
Appendices to “GNNGUARD: Defending Graph
Neural Networks against Adversarial Attacks”

Xiang Zhang
Harvard University

xiang_zhang@hms.harvard.edu

Marinka Zitnik
Harvard University

marinka@hms.harvard.edu

Appendix A Defense Performance Against Influence Targeted Attacks

Results are shown in Table 6. We find that the proposed GNNGUARD achieves the best defensive
performance against influence targeted attack across five GNN models and four datasets. In particular,
GNNGUARD outperforms state-of-the-art defense models by 8.77% on average. Furthermore,
compared to the case where the GNN is attacked without any defense, GNNGUARD brings a
significant accuracy improvement of 22.6% on average. Remarkably, results show that even most
recently published GNNs (e.g., GraphSAINT [23]) are sensitive to adversarial perturbations of the
graph structure (cf. “Attack” vs. “No Attack” columns in Table 6), yet GNNGUARD can successfully
defend GNNs against influence targeted attacks and can restore their performance to levels comparable
to learning on clean, non-attacked graphs.

Table 6: Defense performance (multi-class classification accuracy) against influence targeted attacks.
Model Dataset No Attack Attack GNN-Jaccard RobustGCN GNN-SVD GNNGUARD

Cora 0.826 0.410 0.520 0.605 0.425 0.665
Citeseer 0.721 0.435 0.675 0.575 0.615 0.745
ogbn-arxiv 0.667 0.545 0.615 0.620 0.445 0.725GCN

DP 0.682 0.475 0.550 0.565 0.460 0.655
Cora 0.827 0.425 0.550 0.605 0.450 0.635
Citeseer 0.718 0.510 0.675 0.575 0.615 0.815
ogbn-arxiv 0.669 0.635 0.525 0.620 0.505 0.675GAT

DP 0.714 0.470 0.540 0.565 0.570 0.645
Cora 0.831 0.525 0.635 0.605 0.615 0.775
Citeseer 0.725 0.480 0.675 0.575 0.630 0.845
ogbn-arxiv 0.661 0.570 0.605 0.620 0.525 0.710GIN

DP 0.719 0.505 0.585 0.565 0.605 0.695
Cora 0.834 0.525 0.665 0.605 0.625 0.755
Citeseer 0.724 0.485 0.675 0.575 0.610 0.865
ogbn-arxiv 0.678 0.545 0.580 0.620 0.475 0.720JK-Net

DP 0.726 0.495 0.635 0.565 0.590 0.685
Cora 0.821 0.405 0.495 0.610 0.395 0.645
Citeseer 0.716 0.460 0.665 0.590 0.605 0.735
ogbn-arxiv 0.683 0.525 0.595 0.615 0.570 0.705

Graph
SAINT

DP 0.739 0.435 0.615 0.645 0.575 0.675

1



Appendix B Defense Performance Against Non-Targeted Attacks

Results are shown in Table 7. To evaluate how harmful non-targeted attacks can be for GNNs, we first
give results without attack and under attack (without defense), i.e., “Attack” vs. “No Attack” columns
in Table 7. We also show defense performance of GNNGUARD relative to state-of-the-art GNN
defense techniques. First, we find that non-targeted attacks can have a considerable negative impact
on the performance of the GNNs. The accuracy of even the strongest GNN is reduced by 18.7% on
average. In addition, results show that our GNNGUARD outperforms baselines in most experiments
and improves upon baselines considerably. Experiments indicate the proposed GNN defender can
successfully mitigate negative impacts brought forward by non-targeted attacks on graphs.

Table 7: Defense performance (multi-class classification accuracy) against non-targeted attacks.
Model Dataset No Attack Attack GNN-Jaccard RobustGCN GNN-SVD GNNGUARD

Cora 0.826 0.578 0.684 0.571 0.678 0.714
Citeseer 0.721 0.601 0.646 0.583 0.668 0.681
ogbn-arxiv 0.667 0.410 0.409 0.436 0.413 0.444GCN

DP 0.682 0.487 0.513 0.528 0.493 0.539
Cora 0.827 0.566 0.691 0.571 0.681 0.718
Citeseer 0.718 0.676 0.667 0.583 0.680 0.699
ogbn-arxiv 0.669 0.420 0.428 0.436 0.433 0.432GAT

DP 0.714 0.519 0.548 0.528 0.534 0.566
Cora 0.831 0.588 0.702 0.571 0.692 0.722
Citeseer 0.725 0.565 0.638 0.583 0.615 0.711
ogbn-arxiv 0.661 0.424 0.459 0.436 0.459 0.486GIN

DP 0.719 0.537 0.559 0.528 0.513 0.571
Cora 0.834 0.615 0.726 0.571 0.683 0.713
Citeseer 0.724 0.574 0.647 0.583 0.679 0.698
ogbn-arxiv 0.678 0.433 0.419 0.436 0.443 0.457JK-Net

