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Abstract

We propose Geo-PIFu, a method to recover a 3D mesh from a monocular color
image of a clothed person. Our method is based on a deep implicit function-based
representation to learn latent voxel features using a structure-aware 3D U-Net, to
constrain the model in two ways: first, to resolve feature ambiguities in query
point encoding, second, to serve as a coarse human shape proxy to regularize
the high-resolution mesh and encourage global shape regularity. We show that,
by both encoding query points and constraining global shape using latent voxel
features, the reconstruction we obtain for clothed human meshes exhibits less
shape distortion and improved surface details compared to competing methods.
We evaluate Geo-PIFu on a recent human mesh public dataset that is 10x larger
than the private commercial dataset used in PIFu and previous derivative work.
On average, we exceed the state of the art by 42.7% reduction in Chamfer and
Point-to-Surface Distances, and 19.4% reduction in normal estimation errors.

1 Introduction

Image based modeling is enabling new forms of immersive content production, particularly through
realistic capture of human performance. Recently, deep implicit modeling techniques delivered a
step change in 3D reconstruction of clothed human meshes from monocular images. These implicit
methods train deep neural networks to estimate dense, continuous occupancy fields from which
meshes may be reconstructed e.g. via Marching Cubes [20].

Reconstruction from a single view is an inherently under-constrained problem. The resulting ambi-
guities are resolved by introducing assumptions into the design of the implicit surface function; the
learned function responsible for querying a 3D point’s occupancy by leveraging feature evidence from
the input image. Prior work extracts either a global image feature 21} 23} |3, [18]], or pixel-aligned
features (PIFu [29]) to drive this estimation. Neither approach takes into account fine-grain local
shape patterns, nor seek to enforce global consistency to encourage physically plausible shapes
and poses in the reconstructed mesh. This can lead to unnatural body shapes or poses, and loss of
high-frequency surface details within the reconstructed mesh.

This paper contributes Geo-PIFU: an extension of pixel-aligned features to include three dimensional
information estimated via a latent voxel representation that enriches the feature representation and
regularizes the global shape of the estimated occupancy field. We augment the pixel-aligned features
with geometry-aligned shape features extracted from a latent voxel feature representation obtained by
lifting the input image features to 3D. These voxel features naturally align with the human mesh in 3D
space and thus can be trilinearly interpolated to obtain a query point’s encoding. The uniform coarse
occupancy volume losses and the structure-aware 3D U-Nets architecture used to supervise and
generate the latent voxel features, respectively, both help to inject global shape topology robustness
/ regularities into the voxel features. Essentially, the latent voxel features serve as a coarse human
shape proxy to constrain the reconstruction. Figure[I|summarises our proposed adaptation (see upper
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Figure 1: Pipeline. Our method extracts latent 3D voxel and 2D pixel features from a single-view
color image. The extracted features then are used to compose geometry and pixel aligned features wrt.
each query point P for occupancy estimation through an implicit surface function. At training time,
we enforce losses on both the coarse occupancy volume and the estimated query point occupancy
values. Note that the blue color 3D convolution decoder for generating the coarse occupancy volume
is only needed at training time to supervise the latent voxel features.

branch) to reconstruct a clothed human mesh from a single-view image input using a geometry and
pixel aligned implicit surface function. Our three technical contributions are:

1. Geometry and pixel aligned features. We fuse geometry (3D, upper branch) and pixel (2D,
lower branch) aligned features to resolve local feature ambiguity. For instance, query points lying
upon similar camera rays but on the front or back side of an object are reprojected to similar pixel
coordinates resulting in similar interpolated 2D features. Incorporating geometry-aligned shape
features derived from our latent voxel feature representation resolves this ambiguity, leading to
clothed human mesh reconstructions with rich surface details.

2. Global shape proxy. We leverage the same latent voxel feature representation as a coarse human
shape proxy to regularise reconstruction and encourage plausible global human shapes and poses;
crucial given the requirement to hallucinate the unobserved rear of the imaged object. This improves
the plausibility of the estimated character shape and pose with accurate ground truth 3D alignment,
and reduces mesh artifacts like distorted hands and feet.

