
A Additional Related Work

Analogous models of smoothed online learning have been explored in prior work. Rakhlin et al.
[2011] consider online learning when the adversary is constrained in several ways and work with
a notion of sequential Rademacher complexity for analyzing the regret. In particular, they study a
related notion of smoothed adversary and show that one can learn thresholds with regret of O(

√
T) in

presence of smoothed adversaries. Gupta and Roughgarden [2017] consider smoothed online learning
in the context online algorithm design. They show that while optimizing parameterized greedy
heuristics for Maximum Weight Independent Set imposes linear regret in the worst-case, in presence
of smoothing this problem can be learned with sublinear regret (as long they allow per-step runtime
that grows with T). Cohen-Addad and Kanade [2017] consider the same problem with an emphasis
on the per-step runtime being logarithmic in T . They show that piecewise constant functions over
the interval [0, 1] can be learned efficiently within regret of O(

√
T) against a non-adaptive smooth

adversary. Our work differs from these by upper bounding the regret using a combinatorial dimension
of the hypothesis class and demonstrating techniques that generalize to large class of problems in
presence of adaptive adversaries.

In another related work, Balcan et al. [2018] introduce a notion of dispersion in online optimization
(where the learner picks an instance and the adversary picks a function) that is a constraint on the
number of discontinuities in the adversarial sequence of functions. They show that online optimization
can be done efficiently under certain assumptions. Moreover, they show that sequences generated
by non-adaptive smooth adversaries in one dimension satisfy dispersion. In comparison, our main
results in online learning consider the more powerful adaptive adversaries.

Smoothed analysis is also used in a number of other online settings. In the setting of linear contextual
bandits, Kannan et al. [2018] use smoothed analysis to show that the greedy algorithm achieves
sublinear regret even though in the worst case it can have linear regret. Raghavan et al. [2018] work in
a Bayesian version of the same setting and achieve improved regret bounds for the greedy algorithm.
Since several algorithms are known to have sublinear regret in the linear contextual bandit setting
even in the worst-case, the main contribution of these papers is to show that the simple and practical
greedy algorithm has much better regret guarantees than in the worst-case. In comparison, we work
with a setting where no algorithm can achieve sublinear regret in the worst-case.

Smoothed analysis has also been considered in the context of differential privacy. Hardt and Rothblum
[2010] consider differential privacy in the interactive setting, where the queries arrive online. They
analyze a multiplicative weights based algorithm whose running time and error they show can be
vastly improved in the presence of smoothness. Some of our techniques for query answering and data
release are inspired by that line of work. Balcan et al. [2018] also differential privacy in presence of
dispersion and analyze the gaurantees of the exponential mechanism.

Generally, our work is also related to a line of work on online learning in presence of additional
assumptions resembling properties exhibited by real life data. Rakhlin and Sridharan [2013] consider
settings where additional information in terms of an estimator for future instances is available to
the learner. They achieve regret bounds that are in terms of the path length of these estimators and
can beat Ω(

√
T) if the estimators are accurate. Dekel et al. [2017] also considers the importance of

incorporating side information in the online learning framework and show that regrets of O(log(T))
in online linear optimization maybe possible when the learner knows a vector that is weakly correlated
with the future instances.

More broadly, our work is among a growing line of work on beyond the worst-case analysis of
algorithms [Roughgarden, 2020] that considers the design and analysis of algorithms on instances that
satisfy properties demonstrated by real-world applications. Examples of this in theoretical machine
learning mostly include improved runtime and approximation guarantees of numerous supervised
(e.g., [Kalai et al., 2009, Kalai and Teng, 2008, Awasthi et al., 2016, Diakonikolas et al., 2019]),
and unsupervised settings (e.g., [Bilu and Linial, 2012, Balcan et al., 2020, 2013, Arora et al., 2012,
Bhaskara et al., 2019, Vijayaraghavan et al., 2017, Makarychev et al., 2014, Ostrovsky et al., 2013,
Hardt and Roth, 2013]).

14

B Lack of Uniform Convergence with Adaptive Adversaries

The following example for showing lack of uniform convergence over adaptive sequences is due to
Haghtalab [2018] and is included here for completeness.

Let X = [0, 1] and G = {gb(x) = I(x ≥ b) | ∀b ∈ [0, 1]} be the set of one-dimensional thresholds.
Let the distribution of the noise ηi be the uniform distribution on (−1/4, 1/4). Let x1 = 1/2 and
x2 = x3 = · · · = xT = 1/4 if η1 ≤ 0 while x2 = x3 = · · · = xT = 3/4 otherwise. In this case, we
do not achieve concentration for any value of T , as

1

T

T∑
t=1

g0.5(xt + ηt) =

{
0 w.p. 1/2

1 w.p. 1/2
and E

[
1

T

T∑
t=1

g0.5(xt + ηt)

]
=

1

2
.

C Proofs from Section 3

C.1 Algorithm and its Running Time

While our main focus is to provide sublinear regret bounds for smoothed online learning our analysis
also provides an algorithmic solution describe below.

