
4 Appendix

In the appendix, we provide additional proofs that have been omitted from the main text.

4.1 Uniform improvement of Corollary 4 over (10)

To see this, let M
0 be the realization of �2k,+(M) with most columns (M 0 will have at

least k columns since adding a column to M
0 will not decrease its maximum singular value).

Note that k�2k,�(M)/�2k,+(M)  k�
2
min(M

0)/�2
max(M

0) by definition of �. We may as-
sume that M

0 has full column rank, otherwise the proof is trivial. Then, for any subma-
trix Q 2 Rn⇥k of M

0, we have k�
2
min(M

0)/�2
max(M

0)  k�
2
min(Q)/�2

max(Q) (see, e.g.,
2.2.33. of [41]). Next, k�2

min(Q)/�2
max(Q)  k⇤Qk21/k⇤Qk22 holds because �

2
max(Q)k⇤Qk21 �

k�
2
min(Q)(�2

max(Q)k⇤Qk1) � k�
2
mink⇤Qk22. Combining these with Corollary 4 gives the claim.

4.2 Proof of Proposition 9

We first focus on the case where M 2 Rn⇥n is a square matrix. Recall that we defined �1 � . . . � �n

as the nonincreasing order of eigenvalues of matrix M
>
M .

The following result is due to Szarek [38].
Lemma 15 (Theorem 1.3, [38]). There exist universal constants c1c2, c

0
, C

0 such that for any
k  (1/2)n, with probability at least 1� C

0 exp
�
�c

0
k
2
�
,

c1k
2  �n�k(M

>
M)  c2k

2
.

We can take k = n/2 (or (n � 1)/2 if n is odd; in the following we will be assuming n is even
and the odd case follows similarly). It follows by the union bound that there are universal constants
c3.c4, c, C such that with probability at least 1� C exp(�cn

2),

n
2
c3  �n/2(M

>
M)  �1(M

>
M)  n

2
c4. (22)

Finally, we require the following lemma.
Lemma 16. Suppose A � X > 0 and B � Y > 0. Then,

(A+X)2

B + Y
� A

2

2B
.

Proof. It suffices to show that 2A2
B + 4ABX + 2BX

2 � A
2
B +A

2
Y which follows directly by

A
2
B � A

2
Y and non-negativity of A,B,X .

With Lemma 16 and (22), we see that with probability at least 1� C exp(�cn
2),

k⇤k21
k⇤k22

�

⇣Pn/2
i=1 �i

⌘2

Pn/2
i=1 �

2
i

� c6n.

where c6 is a constant that depends on the universal constants c1, c5. We remark that it is easy to
show that c6 = c

2
3/(2c

2
4) suffices, because
0

@
n/2X

i=1

�i

1

A
2

� n
6

4
c
2
3 =

c
2
3

c24

· n
6

4
c
2
4 � c

2
3

2c24
· n

n/2X

i=1

�
2
i .

This completes the proof of Proposition 9 for the case where M is a square matrix.

For a non-square matrix M 2 Rn⇥d, we can without loss of generality assume that d < n, and the
argument for n > d follows similarly. Again, recall that we define �1 � . . .�d as the nonincreasing
order of eigenvalues of the matrix M

>
M . Now, if d � 3

4n, we invoke the following lemma which is
a direct consequence of Theorem 1 of [39].
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Lemma 17. For any d⇥ d submatrix D of M , let �1 � . . . � �d be the eigenvalues of D>
D. Then,

⇢
�i � �i for i = 1, 2, . . . , d
�i � �i+n�d for i  2d� n

.

Lemma 17 and Lemma 15 imply that there exists constants c6, c06, c7, c8, c9, c00, C 00 such that �d/2 �
�d/2 � c6d

2 = c
0
6n

2 with probability at least 1 � C
0 exp

�
�c

0
d
2
�
. On the other hand, we have

�1  c7n
2 with probability at least 1� c8 exp (�c9n) from the following classical tail bound (see,

e.g., [26])

P ((
p
n�

p
d� t)4  �d(M

>
M)  �1(M

>
M)  (

p
n+

p
d� t)4)  2e�t2/2

, t � 0.
(23)

It follows that we can use a similar argument as in the square matrix setting to complete the proof.

Finally, if d <
3
4n, then our claim follows naturally by a direct analysis using (23).