3. Scale of Evaluation. We extend the evaluation of deep implicit surface methods to the DeepHuman
dataset [38]: 5436 training meshes, 1359 test meshes — 10 times larger then the private commercial
dataset used in PIFu. The leading results on this dataset are generated by voxel and parametric mesh
representations based methods. No deep implicit function method has been benchmarked on it before.

We show that Geo-PIFu exceeds the state of the art deep implicit function method PIFu [29]] by 42.7%
reduction in Chamfer and Point-to-Surface Distances, and 19.4% reduction in normal estimation
errors, corresponding to qualitative improvements in both local surface details and global mesh
topology regularities.

2 Related Work

Our method is most directly related to the use of deep implicit function representations for single-view
mesh reconstruction. For context, we will also briefly review on explicit shape representations.

2.1 Implicit Surface Function

Occupancy Networks [21]], DeepSDF [23]], LIF [3]] and DIST [18]] proposed to use global representa-
tions of a single-view image input to learn deep implicit surface functions for mesh reconstruction.
They demonstrated state-of-the-art single-view mesh reconstruction results on the ShapeNet dataset
[2] of rigid objects with mostly flat surfaces. However, the global representation based implicit func-
tion does not have dedicated query point encodings, and thus lacks modeling power for articulated
parts and fine-scale surface details. This motivates later works of PIFu [29] and DISN [36]. They



utilize pixel-aligned 2D local features to encode each query point when estimating its occupancy
value. The alignment is based on (weak) perspective projection from query points to the image plane,
followed by bilinear image feature interpolation. PIFu for the first time demonstrated high-quality
single-view mesh reconstruction for clothed human with rich surface details, such as clothes wrinkles.
However, PIFu still suffers from the feature ambiguity problem and lacks global shape robustness.
Another two PIFu variations are PIFuHD [30] and ARCH [10]]. PIFuHD leverages higher resolution
input then PIFu through patch-based feature extraction to accommodate GPU memory constraints.
ARCH combines parametric human meshes (e.g. SMPL [19]) with implicit surface functions in
order to assign skinning weights for the reconstructed mesh and enable animations. Both methods
require more input / annotations (e.g. 2x higher resolution color images, SMPL registrations) than
PIFu. Note that PIFuHD, ARCH and Geo-PIFu focus on different aspects and are complementary. If
provided with those additional data, our method can also integrate their techniques to further improve
the performance. Another related work that also utilizes latent voxel features for implicit function
learning is IF-Net [4], but its problem setting is different from ours. While IF-Net takes partial or
noisy 3D voxels as input, (Geo)-PIFu(HD) and ARCH only utilize a single-view color image. Thus,
IF-Net has access to "free" 3D shape cues of the human subject. But Geo-PIFu must achieve an
ill-posed 2D to 3D learning problem. Meanwhile, Geo-PIFu needs to factorize out pixel domain
nuisances (e.g. colors, lighting) in order to robustly recover the underlying dense and continuous
occupancy fields.