Algorithm 1: Smooth Online Learning
Input: Instance Space X , Hypothesis ClassH, Smoothness parmeter σ, Time horizon T

Cover Construction: ComputeH′ ⊆ H that is a γ-cover ofH with respect to the uniform
distribution on X for γ = σ

4
√
T

.
for t = 1 . . . T do

Use a standard online learning algorithm, such as Hedge, onH′ to pick an ht, where the
history of the play is {sτ}τ<t and {hτ}τ<t

Receive st = (xt, yt) and suffer loss errst (ht).
end

The running time of the algorithm comprises of the initial construction of H′ and then running a
standard online learning algorithm onH′.
Standard online learning algorithms such as Hedge and FTPL take time polynomial in the size of the
cover since in standard implementations they maintain a state corresponding to each hypothesis in
H′. In our setting, the size of the cover is (41

√
T/σ)d.

The time required to construct a cover depends on the access we have to the class. One method is to
randomly sample a set S with m = O(VCDim (H)T/σ2) points from the domain uniformly and
construct all possible labelings on this set induced by the class. The number of labellings of S is
bounded by O(mVCDim(H)) by the Sauer–Shelah lemma. The cover is constructed by then finding
functions in the classH that are consistent with each of these labellings. This requires us to be able
to find an element in the class consistent with a given labeling, which can be done by a “consistency”
oracle. Naively, the above makes 2m calls to the consistency oracle, one for each possible labeling of
S.

The above analysis and runtime can be improved in several ways. First, H′ can be constructed in
time O(mVCDim(H)) rather than 2m. This can be done by constructing the cover in a hierarchical
fashion, where the root includes the unlabeled set S and at every level one additional instance in S
is labeled by +1 or −1. At each node, the consistency oracle will return a function h ∈ H that is
consistent with the labels so far or state that none exists. Nodes for which no consistent hypothesis so
far exists are pruned and will not expand in the next level. Since the total number of leaves is the
number of ways in which S can be labeled byH, i.e., O(md), the number of calls to the consistency
oracle is O(md) as well. The runtime of standard online learning algorithms can also be improved
significantly when an empirical risk minimization oracle is available to the learner, in which case
a runtime of O(

√
|H′|) for general classes [Hazan and Koren, 2016] or even polylog(|H′|)) for

structured classes [Dudík et al., 2017] is possible.

15

C.2 Proof of Lemma 3.2

At a high level, note that any f ∈ F has measure at most ε/σ on any (even adaptively chosen)
σ-smooth distribution. Therefore, for any fixed f , EDDD [

∑T
t=1 f(xt)] ≤ Tε/σ. To achieve this bound

over all f ∈ F , we take a union bound over all such functions.

More formally, for any s

exp

(
sE

DDD

[
max
f∈F

T∑
t=1

f(xt)

])
≤ E

DDD

[
exp

(
smax
f∈F

T∑
t=1

f(xt)

)]
(Jensen’s inequqlity)

≤ E
DDD

[
max
f∈F

exp

(
s

T∑
t=

f(xt)

)]
(Monotonicity of exp)

≤
∑
f∈F

E
DDD

[
exp

(
s

T∑
t=1

f(xt)

)]
. (3)

Consider a fixed f ∈ F . Note that even when the choice of a σ-smoothed distribution D depends
on earlier realizations of x1, . . . , xi−1, Prxi∼D[f(xi)] ≤ ε

σ . Therefore,
∑T
t=1 f(xt) for x ∼ DDD

is stochastically dominated by that of a binomial distribution Bin(T, ε/σ). Note that exp(·) is a
monotonically increasing functions and let p = ε/σ. We have

E
DDD

[
exp

(
s

T∑
t=1

f(xt)

)]
≤

T∑
v=0

exp(sv)

(
T

v

)
pv(1− p)T−v =

(
p(exp(s)− 1) + 1

)T
. (4)

Combining Equations (3) and (4) and noting that ln(1 + x) ≤ x, we have

E
DDD

[
max
f∈F

T∑
t=1

f(xt)

]
≤ ln(|F|) + Tp (exp(s)− 1)

s
.

Let s =
√

ln(|F|)/Tp. Note that because s ∈ (0, 1), we have exp(s) ≤ 1 + 2s. Hence, by replacing
s in the above inequality we have

E
DDD

[
max
f∈F

T∑
t=1

f(xt)

]
∈ O

(
Tp
√

ln(|F|)
)
.