4.3 Proof of Lemma 11

For any matrix M 2 Rn⇥d, we can find an orthogonal matrix Q 2 Rd⇥d such that the first row of
MQ has only one non-zero component, and is in the first component. Then, the distribution of M✓ is
the same as the distribution as MQQ

>
✓. Analyzing the Fisher information IX(m>

i ✓) is equivalent
to analyzing the Fisher information IX(m̃>

i ✓̃), where we take the transform M̃ = MQ and let m̃i be
the i-th row of M̃ . The random variable ✓̃ := Q

>
✓ follows a Gaussian distribution with covariance

�
2
Q

>
Q = �

2 Id. Note that the norm of the first row m̃1 is km̃1k22 = km>
1 QQ

>
m1k22 = km1k22.

This implies that we can discuss with the matrix M̃ as our design matrix. We will do so, and drop the
tilde sign for simplicity. In other words, we assume that m1 is such that only the first component is
non-zero.

Let A = [m2 . . . mn]
>. Then, the conditional distribution of A✓ given m

>
1 ✓ = t is a multivariate

Gaussian with mean and variance given by

mean =
Am1

km1k22| {z }
:=µ

·t ⌃ =

✓
AA

> � Am1m
>
1 A

>

km1k22

◆
�
2
, (24)

Here, we defined the vector µ as µ := Am1/km1k22. We further define the following quantities:
we define the function q(s|t) as the conditional density of A✓ = s, s 2 Rn�1 given m

>
1 ✓ = t,

t 2 R, and define f(x|·) as the conditional density of X given (·). We define f
0(·|·,m>

1 ✓ = t) and
q
0(·|m>

1 ✓ = t) as the corresponding derivatives with respect to t. Consequently, we may calculate
the Fisher information IX(m>

i ✓ = t) as

IX(m>
i ✓ = t)

=

Z

X

[f 0(x|m>
1 ✓ = t)]2

f(x|m>
1 ✓ = t)

d�(x)

(a)
=

Z

X

⇥R
Rn�1

�
f
0(x|A✓ = s,m

>
1 ✓ = t)q(s|t) + f(x|A✓ = s,m

>
1 ✓ = t)q0(s|t)

�
ds
⇤2

R
Rn�1 f(x|A✓ = s,m>

1 ✓ = t)q(s|t)ds
d�(x)

(b)

Z

X

Z

Rn�1

⇥
f
0(x|A✓ = s,m

>
1 ✓ = t)q(s|t) + f(x|A✓ = s,m

>
1 ✓ = t)q0(s|t)

⇤2

f(x|A✓ = s,m>
1 ✓ = t)q(s|t)

ds d�(x)

(c)
=

Z

X

Z

Rn�1

f(x|A✓ = s,m
>
1 ✓ = t)q(s|t)T ds d�(x)

(d)
=

L

s(�)
·

nX

i=1

(m>
i m1)2

km1k42
+ µ

>⌃†
µ

=
L

s(�)
· kMm1k22

km1k42
+ µ

>⌃†
µ. (25)
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Here, we define T as

T =

 
x1 � �0(t)

s(�)
· m

>
1 m1

km1k22
+

nX

i=2

✓
xi � �0(si�1)

s(�)
· m

>
i m1

km1k22

◆
+ µ

>⌃†(s� µt)

!2

.

The term ⌃† corresponds to the pseudo-inverse of the covariance matrix ⌃. Equality (a) is an
exchange of integration and differentiation, justified by the Leibniz rule and smoothness of both the
normal distribution and the regularity of the generalized linear model. Inequality (b) follows from
Cauchy-Schwarz. Equality (c) follows from the observation that f 0(x|A✓ = s,m

>
1 ✓ = t) can be

written as

f
0(x|A✓ = s,m

>
1 ✓ = t)

= f(x|A✓ = s,m
>
1 ✓ = t)

 
x1 � �0(t)

s(�)
· m

>
1 m1

km1k22
+

nX

i=2

✓
xi � �0(si�1)

s(�)
· m

>
i m1

km1k22

◆!
,

and q
0(s|t) = q(s|t)µ>⌃†(s� µt). Equality (d) follows from Lemma 2 and independence between

Xi, Xj for i 6= j.

Let’s write the SVD of A = USV
> with U 2 R(n�1)⇥(n�1), S 2 R(n�1)⇥d, V 2 Rd⇥d. Further,

let’s write A in terms of the following block matrix form

A = [a1 A2]

where a1 2 R(n�1)⇥1 and A2 2 R(n�1)⇥(d�1). Then,

�
2
µ
>⌃†

µ =
1

km1k42
m

>
1 A

>
✓
A

✓
I � m1m

>
1

km1k22

◆
A

>
◆†

Am1

=
1

km1k22
a
>
1 (A2A

>
2 )

†
a1. (26)

Note that the vectors and matrices a1, A2 are uniquely determined by M and rotational matrix Q.
Finally, we define the function  1(·) (and corresponding  i(·)) as

 1(M) :=
1

km1k22
a
>
1 (A2A

>
2 )

†
a1.