2.2 Explicit Shape Models

Explicit shape models can be classified by the type of 3D shape representation that they use: voxel,
point cloud or (parametric) mesh [33} (12} [17,15, 137,18} 16} 134} 28}, |19} [13} [38} |1]. Here we only review
some representative works on single-view clothed human body modeling and reconstruction. BodyNet
[33]] leverages intermediate tasks (e.g. segmentation, 2D/3D skeletons) and estimates low-resolution
body voxel grids. A similar work to BodyNet is VRN [[12]], but it directly estimates occupancy voxels
without solving any intermediate task. Voxel-based methods usually are constrained by low resolution
and therefore struggle to recover shape details. Driven by data efficiency and topology modeling
flexibility of point clouds, several methods [[17, 15, 137] propose to estimate point coordinates from
the input image. The drawback is that generating a mesh with fine-scale surface details by Poisson
reconstruction [14]] requires a huge number of point estimations. In order to directly generate meshes,
Atlas-Net [6] uses deep networks to deform and stitch back multiple flat-shape 2D grids. However,
the reconstructed meshes are not water-tight because of the stitching hole artifacts. Pixel2Mesh [34]
generates water-tight meshes by progressively deforming a sphere template. But the empirical results
show that mesh-based methods produce overly smooth surfaces with limited surface details due to
shape flexibility constraints of the template. Parametric shape models like SMPL [19], BlendSCAPE
[9], etc are also useful for directly generating human meshes. For example, [[13} [26} [16} [15] 25]]
estimate or fit the shape and pose coefficients of a SMPL model from the input image. Note that these
parametric human body models are usually designed to be “naked", ignoring clothes shapes. Recently,
methods that leverage hybrid explicit models are also proposed to combine the benefits of different
shape representations. DeepHuman [38] and Tex2Shape [1] combine SMPL with methods of voxel
refinement and mesh deformation, respectively, for single-view clothed human mesh reconstruction.
One issue of using parametric body shapes is non-trivial data annotation (e.g. registering SMPL
models with ground-truth clothed human meshes), which is not needed in deep implicit surface
function-based methods. Another problem is propagation error: wrong SMPL estimation can cause
additional errors in its afterward steps of local surface refinement.

3 Method

Continuous occupancy fields map each 3D point inside it to a positive or negative occupancy value
dependent on the point is inside the target mesh or not. We encode surface as the occupied /
unoccupied space decision boundary of continuous occupancy fields and apply the Marching Cube
algorithm [20] to recover human meshes. Occupancy values are denoted by ¢ € R. Points inside a
mesh have o > 0 and outside are o < 0. Thus, the underlying surface can be determined at o := 0.
In this work the goal is to learn a deep implicit function f(-) that takes a single-view color image
I: D C R? — R? and coordinates of any query point P € R? as input, and outputs the occupancy
value o of the query point: f | (I, P) — o. The training data for learning the implicit surface function



consists of (image, query point occupancy) pairs of {I, o(P)}. More specifically, we densely sample
training query points on the mesh and generate additional samples by perturbing them with Gaussian
noise. In the following sections, we introduce the formulation of our deep implicit function in Section
[3.T)and explain our training losses in Section[3.2] Implementation details are provided in Section[3.3]

3.1 Geo-PIFu

As shown in Figure[I} we propose to encode each query point P using fused geometry (3D, upper
branch) and pixel (2D, lower branch) aligned features. Our method, Geo-PIFu, can be formulated as:

fo(T (€ (1), P), B(4u (1), m(P)), Z(P))) := o (D

The implicit surface function is denoted by fy(-) and implemented as a multi-layer perceptron
with weights . For each query point P, inputs to the implicit function for occupancy o (P) esti-
mation include three parts: geometry-aligned 3D features T (&, (1), P), pixel-aligned 2D features
B(1,(I),m(P)), and the depth Z(P) € R of P. They compose the aligned features wrr. P

3.1.1 Geometry-aligned Features

First we explain geometry-aligned features 7 (£, (1), P) in Equation (I). Here &,(-) are 3D U-Nets
[L1] that lift the input image I into 3D voxels of latent features. The networks are parameterized
by weights w. To extract geometry-aligned features from &, (I) wrt. a query point P, we conduct
multi-scale trilinear interpolation 7 based on the xyz coordinates of P. This interpolation scheme
is inspired by DeepVoxels [31,[7] and IF-Net [4]. It is important to notice that these voxel features
naturally align with the human mesh in 3D space and thus can be trilinearly interpolated to obtain a
query point’s encoding. Specifically, we trilinearly interpolate and concatenate features from a point
set €2 determined around P.