C.3 Proof of Theorem 3.3

Consider any hypothesis class H′ and an algorithm that is no-regret with respect to any adaptive
adversary on hypotheses inH′. It is not hard to see that

E[REGRET(A,DDD)] = E
s∼DDD

[
T∑
t=1

errst(ht)−min
h∈H

errst(ht)

]

≤ E
s∼DDD

[
T∑
t=1

errst(ht)− min
h∈H′

T∑
t=1

errst(h)

]
+ E

s∼DDD

[
min
h′∈H′

T∑
t=1

errst(h
′)−min

T∑
t=1

errst(h)

]

≤ O
(√

T ln(|H′|)
)

+ E
DDD

[
max
h∈H

min
h′∈H′

T∑
t=1

1 (h(xt) 6= h′(xt))

]
. (5)

Therefore, it is sufficient to choose anH′ of moderate size such that every function h ∈ H has a proxy
h′ ∈ H′ even when these functions are evaluated on instances drawn from a non-iid and adaptive
sequence of smooth distributions. We next describe the choice ofH′.
Let H′ be a ε

2 -net of H with respect to the uniform distribution U , for an ε that we will determine
later. Note that any ε-bracket with respect to U is also an ε-net, so |H′| ≤ N[](H,U , ε/2).3 Let G be
the set of symmetric differences between h ∈ H and its closest proxy h′ ∈ H′, that is,

G = {gh,h′(x) = 1(h(x) 6= h′(x)) | ∀h ∈ H and h′ ∈ H′, s.t. E
U

[gh,h′(x)] ≤ ε/2}.

3Alternatively, we can bound |H′| ≤ (41/ε)VCDim(H) by Haussler [1995].

16

Note that because G is a subset of all the symmetric differences of two functions inH, by Theorem 3.7
its bracketing number is bounded as follows.

N[](G,U , ε/2) ≤
(
N[](H,U , ε/4)

)4
. (6)

Let B(G) be the set of upper ε/2-brackets of G with respect to U , i.e., for all g ∈ G, there is b ∈ B(G)
such that for all x ∈ X , g(x) ≤ b(x) and EU [b(x)− g(x)] ≤ ε/2. Note that

E
DDD

[
max
h∈H

min
h′∈H′

T∑
t=1

1 (h(xt) 6= h′(xt))

]
= E

DDD

[
max
g∈G

T∑
t=1

g(xt)

]
≤ E

DDD

[
max
b∈B(G)

T∑
t=1

b(xt)

]
,

where the last transition is by the fact that B(G) includes all upper brackets of G.

We now note that B(G) meets the conditions Lemma 3.2, namely because all g ∈ G have measure at
most ε/2 over U and B(G) is the set of ε/2-upper brackets of G, we have that EU [b(x)] ≤ ε for all
b ∈ B(G). Therefore, by Lemma 3.2 and Equation 6, we have

E
DDD

[
max
b∈B(G)

T∑
t=1

b(xt)

]
≤ O

(
T
ε

σ

√
ln
(
N[](H,U , ε/4)

))
Replacing this in Equation 5 we have that

E[REGRET(A,DDD)] ∈ O
(√

T ln
(
N[](H,U , ε/4)

)
+ T

ε

σ

√
ln
(
N[](H,U , ε/4)

))
Choosing ε = σ/

√
T proves the claim.

C.4 Proof of Theorem 3.6

Consider the map ψ : X → Rm that embeds G in m dimensions and letH be the class of halfspaces
in Rm. We want to bound the bracketing number of G by that of H. Let B(H) = {[hi, hi]}i be
an ε-bracketing for H with respect to a measure µ that we will specify later. Consider the set of
brackets B′ = {[hi ◦ ψ, hi ◦ ψ] | for all [hi, h

i] ∈ B(H)}. We first argue that B′ is a bracketing
for G with respect to ν. To see this, note that any g ∈ G can be expressed as g = h ◦ ψ for some
halfspace h. Considering the bracket [hi, h

i] 3 h in B(H). Note that hi ◦ ψ � h ◦ ψ � hi ◦ ψ and
thus g ∈ [hi ◦ ψ, hi ◦ ψ]. We next argue that these are ε-brackets under measure ν. Let µ be the
measure such that to sample z ∼ µ we first sample x ∼ ν and let z = ψ (x). Note that

Pr
x∼ν

[
hi (ψ (x)) 6= hi (ψ (x))

]
= Pr
z∼µ

[
hi (z) 6= hi (z)

]
≤ ε,

where the last transition is by the fact that B(H) is an ε-bracketing for H with respect to µ. This
concludes that B′ is an ε-bracketing for G with respect to ν. We complete the proof by using
Theorem 3.4 to bound |B′| = |B(H)| ≤ (m/ε)O(m).

C.5 Proof of Theorem 3.7

We first consider the case of k = 2 and then extend our argument to general k. Let ε′ = ε/k and let
B(F1) and B(F2) be ε′-bracketings for F1 and F2, respectively.