DP 0.726 0.486 0.537 0.528 0.541 0.587
Cora 0.821 0.657 0.617 0.659 0.647 0.705
Citeseer 0.716 0.628 0.596 0.637 0.652 0.659
ogbn-arxiv 0.683 0.394 0.428 0.563 0.533 0.583

Graph
SAINT

DP 0.739 0.473 0.572 0.499 0.524 0.537

Appendix C Classification Accuracy on Clean (i.e., Non-attacked) Datasets
with and without GNNGUARD

Next, we want to investigate whether the GNN defender can harm the performance of the underlying
GNN if the defender is used on clean, non-attacked graphs. Note that this is a practically important
question, as in practice, users might not know a priori whether malicious agents have altered their
graph datasets. Because of that, it is essential that a successful GNN defender does not decrease the
predictive performance of the GNN in cases when GNNGUARD is turned on, but there is no attack.
From results in the main paper and Appendix A-B, we already know that GNNGUARD can defend
GNNs when they are attacked. Here, we show that GNNGUARD does not hinder GNNs even when
they are not attacked.

Results are shown in Table 8. We observe that GNNs, trained on clean datasets, yield approxi-
mately the same performance irrespective of whether a GNN integrates GNNGUARD defense or not.
These results suggest that the use of GNNGUARD does not reduce GNN’s expressive power or its
representation capacity when there are no adversarial attacks.

Appendix D Further Details on Datasets

GNNGUARD implementation as well as all datasets and the relevant data loaders are available at
https://github.com/mims-harvard/GNNGuard. We provide further dataset statistics in
Table 9.

2

https://github.com/mims-harvard/GNNGuard


Table 8: Classification accuracy on clean (i.e., non-attacked) datasets with and without GNNGUARD.

Cora-CLEAN Citeseer-CLEAN ogbn-arxiv-CLEAN DP-CLEAN
w/o w w/o w w/o w w/o w

GCN 0.826 0.817 0.721 0.716 0.667 0.683 0.682 0.681
GAT 0.827 0.829 0.718 0.719 0.669 0.674 0.714 0.717
GIN 0.831 0.832 0.725 0.726 0.661 0.671 0.719 0.716
JK-Net 0.834 0.829 0.724 0.727 0.678 0.682 0.726 0.731
GraphSAINT 0.821 0.819 0.716 0.721 0.683 0.669 0.739 0.727

Table 9: Dataset statistics. N , E , M , and C denote the number of nodes, edges, node feature dimensionality,
and the number of labels/classes, respectively.

Dataset N E M C Node features

Cora 2,485 5,069 1,433 7 Binary
Citeseer 2,110 3,668 3,703 6 Binary
ogbn-arxiv 31,971 71,669 128 40 Continuous
DP 22,552 342,353 73 519 Continuous
Synthesized 1,000 3,200 - 6 -

The new, Disease Pathway (DP) [51] dataset describes a system of interacting human proteins
whose malfunction collectively leads to a variety of diseases. Nodes in the network represent
human proteins and edges indicate protein-protein interactions. The raw dataset is available at
http://snap.stanford.edu/pathways. The task is to predict for every protein node what
diseases (i.e., labels/classes) that protein might cause. The dataset has 73-dimensional continuous
node features representing graphlet-orbit counts (i.e., the number of occurrences of higher-order
network motifs), which we normalize via z-scores. This is a multi label node classification dataset.
We select 10 most-common labels (diseases), reformulate the task as 10 independent balanced binary
classification problems and report average performance across multiple independent runs. The
first four datasets are homophily graphs while the last synthesized graph is heterophily graph with
structural equivalence. We randomly split the dataset into training (10%), validation (10%), and test
set (80%) following the experimental setup in [8].

Appendix E Further Details on Hyperparameter Setting

To select hyperparameters and GNN model architectures, we closely follow original authors’ guide-
lines and relevant papers on GNNs (GCN [3], GAT [21], GIN [7], JK-Net [22], and Graph-
SAINT [23]), baseline defense algorithms (GNN-Jaccard [17], RobustGCN [19], and GNN-
SVD [18]), and models for generating adversarial attacks (Nettack-Di [8], Nettack-In [8], and
Mettack [30]).

We use PyTorch DeepRobust package (https://github.com/DSE-MSU/DeepRobust) [58]
to implement adversarial attack models and baseline defense algorithms, and PyTorch Geometric
package (https://github.com/rusty1s/pytorch_geometric) to implement and train
GNN models. In all experiments, we set the number of epochs to 200 and use early stopping (we
stop training if validation accuracy does not increase for 10 consecutive epochs). We repeat every
experiment 5 times and report average performance across independent runs. We set P0 = 0.5,
K = 2, D2 = 16, and dropout rate as 0.5, optimize cross-entropy loss using Adam optimizer and
learning rate of 0.01. For other parameters, we follow the setup in [8].

3

http://snap.stanford.edu/pathways
https://github.com/DSE-MSU/DeepRobust
https://github.com/rusty1s/pytorch_geometric