Q:={P+n;|n;ed- {(0,0,0)7,(1,00)7,(0,1,07,(0,0,1)"..} } 2)

Here n; € R? is a translation vector defined along the axes of a Cartesian coordinate with step
length d € R. For convenience, we will use trilinear interpolation to indicate our multi-scale feature
interpolation scheme 7 for the rest of the paper. Not like global image features and pixel-aligned
features, as discussed in Section[I] geometry-aligned features provide dedicated representations for
query points that directly capture their local shape patterns and tackle the feature ambiguity problem.
Since computation cost of latent voxel features learning is usually a concerned issue, we emphasize
that our latent voxel features are of low resolution (C-8, D-32, H-48, W-32), in total 393216. In
comparison, the latent pixel features resolution is (C-256, H-128, W-128), in total 4194304. More
discussion on the model parameter numbers is provided in the experiment section.

3.1.2 Pixel-aligned Features

Pixel-aligned features are denoted as B(¢,,(I), 7(P)) in Equation (1), where 7 represents (weak)
perspective camera projection from the query point P to the image plane of I. Then pixel-aligned
features can be extracted from the latent pixel features 1,,(I) by bilinear interpolation B at the
projected pixel coordinate 7(P). Image features mapping function ), (-) is implemented as 2D
U-Nets with weights . While geometry-aligned features, by designs of network architectures and
losses, are mainly informed of coarse human shapes, pixel-aligned features focus on extracting
high-frequency shape information from the single-view input, such as clothes wrinkles. In Section
4.2 we conduct ablation studies on single-view clothed human mesh reconstruction using individual
type of features. The results empirically demonstrated these claimed attributes of geometry and pixel
aligned features.

3.2 Training Losses

Next we explain the losses used in training the geometry and pixel aligned features, as well as the
deep implicit surface function.
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Figure 2: Left: the DeepHuman dataset contains various clothes and poses. Right: the dataset used in
PIFu consists of mostly upstanding poses.

3.2.1 Coarse occupancy volume loss

To learn latent voxel features &,,(I) € R™*#1 %5253 that are informed of coarse human shapes, we
use a 3D convolution decoder and a sigmoid function to estimate a low-resolution occupancy volume

V(I) € RI*dxhxw e yse extended cross-entropy losses [11]] for training.

_ﬁ D AV log VA 4 (1 =) (1= V*) log(1 — V4F), with V() = v,(6u(I)) (3)
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The ground truth coarse occupancy fields V' € R1*4*hx% are voxelized from the corresponding
high-resolution clothed human mesh. (i, j.k) are indices for the (depth, height, width) axes, and  is
a weight for balancing losses of grids inside / outside the mesh. v, (-) represents the 3D convolution
decoder and the sigmoid function used for decoding the latent voxel features &,,(I). As shown in
FigureT] this 3D convolution decoder is only needed at training time to provide supervision for the
latent voxel features. At inference time, we just maintain the latent voxel features for trilinearly
interpolating geometry-aligned 3D features. Compared with learning dense continuous occupancy
fields, this coarse occupancy volume estimation task is easier to achieve. The learned voxel features
are robust at estimating shapes and poses for the visible side and also hallucinating plausible shapes
and poses for the self-occluded invisible side. This is critical when the human has complex poses
or large self-occlusion. Meanwhile, using structure-aware 3D U-Nets to generate these voxel-shape
features also helps inject shape regularities into the learned latent voxel features.

3.2.2 High-resolution query point loss

The deep implicit surface function is learned by query point sampling based sparse training. It is
difficult to directly estimate the full spectrum of dense continuous occupancy fields, and therefore, at
each training step, we use a group of sparsely sampled query points (e.g. 5000 in PIFu and Geo-PIFu)
to compute occupancy losses. As shown in Equation () as well as Figure[I] for each query point
P the deep implicit function utilizes geometry and pixel aligned features to estimate its occupancy
value 6. We use mean square losses in training.