For F1 · F2, construct B = {[f` ∩ g`, fu ∩ gu] | for all [f`, f
u] ∈ B(F1) and [g`, g

u] ∈ B(F2)}.
First note for any f1 ∈ F1 and f2 ∈ F2, f1 ∩ f2 is included in one of these brackets. In par-
ticular, for brackets [f`, f

u] 3 f1 and [g`, g
u] 3 f2, we have that f` ∩ g` � f1 ∩ f2 � fu ∩ gu and

[f` ∩ g`, fu ∩ gu] ∈ B. Furthermore,

Pr
x∼µ

[(f`(x) ∩ g`(x)) 6= (fu(x) ∩ gu(x))] ≤ Pr
x∼µ

[(f`(x) ∩ g`(x)) 6= (f`(x) ∩ gu(x))]

+ Pr
x∼µ

[(f`(x) ∩ gu(x)) 6= (fu(x) ∩ gu(x))]

≤ 2ε′.

Therefore, B is a 2ε′-bracketing for F1 · F2 of size N[](F1, µ, ε
′) · N[](F2, µ, ε

′). Repeating this
inductively and using ε′ = ε/k, we get the claim for k classes.

17

Similarly, forF1+F2, constructB = {[f` ∪ g`, fu ∪ gu] | for all [f`, f
u] ∈ B(F1) and [g`, g

u] ∈ B(F2)}.
First note for any f1 ∈ F and f2 ∈ F1 and their respective brackets [f`, f

u] 3 f1 and [g`, g
u] 3 f2,

we have that f` ∪ g` � f1 ∪ f2 � fu ∪ gu and [f` ∪ g`, fu ∪ gu] ∈ B. Furthermore,

Pr
x∼µ

[(f`(x) ∪ g`(x)) 6= (fu(x) ∪ gu(x))] ≤ Pr
x∼µ

[f` (x) 6= fu (x)] + Pr
x∼µ

[g` (x) 6= gu (x)]

≤ 2ε′.

Therefore, B is a 2ε′-bracketing for F1 + F2 of size N[](F1, µ, ε
′) · N[](F2, µ, ε

′). Repeating this
inductively and using ε′ = ε/k, we get the claim for k classes.

As for the G, the set of all symmetric differences, note that f1∆f2 = (f1 ∪ f2) \ (f1 ∩ f2) =

(f1 ∪ f2) ∩ (f1 ∩ f2). Furthermore, for any class F , the class F = {f | ∀f ∈ F} has the same
bracketing number as F . Therefore, the bracketing number of G follows from using the bracketing
number F + F , F + F , and their intersection.

C.6 Proof of Corollary 3.8

The set of polynomial threshold functions in n variables and of degree d is embeddable as halfspaces
in O(nd) dimensions using the map

φ (x1, . . . , xn) =

(∏
i∈S

xi

)
S∈{1,...,n}≤d

,

which maps variables to all monomial of degree d. It can be seen that the number of monomials of
degree at most d in n variables is given by

(
n+d+1
d+1

)
which is approximately O

(
nd
)

when d is small.
Combining Theorem 3.6 and Theorem 3.4 completes the proof for polynomial threshold functions.

A k-polytope in Rn is an intersection of k-halfspaces in Rn. Combining Theorem 3.7 and Theorem 3.4
completes the proof.

D More Details on Bracketing Number and Sign Rank

Though bracketing numbers are a fundamental concept in statistics, until recently their connection
to VC theory was not well understood. Adams and Nobel [2010, 2012] show that for countable
(can be generalized to classes that are well approximated by countable classes) classes with finite
VC dimension the bracketing numbers with respect to any measure is finite (this establishes what is
known as a universal Gilvenko–Cantelli theorem under ergodic sampling.)

Theorem D.1 (Finite Bracketing Bounds for VC Classes). Let C be a countable class with finite VC
dimension. Then, N[](C, µ, ε) <∞.

Though the above theorem proves that ε-bracketing numbers are finite, their growth rate in 1/ε can be
arbitrarily large. See van Handel [2013] for some interesting examples of classes where the bracketing
numbers grow arbitrarily fast.

Another combinatorial quantity that can help bound the regret in presence of adaptive smooth
adversaries is sign rank.

Definition D.2 (Sign Rank). Let X be an instance space and let F be a class. We can denote the
class naturally as {−1, 1}-valued X × F matrix MF where the entry corresponding to (x, f) is
f (x). The sign rank of a class is the highest rank of a real matrix that agrees with a finite submatrix
of MF in sign. If this is unbounded, the class is said to have infinite sign rank.

The sign rank of a class captures the dimension in which the class can be embedded as thresholds.

Fact D.3 (Sign Rank Embedding, see e.g. Lokam [2009]). The sign rank of a class corresponds to
the smallest dimension d that the class can be embedded as thresholds.

Theorem 3.6 effectively says that classes with small sign rank have a slowly growing bracketing
numbers and thus have low regret in the smoothed online learning setting. Thus, the complexity of
smoothed online learning lies somewhere in between the sign rank and VC dimension. On the other

18

hand, it is known that even classes with small VC dimension can have arbitrarily large sign rank
[Alon et al., 1987, Ben-David et al., 2003, Alon et al., 2016]. An intermediate question is whether
classes with slow growing bracketing number also have good sign rank. It would be interesting to
characterize the complexity of smoothed online learning in terms of either the sign rank or bracketing
numbers.