Now, by virtue of the pseudo-inverse, if A2A
>
2 is a zero-matrix, (A2A

>
2 )

† is also a zero matrix and
hence 1(M) = 0. Otherwise, A2A

>
2 will always have a finite nonnegative eigenvalue, and therefore

�max

�
(A2A

>
2 )

†� is finite and positive. Hence, by the matrix identity v
>
Av  �max(A) · v>v for

vector v and positive semidefinite matrix A, we can conclude that the function  1(M) is always
finite and non-negative. Finally, we combine with (25) to conclude that

IX(m>
1 ✓ = t)  L

s(�)
· kMm1k22

km1k42
+

1

�2
 1(M).

Taking the expectation over all possible m
>
1 ✓ = t completes the proof. The same reasoning follows

through for each i = 2, . . . , n. We remark that the analysis of Fisher information IX(m>
i ✓) is

independent for different i = 2, . . . , n, and so the rotations we take in the start of this section for
i = 1 do not affect the rotations for other i = 2, . . . , n.

4.4 Proof of Lemma 12

For the Gaussian linear model, we can have a direct analysis of Fisher information due to joint
Gaussianity. In particular, we again consider ✓ ⇠ N (0,�2 Id). We follow the notation from before
and define A = [m2 . . . mn]

>. Then, consider the joint Gaussian variable Y := (X,A✓,m
>
1 ✓).

The covariance matrix ⌃ of Y is given by

⌃ = E
⇥
(Y � EY )(Y � EY )>

⇤
=

2

664

�
2
AA

> + �
2 In�1 �

2
Am1 �

2
AA

>
�
2
Am1

�
2
m

>
1 A

>
�
2km1k22 + �

2
�
2
m

>
1 A

>
�
2km1k22

�
2
AA

>
�
2
Am1 �

2
AA

>
�
2
Am1

�
2
m

>
1 A

>
�
2km1k22 �

2
m

>
1 A

>
�
2km1k22

3

775 .
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By joint Gaussianality, from straightforward computation the conditional distribution of X given

m
>
1 ✓ = t has mean


Am1/km1k22

1

�
t and covariance

"
�
2
AA

> � �2Am1m
>
1 A>

km1k2
2

+ �
2 In�1 0

0 �
2

#
,

and hence, we readily calculate the Fisher information IX(m>
1 ✓ = t) as

IX(m>
1 ✓ = t) =

h
m>

1 A>

km1k2
2

1
i "

�
2
AA

> � �2Am1m
>
1 A>

km1k2
2

+ �
2 In�1 0

0 �
2

#�1  Am1

km1k2
2

1

�

=
1

�2
+

m
>
1 A

>

km1k22

✓
�
2
AA

> � �
2
Am1m

>
1 A

>

km1k22
+ �

2 In�1

◆�1
Am1

km1k22
.

Then, note that

�
2 · IX(m>

1 ✓ = t) = 1 +
1

km1k42
·m>

1 A
>
✓
�
2

�2
A

✓
Id �

m1m
>
1

km1k2

◆
A

> + In�1

◆�1

Am1

(a)
= 1 +

1

km1k42
·m>

1 A
> �

AW
>
WA

> + In�1

��1
Am1

(b)
= 1 +

1

km1k42
·m>

1 A
> �In�1 �AW

>(Id +WA
>
AW

>)�1
WA

>�
Am1

(c)
 1 +

1

km1k42
·m>

1 A
>
Am1

= 1 +
1

km1k42
·m>

1 (M
>
M �m1m

>
1 )m1

=
kMm1k22
km1k42

.

In (a), the matrix W 2 Rd⇥d is chosen to satisfy �2

�2

⇣
Id � m1m

>
1

km1k2

⌘
= W

>
W ; from taking the SVD

of �2

�2

⇣
Id � m1m

>
1

km1k2

⌘
one can easily find such a matrix W . The inequality (c) follows since

m
>
1 A

>
AW

>(I +WA
>
AW

>)�1
WA

>
Am1 � 0.

Equation (b) follows from the following Woodbury matrix identity.
Lemma 18 (Woodbury Matrix Identity). For any two matrices U 2 Rn⇥k

, V 2 Rk⇥n, (In +
UV )�1 = In � U(Ik + V U)�1

V .

Finally, taking the expectation over all possible m
>
1 ✓ = t and dividing both sides by �

2 concludes
the proof. The same reasoning follows through for i = 2, . . . , n.
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