Q
1 N
Lquery = Q Z(Uq - Uq)2 4)
q=1

The number of sampled query points at each training step is () and the index is q. The ground-truth
occupancy value of a query point P is o. The total losses used in Geo-PIFu are L = Lgje, + Lgyery-
Following [22}27] we adopt a staged training scheme of the coarse occupancy volume loss and the
high-resolution query point loss. While L, is designed to solve a discretized coarse human shape
estimation task, Lqyery utilizes sparse query samples with continuous xyz coordinates and learns
high-resolution continuous occupancy fields of clothed human meshes. Experiments in Section[4.2]
demonstrated that the query point loss is critical for learning high-frequency shape information from
the input image, and enables the deep implicit surface function to reconstruct sharp surface details.
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Figure 3: Single-view clothed human mesh reconstruction. Our results have less shape artifacts and
distortions than PIFu. Besides improved global regularities and better alignment with ground truth,
our meshes also contain more accurate and clear local surface details than DeepHuman and PIFu.
DeepHuman can generate physically plausible topology benefiting from the voxelized SMPL model,
but is incapable of capturing rich surface details due to limited voxel resolutions. Meanwhile, PIFu
lacks global robustness when reconstructing meshes of complex poses and large self-occlusion.

3.3 Implementation Details

We use PyTorch [24] with RMSprop optimizer [32] and learning rate 1e — 3 for both losses. We stop
the 3D decoder training after 30 epochs and the implicit function training after 45 epochs using AWS
V100-6GPU. The learning rate is reduced by a factor of 10 at the 8th, 23th and 40th epochs. We
use a batch of 30 and 36 single-view images, respectively. For each single-view image, we sample
@ = 5000 query points to compute Lgyery. The step length d for multi-scale tri-linear interpolation
is 0.0722 and we stop collecting features at 2x length. The balancing weight v of L, is 0.7.

4 Experiments

We compare Geo-PIFu against other competing methods on single-view clothed human mesh re-
construction in Section[@.1} To understand how do the learned 3D-geometry and 2D-pixel aligned
features impact human mesh reconstruction, we also show ablation studies on individual type of
features and different feature fusion architectures in Section Failure cases and effect of 3D
generative adversarial network (3D-GAN) training are discussed in Section[d.3] More qualitative
results and network architecture details can be found in supplementary.

Dataset We use the DeepHuman dataset [38]). It contains 5436 training and 1359 test human meshes
of various clothes and poses. In comparison, the dataset used by PIFu only has 442 training and
54 test meshes of mostly upstanding poses. Mesh examples are shown in Figure. [2] More importantly,
our dataset is public and the meshes are reconstructed from cheap RGB-D sensors, while the PIFu
dataset is private commercial data well-polished by artists. This means that our results can all be
reproduced and the mesh collection procedures can be easily expanded to other domain-specific
scenarios to obtain more human meshes (e.g. basketball players). Another critical difference is
that we support free camera rotation when rendering the training and test images, as shown in the
input column of Figure 3] In contrast, PIFu images are all rendered with zero elevation and in-plane
rotation, namely the camera is always facing upright towards the mesh. In brief, our dataset is
public and has more diversities in human subjects, poses, clothes and rendering angles. Therefore,
our dataset is more challenging to learn and less likely to cause over-fitting on upstanding human
poses and horizontal camera angles than the dataset used in PIFu. The downside of the DeepHuman
dataset is that it lacks high quality texture maps for photo-realistic rendering, which might hurt model
generalization on in-the-wild natural images.



Table 1: Benchmarks. These methods are all trained with the same DeepHuman dataset for fair
comparisons. To evaluate global topology accuracy of meshes, we report CD (x 10000) and PSD
(x10000) between the reconstructed human mesh and the ground truth mesh. We also compute
Cosine and L2 distances for the input view normals to measure fine-scale surface details, such as
clothes wrinkles. Small values indicate good performance. Our approach outperforms the competing
methods, demonstrating the global / local advantages of utilizing geometry and pixel aligned features
for deep implicit surface function learning.