E Query Answering

E.1 Smooth MWEM Algorithm

Algorithm 2: Smooth Multiplicative Weights Exponential Mechanism
Input: Universe X with |X | = N , Data set B with n records, Query set Q, Privacy parameters

ε and δ, Smoothness parameter σ.

Let D0 (x) = 1/N for all x ∈ X .
Cover Construction: Compute Q′ ⊆ Q that is a γ-cover of Q with respect to the uniform

distribution for γ = σ
2n .

for i = 1 . . . T do
Exponential Mechanism: Sample qi ∈ Q′ according to the exponential mechanism with

parameter ε/2T and score function

si(DB , q) = n |q (Di−1)− q(DB)| .

Laplace Mechanism: Let mi = qi (DB) + 1
nLap (2T/ε) .

Multiplicative Update: Update Di−1 using the rule

Di (x) ∝ Di−1 (x) exp

(
qi (x) (mi − qi(Di−1))

2

)
.

end
Let D = 1

T

∑T
i=1Di.

Output: For each q ∈ Q, answer with vq = q′
(
D
)

where q′ is the closest function in Q′ to q.

E.2 Proof of Theorem 4.2

In this section we prove the following theorem.

Theorem 4.2 (restated). For any (σ, 0)-smooth dataset B of size n, a query class Q with VC
dimension d, T ∈ N and ε > 0, Smooth Multiplicative Weights Exponential Mechanism is ε-
differentially private and with probability at least 1− 2T (γ/41)

VCDim(Q), calculates values vq for
all q ∈ Q such that

max
q∈Q
{|vq − q (DB)|} ≤ 1

n
+ 2

√
log (1/σ)

T
+

10Td log (2n/σ)

εn
.

Let us first provide a few useful lemmas.

Lemma E.1 (Cover under Smoothness). Let B be (σ, 0)-smooth data set. Let Q′ ⊆ Q be a γ-cover
ofQ under the uniform distribution. For a q ∈ Q, let q′ ∈ Q be such that Prx∼U [q (x) 6= q′ (x)] ≤ γ.
Then,

|q (DB)− q′ (DB)| ≤ 2γ

σ
.

Proof. From the (σ, 0)-smoothness of B, we get

|q (DB)− q′ (DB)| =
∣∣q (DB)− q′ (DB)∣∣

19

≤
∑
x∈D
|(q (x)− q′ (x))| DB(x)

≤
∑
x∈X

2I (q(x) 6= q′ (x))DB(x)

≤ 2

σ

∑
x∈X

I (q(x) 6= q′ (x))U (x)

≤ 2

σ
Pr
x∼U

[q (x) 6= q′ (x)]

≤ 2γ

σ

as required.

Define the potential function Ψi =
∑
x∈X DB(x) log

(
DB(x)/Di(x)

)
, whereDB is a corresponding

σ-smooth distribution that matches the query answers for the (σ, 0)-smooth data set B. Here we
make a few observations about the potential function.
Fact E.2. For all i ≤ T , we have Ψi ≥ 0. Furthermore, Ψ0 ≤ log 1

σ . As a result, Ψ0−ΨT ≤ log 1
σ .

Proof. The first claim follows from the positivity of the KL divergence. For the second one, recall
that from the σ-smoothness ofDB and the fact thatD1 is the uniform distribution, we haveDB (x) ≤
σ−1D0 (x) for all x ∈ X .

Ψ0 =
∑
x∈X
DB (x) log

DB (x)

D0 (x)
≤
∑
x∈X
DB (x) log

1

σ
= log

1

σ

as required.

Below is a direct adaptation of a result of Hardt et al. [2012] for bounding the change in the potential
functions.
Lemma E.3 (Lemma A.4 in Hardt et al. [2012]).

Ψi−1 −Ψi ≥
(
qi (Di−1)− qi(DB)

2

)2

−
(
mi − qi(DB)

2

)2

.

Lemma E.4 (Exponential and Laplace Mechanism guarantees). With probability at least 1− 2T/|Q′|,
we have

|qi (Di−1)− qi (DB)| ≥ max
q′∈Q′

{q′ (Di)− q′ (DB)} − 8T log |Q′|
εn

and

|mi − qi (DB)| ≤ 2T log |Q′|
εn

.

Here we recall again the error guarantees from Hardt et al. [2012].
Theorem E.5 (Hardt et al. [2012]). For any data set B of size n, a finite query class Q, T ∈ N
and ε > 0, MWEM is ε-differentially private and with probability at least 1 − 2T/|Q| produces a
distribution D over X such that

max
q∈Q

{∣∣q (D)− q (DB)
∣∣} ≤ 2

√
log |X |
T

+
10T log |Q|

εn
.

Proof of Theorem 4.2. Our proof closely resembles that of Theorem E.5 from Hardt et al. [2012].
Note that since B is (σ, 0)-smooth, we have a σ-smooth distribution DB with DB (x) ≤ 1

σN such
that for all q ∈ Q, q (DB) = q

(
DB
)
. Furthermore, note that we chose a cover Q′ ⊆ Q. Therefore,

q′ (DB) = q′
(
DB
)

holds for all q′ ∈ Q′ as well.

