 0.85/0.72 1.07/0.81 0.83/0.65 0.49/0.38 0.78/0.59 1.22/0.83 0.62/0.46 0.87/0.63 0/0

Table 3: Each entry is scaled S2
k/P2

k distance between different hand-written digits.

on the test set. We extract the 128-dimensional features of each digit from the penultimate layer of
the CNN. Since the MNIST test set contains 1000 images per digit, each digit is associated with a
measure over R128000. Then we compute the optimal 2-dimensional projection distance of measures
associated with each pair of two digital classes and divide each distance by 1000; see Table 3 for the
details. The minimum SRW and PRW distances in each row is highlighted to indicate its most similar
digital class of that row, which coincides with our intuitions. For example, D1 is sometimes confused
with D7 (0.58/0.47), while D4 is often confused with D9 (0.49/0.38) in scribbles.
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