Mesh Normal
CD PSD Cosine L2
DeepHuman 11.928 11.246 0.2088 0.4647
PIFu 2.604 4.026 0.0914  0.3009
Ours 1.742 1.922 0.0682 0.2603

Table 2: Benchmarks. These two models are evaluated using pre-trained weights provided by their
authors. Parameter size of Geo-PIFu is 30616954 (12 times smaller than PIFuHD).

. Mesh Normal
Method | Parameter Size D PSD  Cosine %
PIFu 15604738 10.571 9.285 0.1422 0.4141
PIFuHD 387049625 9.489 9.349 0.1228 0.3776

Metrics To evaluate reconstructed human meshes, we compute Chamfer Distance (CD) and Point to
Surface Distance (PSD) between the reconstructed mesh and the ground truth mesh. While CD and
PSD focus more on measuring the global quality of the mesh topology, we also compute Cosine and
L2 distances upon the mesh normals to evaluate local surface details, such as clothes wrinkles. These
metrics are also adopted in PIFu for human mesh reconstruction evaluation.

Competing Methods Recently DeepHuman [38]], PIFu [29] and PIFuHD [30] have demonstrated
SOTA results on single-view clothed human mesh reconstruction.

1) DeepHuman integrates the benefits of parametric mesh models and voxels. It first estimates and
voxelizes a SMPL model [19] from a color image, and then refines the voxels through 3D U-Nets. To
improve surface reconstruction details, they further estimate a normal map from the projected voxels
and use the estimated normals to update the human mesh. DeepHuman shows large improvement
over both parametric shapes and voxel representations. Therefore we compare Geo-PIFu against it.
Note that this is not a fair comparison, because DeepHuman requires registered SMPL parametric
meshes as additional data annotation.

2) PIFu leverages pixel-aligned image features to encode each query point for implicit surface
function-based continuous occupancy fields learning. This method is most related to our work since
we both use implicit surface function for 3D shape representation. Note that PIFu and Geo-PIFu have
the same requirement of color image inputs and ground-truth training meshes.

3) PIFuHD is built upon PIFu with higher resolution inputs than all other competing methods and
than our method. It also uses offline estimated front/back normal maps to further augment input color
images. These additional modules make PIFuHD a parameter-heavy model (see Table [2).

4.1 Single-view Reconstruction Comparisons with State-of-the-art

Global Topology Results of CD / PSD between the recovered human mesh and the ground truth
mesh are provided in the left column of Table[I] As explained in the metrics sections, these two
metrics focus more on measuring the global quality of the mesh topology. Our results surpass the
second best method PIFu by 42.7% relative error reduction on average. Such improvement indicates
that human meshes recovered by our method have better global robustness / regularities and align
better with the ground truth mesh. These quantitative findings as well as analysis have also been
visually proved in Figure[3] Our mesh reconstructions have fewer topology artifacts and distortions
(e.g. arms, feet) than PIFu, and align better with the ground truth mesh than DeepHuman. Moreover,
we include results of pre-trained models released by PIFu and PIFuHD in Table[2] because the latter
has not yet released its training scripts. Under the same training data, PIFuHD achieves lower relative
improvement over PIFu than Geo-PIFu. Note that the two ideas of PIFuHD (using sliding windows
to ingest high resolution images, and offline estimated front/back normal maps to further augment
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Figure 4: Left to right: mesh reconstruction results of exp-a, b, e in Table (3| This comparison shows
that mesh reconstructions using only the 3D geometry features have better global topology regularities
and ground truth alignment, but contain fewer local surface details than meshes reconstructed from
only the 2D pixel features. The best global / local performances are achieved when two types of
representations are jointly used for deep implicit surface function learning.