20

Note that since q′ (DB) = q′
(
DB
)

for all q′ ∈ Q′, we can replace this in the above equation. For the
sake of completeness, we sketch the rest of the proof. From Jensen’s inequality, we have

max
q′∈Q′

∣∣q′ (D)− q′ (DB)
∣∣ ≤ 1

T

T∑
i=1

max
q′∈Q′

|q′ (Di)− q′ (DB)|. (7)

From Lemma E.4 and Lemma E.3, we get that with probability at least 1− 2T/|Q′|, we get

Ψi−1 −Ψi ≥

maxq′∈Q′ {q′ (Di)− q′ (DB)} − 8T log |Q′|
εn

2

2

−
(
T log |Q|

εn

)2

.

Rearranging this and taking the average, we get

1

T

T∑
i=1

max
q′∈Q′

|q′ (Di)− q′ (DB)| ≤ 1

T

T∑
i=1

√4 (Ψi−1 −Ψi) +
4T 2 log2 |Q′|

n2ε2
+

8T log |Q′|
nε

 .
Applying the concavity of the square root function i.e., 1

T

∑T
i=1(xi)

1/2 ≤
(

1
T

∑T
i=1 xi

)1/2
,

1

T

T∑
i=1

max
q∈Q′

|q′ (Di)− q′ (DB)| ≤

√√√√ T∑
i=1

4 (Ψi−1 −Ψi)

T
+

4T 2 log2 |Q′|
n2ε2

+
8T log |Q′|

nε

≤

√
4 (Ψ0 −ΨT)

T
+

4T 2 log2 |Q′|
n2ε2

+
8T log |Q′|

nε

≤

√
4 log

(
1
σ

)
T

+
4T 2 log2 |Q′|

n2ε2
+

8T log |Q′|
nε

≤ 2

√
log
(
1
σ

)
T

+
10T log |Q′|

nε
.

The second inequality follows by summing the telescoping series. The third follows from Fact
E.2. The last equation follows from the fact that

√
x+ y ≤

√
x +
√
y for all positive x, y. Using

Equation 7 and the fact that |Q|′ ≤ (41/γ)
d we have

max
q′∈Q′

∣∣q′ (D)− q′ (DB)
∣∣ ≤ 2

√
log (1/σ)

T
+

10Td log (2n/σ)

εn
.

Let vq = q′(D) for q′ ∈ Q′ that is the closest hypothesis to q with respect to the uniform distribution.
Then

|q (DB)− vq| =
∣∣q (DB)− q′ (DB) + q′ (DB)− q′

(
D
)∣∣

≤ |q (DB)− q′ (DB)|+
∣∣q′ (DB)− q′

(
D
)∣∣

≤ 2γ

σ
+ 2

√
log 1/σ

T
+

10Td log (41/γ)

εn
.

Setting γ = σ
4n , we get the desired result.

Setting T = ε2/3n2/3 log1/3 (1/σ) d−2/3 log−2/3(2n/σ), we get (ε, 0) differential privacy with

max
q∈Q
{|vq − q (DB)|} ≤ O

(
3

√
d log (1/σ) log (2n/σ)

nε

)
.

Also, as noted in Hardt et al. [2012], one can use adaptive k-fold composition (see e.g. Dwork and
Roth [2014]) to get (ε, δ)-differential privacy with

max
q∈Q
{|vq − q (DB)|} ≤ O

(√
d

εn
log

1
2

(
1

σ

)
log
(n
σ

)
log

(
1

δ

))
.

21

E.3 Running Time of the Algorithm

The running time of the algorithm is similar to the running time of the MWEM algorithm of Hardt et al.
[2012]. The main additional step is the construction of the cover Q′. Similar to Appendix C.1 , this
cover can be constructed in timeO (|Q′|). The exponential mechanism requiresO

(
n|Q|′

)
to evaluate

all the queries on the cover and time O
(
|Q|′|X |

)
to execute each iteration of the algorithm. Recall

that |Q′| ≤ (41n/σ)
d, thus the running time is bounded by O

(
n (41n/σ)

d
+ T (41n/σ)

d |X |
)
.

This runtime can also be improved using several theoretical tricks, e.g., q(Di) can be approximated
by taking random points from Di in time that is independent of X .

Note that the runtime of our algorithm improves upon the runtime of MWEM by using smaller
query sets. As noted in Hardt et al. [2012], their algorithm is amenable to many optimizations and
modifications that make it very fast and practical Hardt et al. [2012].

F Data Release

F.1 Projected Smooth MWEM Algorithm

Algorithm 3: Projected Smooth Multiplicative Weight Exponential Mechanism
Input: Universe X with |X | = N , Data set B with n records, Query set Q, Privacy parameters ε

and δ, Smoothness parameter σ.

Let D0 (x) = 1/N for all x ∈ X .
Cover Construction: Compute Q′ ⊆ Q that is a γ-cover of Q with respect to the uniform

distribution for γ = σ
2n .

for i = 1 . . . T do
Exponential Mechanism: Sample qi ∈ Q′ according to the exponential mechanism with

parameter ε/2T and score function

si(DB , q) = n |q (Di−1)− q(DB)| .

Laplace Mechanism: Let mi = qi (DB) + 1
nLap (2T/ε) .

Multiplicative Update: Update Di−1 using the rule

D̃i (x) ∝ Di−1 (x) exp

(
qi (x) (mi − qi(Di−1))

2

)
.

KL Projection: Project D̃i onto the polytope K =
{
z : zi ≥ 0,

N∑
i=1

zi = 1, zi ≤ 1
σN

}
of

smooth distributions:
Di = argmin

D∈K
DKL(D‖D̃i)

end
Let D = 1

T

∑T
i=1Di.

Output: Distribution D.

F.2 Proof of Theorem 4.3

As before, let DB be a corresponding σ-smooth distribution that matches the query answers
for the (σ, 0)-smooth data set B. Define Ψi =

∑
x∈X DB(x) log

(
DB(x)/Di(x)

)
and Ψ̃i =∑

x∈X DB(x) log
(
DB(x)/D̃i(x)

)
as the intermediate potential. From Lemma E.3, we know

Ψi−1 − Ψ̃i ≥
(
qi (Di−1)− qi(DB)

2

)2

−
(
mi − qi(DB)

2

)2

.

22

Using the properties of relative entropy, we show the following claim.

Claim F.1. For every i ≤ T , we have Ψ̃i ≥ Ψi.

Proof. The claim follows from the following fact about the KL divergence. Let

Di = argmin
D∈K

DKL(D‖D̃i)

for some convex set K. Then, for DB ∈ K,

DKL(DB‖D̃i) ≥ DKL

(
DB‖Di

)
+ DKL

(
Di‖D̃i

)
.

The claim follows by Ψ̃i = DKL(DB‖D̃i), Ψi = DKL (DB‖Di) and DKL

(
Di‖D̃i

)
≥ 0.

Together this gives

Ψi−1 −Ψi ≥
(
qi (Di−1)− qi(DB)

2

)2

−
(
mi − qi(DB)

2

)2

.

The remainder of the analysis follows that of Theorem 4.2. Note that we have D is σ-smooth since
each Di ∈ K and K is a convex set. By Lemma E.1, we have

∣∣q′ (D)− q (D)∣∣ ≤ 2γ/σ. Thus,

∣∣q (DB)− q
(
D
)∣∣ =

∣∣q (DB)− q′ (DB) + q′ (DB)− q′
(
D
)

+ q′
(
D
)
− q

(
D
)∣∣

≤ |q (DB)− q′ (DB)|+
∣∣q′ (DB)− q′

(
D
)∣∣+

∣∣q′ (D)− q (D)∣∣
≤ 4γ

σ
+ 2

√
log 1/σ

T
+

10Td log (41/γ)

εn
.

Setting γ = σ/4n, we get

∣∣q (DB)− q
(
D
)∣∣ =

1

n
+ 2

√
log (1/σ)

T
+

10Td log (4n/σ)

εn
.

F.3 Running Time of Projected Smooth Multiplicative Weights Exponential Mechanism

The running time is similar to the running time Smooth Multiplicative Weights Exponential Mech-
anism,with the additional projection step in each step. Note that the projection in each step is
a convex program and can be solved in time poly (|X |). This gives us a total running time of
O
(
n (41n/σ)

d
+ T (41n/σ)

d |X |+ Tpoly(|X |)
)
.

In addition to the improvements discussed in the previous sections, the projection step can be
performed faster by taking an approximate Bregman projection as considered by Barak et al. [2009].
Incorporating this into our algorithm would lead to significant speed ups.

23

G Smooth Data Release using SmallDB Algorithm

In this section„ we look at a different algorithm to get differential privacy when dealing with (σ, χ)-
smooth data sets. Our algorithm displayed below uses several pieces that have been introduced by
Blum et al. [2008] and Hardt and Rothblum [2010].

Algorithm 4: Subsampled Net Mechanism
Input: Database B of size n, Query set Q, Privacy parameter ε, Subsampling parameter M ,

Accuracy parameter γ.
Sample (with replacement) a subset V of size M from X .
Sample B′ from amongst all data sets supported on V of size

O

(
d

γ2

)
with probability proportional to

exp

(
−ε · n · s (DB′ ,DB)

2

)
where s (DB′ ,DB) = maxq∈Q |q(DB)− q(DB′)|.

Output: Database B′

First, we analyze the privacy of this algorithm.
Theorem G.1. The Subsampled Net Mechanism is (ε, 0) differentially private.

Proof. The privacy claim follows from the privacy of the exponential mechanism.