Table 3: Ablation studies. To analyze impact of the learned latent voxel, pixel features, we report
human mesh reconstruction results that use individual type of features and the fused features. Small
values indicate good performance. Exp-a, b evaluate meshes reconstructed from solely 3D geometry
or 2D pixel features, respectively. Exp-c, d, e are results based on different feature fusion architectures
for the geometry and pixel aligned features. Note that exp-b is the same as PIFu in Table [T} just
named differently. Because essentially PIFu is a degenerate case of our method which only extracts
pixel-aligned representations when learning implicit surface functions. Our results in the benchmarks
are generated by the exp-e configuration. More analysis is in Section@

Mesh Normal
CD PSD Cosine L2
a. Ours-geometry 2293 2.629 0.0864 0.3164
b. Ours-pixel 2.604  4.026 0.0914  0.3009
c. Ours-late-3D 1.753  1.930 0.0675 0.2598
d. Ours-late-both 1.677 1.868 0.0764 0.2767
e. Ours-early-3D 1.742 1922 0.0682 0.2603

input color images) are both add-on modules wrt. (Geo)-PIFu. Given high resolution images and
offline estimated normal maps, one might combine PIFuHD with Geo-PIFu for further improved
local surface details and global topology robustness. But this is out of the scope of our work.

Local Details Besides improved global topology, our mesh reconstruction results contain more
local surface details such as clothes wrinkles. The ability of capturing fine-scale surface details
is quantitatively measured in the right column of Table [} We compute Cosine and L2 distances
between the input view normals of the reconstructed mesh and those of the ground truth mesh. Our
approach improves over the second best method PIFu by 19.4% relative error reduction on average.
To further explain the improved global and local performances of our method, we conduct ablation
studies on individual type of features and different feature fusion architectures in the next section.

4.2 Ablation Studies

Geometry vs. Pixel Aligned Features In our method, the implicit function utilizes both the
geometry-aligned 3D features and the pixel-aligned 2D features to compose query point encod-
ings for occupancy estimation. To understand the advantages of our method, we separately show
the impact of these two different types of features on clothed human mesh reconstruction. Results
are reported in exp-a, b of Table 3] Ours-geometry and ours-pixel reconstruct human meshes using
solely the 3D geometry or 2D pixel features, respectively. Exp-a shows significant improvement over
exp-b in PSD, indicating that meshes reconstructed from 3D geometry features have better global
topology robustness / regularities. This is attributed to global structure-aware 3D U-Net architectures
and uniform coarse occupancy volume losses used to generate and supervise the latent voxel features.
Visual comparisons in Figure @] also verified this argument. However, meshes of exp-a are overly
smooth lacking local surface details. This means that 2D pixel features focus more on learning
high-frequency shape information such as clothes wrinkles. Moreover, by comparing exp-a, b with
exp-e in Table [3|and Figured] we observe that the best global and local performances are achieved
only when 3D geometry and 2D pixel features are fused. Namely, the fused features contain the
richest shape information wrt. each query point for implicit surface function-based dense, continuous
occupancy fields learning.
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Figure 5: Typical failure cases. Plot-a is our method utilizing the early fusion based geometry and
pixel aligned features. Plot-b, c are meshes reconstructed from solely the latent pixel or voxel features,
respectively. Plot-d is similar to plot-c, but uses latent voxel representations trained jointly with
coarse occupancy volume losses and 3D-GAN losses. When the latent pixel and voxel features,
separately, both lead to human meshes with severe artifacts, the fused features struggle to correct all
of these shape distortions. Further analysis on plot-d is presented in Section@

Feature Fusion Architectures Knowing that the integrated representations lead to the best mesh
reconstruction performance, we now further explore different 3D / 2D feature fusion architectures.
Results are reported in exp-c, d, e of Table 3] Exp-c Ours-late-3D applies several fully connected
(FC) layers upon the geometry-aligned 3D features before concatenating them with the pixel-aligned
2D features. Exp-d Ours-late-both applies separate FC layers on both the geometry and pixel aligned
features before concatenating them. Exp-e Ours-early-3D directly concatenate the 3D / 2D features,
as shown in Figurem Comparisons on CD, PSD, Cosine and L2 normal distances mean that the mesh
reconstruction results are not quite sensitive to the fusion architectures. All these different feature
fusion methods demonstrate clear improvement over exp-a, b which only use a single type of features
for human mesh reconstruction. In our main benchmark results we use the configuration of exp-e for
its balanced mesh and normal reconstruction performances and its simple implementation.