Next we bound the error of this mechanism. Let us recall the standard uniform convergence bound.
Fact G.2 (Uniform Convergence for VC Classes, see e.g. Shalev-Shwartz and Ben-David [2014]).
Let X be the domain,Q be a class of queries over X with VC dimension d and let D be a distribution.
LetD′ be a distribution gotten by samplingO

(
(log(2/η) + d)/γ2

)
items iid fromD and normalizing

the frequencies. Then, with probability 1− η, for all q ∈ Q, |q(D′)− q(D)| ≤ γ.

In the following, we use the above fact to show that a randomly sampled subset of the universe
approximates a (σ, χ)-smooth database. The proof largely follows the domain reduction lemma
of Hardt and Rothblum [2010] that achieve a similar bond by with a dependence on log(|Q|). We
include this proof for completeness.
Lemma G.3. Let X be a data universe and Q a collection of queries over X with VC dimension d
and D be (σ, χ)-smooth with respect to Q. Let V ⊂ X of size M be sampled from X at random with
replacement with

M = O

(
log (1/η) + d

σγ2

)
.

Then, with probability 1− η, there exists a D′ on V such that for all q ∈ Q

|q (D)− q (D′)| ≤ χ+ γ.

Proof. Let D1 be σ-smooth distribution that witnesses the (σ, χ)-smoothness of D. If we could
sample from D1, we would be done from Fact G.2. But we want to get a subset that is oblivious to
the distribution D. To achieve this, we use the smoothness of D1.

The idea is to sample from D1 using rejection sampling. Since D1 is σ-smooth, the following
procedure produces samples from D1: sample from the uniform distribution and accept sample u
with probability σND1 (u). Note that accepted samples are distributed according to D1. We repeat
this process until O

(
(log(2/η) + d)/γ2

)
samples are accepted. Since the accepted samples are

distributed according to D1, from Fact G.2, there is a distribution D2 supported on the accepted
samples such that with probability at least 1− η/2 for all q ∈ Q,

|q (D2)− q (D)| ≤ χ+ γ.

24

Let S1 be the coordinates corresponding to the accepted samples and S2 be the coordinates cor-
responding to the rejected ones. The key observation is that S = S1 ∪ S2 is subset generated by
sampling from the uniform distribution and has a distribution supported on it that approximates D.
So, it suffices to bound the size of S. The probability that a given sample gets accepted is∑

x∈X

D1 (x)Nσ

N
= σ.

Thus the expected number of samples needed in the rejection sampling procedure is M =

O
(

log(2/η)+d
σγ2

)
. Using a Chernoff bound, we can bound the probability that this is greater than its

mean by a factor of 4 by
e−M ≤ η

2
where we used that fact that M ≥ log (2/η) .

We are finally ready to prove our theorem.
Theorem G.4. For any data set B that is (σ, χ)-smooth with respect to a set of queries Q of VC
dimension d, the output D′′ of the Subsampled Net Mechanism satisfies that with probability 1− η,
for all q ∈ Q

|q (DB)− q (D′′)| ≤ χ+ Õ

(
3

√
d log (1/σ) + log (1/η)

εn

)

Proof. Consider a subset V sampled with size M = O
(

log(1/η1)+d
σγ2

)
where η1 and γ are parameters

we will set later. From Lemma G.3, with probability 1− η1 we have that there exists a distribution
D′ supported on V such that for all q ∈ Q

|q(D′)− q(DB)| ≤ χ+ γ.

Let us work conditioned on this event. Let A denote the set of all data sets supported on V and let
C denote all data sets supported on V with size O

(
dγ−2

)
. From Fact G.2, for any distribution D1

supported on V , there is a data set in C whose distribution D2 satisfies

|q (D1)− q (D2)| ≤ γ.

We recall the guarantees of the exponential mechanism (see e.g. Dwork and Roth [2014]): Let B′′ be
the data base output by the exponential mechanism. Then,

Pr

[
s (DB′′ ,DB) ≥ min

B1∈C
s (DB1 ,DB)− 2

εn
(log |C|+ t)

]
≤ e−t,

where s (DB ,DB′) = maxq∈Q |q(DB)− q(DB′)|. Note that log |C| ≤ MO(dγ−2). Thus, with
probability 1− η2,

s (DB′′ ,DB) ≥ min
B1∈C

s (DB1
,DB)− γ

for

γ ≥ 4

εn
log

MO(dγ−2)

η2
.

Since, minB1∈C s (DB1
,DB) ≤ χ+ 2γ, setting η1 = η2 = η/2 and solving for γ, we get

γ = Õ

(
3

√
d log (1/σ) + log (1/η)

εn

)
as required.

G.1 Running Time of Subsampled Net Mechanism

The running time of the algorithm involves first sampling M elements uniformly from the domain
which takes timeO (M log |X |). Each query needs to be evaluated on the data setB which takes time
n|Q|. Evaluating and sampling from all data bases as required by the exponential mechanism naively
takes time MO(dγ−2). As discussed earlier, this can be sped up using sampling for approximation.

25