4.3 Failure Cases and Adversarial Training

Typical failure cases are shown in Figure[5] Plot-a is our method. Plot-b, ¢ are meshes reconstructed
from solely the 2D pixel features or the 3D geometry features, respectively. We have demonstrated in
Figure [] and Table [3|that mesh topology artifacts and wrong poses can be corrected leveraging global
shape regularities from the geometry-aligned 3D features. However, in cases where 2D, 3D features
(i.e. plot-b, c) both fail to generate correct meshes, the fused features (i.e. plot-a) will still lead to
failures. To address this problem, we turn to 3D generative adversarial networks (3D-GAN). The
implicit surface function training is based on sparse query points sampling and thus non-trivial to
enforce 3D-GAN supervision directly on the whole continuous occupancy fields. Fortunately, the 3D
U-Net based latent voxel features are trained with coarse occupancy volume losses and naturally fit
with voxel-based 3D-GAN losses. Human meshes reconstructed using only the 3D geometry features
learned with both coarse occupancy volume losses and 3D-GAN losses are shown in plot-d of Figure
|§l Its performances on the DeepHuman benchmark are: CD (2.464), PSD (3.372), Cosine (0.1298),
L2 (0.4148). Comparing with plot-c, we do observe that "lumps" before the body’s belly no longer
exist but the mesh exhibits a new problem of having "honeycomb" structures. This phenomenon is
also observed in the voxel-based 3D-GAN paper [35]. Moreover, when we fuse such "honeycomb"
3D geometry features with the 2D pixel features to construct aligned query point features, the implicit
surface function training fails to converge. We plan to have more studies on this issue as future work.

5 Conclusion

We propose to interpolate and fuse geometry and pixel aligned query point features for deep implicit
surface function-based single-view clothed human mesh reconstruction. Our method of constructing
query point encodings provides dedicated representation for each 3D point that captures its local
shape patterns and resolves the feature ambiguity problem. Moreover, the latent voxel features, which
we generate by structure-aware 3D U-Nets and supervise with coarse occupancy volume losses, help
to regularize the clothed human mesh reconstructions with reduced shape and pose artifacts as well
as distortions. The large-scale benchmark (10x larger then PIFu) and ablation studies demonstrate
improved global and local performances of Geo-PIFu than the competing methods. We also discuss
typical failure cases and provide some interesting preliminary results on 3D-GAN training to guide
future work directions.



Broader Impact

Who may benefit from this research? The VR / AR software developers and 3D graphics designers
may benefit from our research. The proposed technique generates single-view clothed human mesh
reconstructions with improved global topology regularities and local surface details. Our method
can benefit various VR / AR applications that involve reconstructing 3D virtual human avatars for
customized user experience, such as conference systems and role-playing games. Moreover, being
able to efficiently reconstruct 3D meshes from single-view images is useful for graphics rendering
and 3D designs.

Who may be put at disadvantage from this research? In the long run, some entry-level graphics
artists and designers might be affected. Generally speaking, the 3D gaming and graphics design
industries are moving towards automatic content generation techniques. These techniques are not
meant to replace highly skilled human workers, but to help improve their productivity at work.

What are the consequences of failure of the system? Failed human mesh reconstructions might
bring unpleasant user experience. Typical failure cases as well as possible solutions have also been
discussed in the main paper.

Whether the task/method leverages biases in the data? There might be some biases on human
poses and clothes due to long-tail cases. However, our dataset is already 10x larger than the one used
in the competing methods. More importantly, our mesh collection procedures can be easily expanded
to other domain-specific scenarios to obtain more human meshes with different shapes, poses and
clothes to compensate for long-tail cases.
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