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This supplementary material includes two sections i.e., details of baselines and descriptions of
experiments.

1 Baselines

We adopt the following clustering network as a testbed to show how our proposed adversarial learning
algorithm can attack the network and improve its robustness. The ultimate clustering network
combines embedding and clustering as a whole to produce the optimal nonlinear embedding. Two
modules are merged into one unified framework and jointly optimized by relative-entropy (equivalent
to KL divergence) minimization, and the loss function can be defined as:

KL(p(x, z,y)||q(x, z,y)) =
∑
y

∫∫
p(z,y|x)pdata(x) ln

p(z,y|x)pdata(x)
q(x|z,y)q(z,y)

dzdx. (1)

With the generative model and the factorized joint probabilities, the loss of the clustering network
can be calculated as:

min
Θ
LC =

∑
y

∫∫
p(z,y|x)pdata(x) ln

p(z,y|x)pdata(x)
q(x|z,y)q(z,y)

dzdx

=
∑
y

∫∫
p(y|z)p(z|x)pdata(x) ln

p(y|z)p(z|x)pdata(x)
q(x|z)q(z|y)q(y)

dzdx.

(2)

Equivalently, the loss of the clustering network becomes

min
Θ
LC = Ex∼pdata(x)

[
− log q(x|z) +

∑
y

p(y|z) log p(z|x)
q(z|y)

+KL(p(y|z)||q(y))

]
, z ∼ p(z|x).

(3)

We intend to verify the robustness and stability of the basic clustering network mentioned above
(ConvAE in the experiments). In addition, we integrate some classic modules of unsupervised learning
with the basic clustering network to verify the applicability of the proposed adversarial algorithm, such
as mutual information estimation (MIE) and graph module (Graph). Mutual information measures
the essential correlation between two samples and can effectively estimate the similarity between
features z and input data x. The objective function of MIE module utilized in the experiments is
defined as:

LC = Ex∼pdata(x)

[
− log q(x|z) +

∑
y

p(y|z) log p(z|x)
q(z|y)

+KL(p(y|z)||q(y))− log
p(z|x)
p(z)

]
, z ∼ p(z|x),

(4)
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where p(z) =
∫
p(z|x)pdata(x)dx. Similarly, the objective function of Graph module is defined as:

LC = Ex∼pdata(x)

[
− log q(x|z) +

∑
y

p(y|z) log p(z|x)
q(z|y)

+KL(p(y|z)||q(y))

]

+
1

n2

n∑
i,j=1

Wi,j ‖ yi − yj ‖2,
(5)

where W is the weight matrix with probabilisticK-nearest neighbors on each dataset, and the number
of neighbors is set to 3.

2 Experimental Results

To further show that our method operates well on various datasets, we choose STL-10 [1] and
REUTERS [3] as additional benchmarks. STL-10: The STL-10 dataset consists of color images of
96× 96 pixel size, in which there are 10 classes with 1,300 examples each. Following [2], we extract
features of images of STL-10 by ResNet-50, which are then used to test the performance of all base-
lines. REUTERS: A random subset of 10,000 documents with 4 root categories: corporate/industrial,
government/social, markets, and economics as labels are used. We compute tf-idf features on the
2,000 most frequent words to represent all articles. The results are shown in Tables 1, 2, and 3, which
give the performances of attack, defense, and re-attack, respectively. Such results demonstrate that
the proposed adversarial learning method can be readily applied to a variety of datasets and achieve
consistently competitive performances.

Table 1: Clustering performances (%) of different methods after adversarial attack learning on two
datasets in ACC, NMI, and D.

Dataset Method Matrix 64 128 256 512

STL-10

ConvAE
ACC 84.7 78.1∗ 81.2 75.6∗ 81.9 73.3∗ 80.6 65.8∗

NMI 86.2 80.2∗ 84.4 77.9∗ 83.6 75.7∗ 80.6 72.1∗

D 2.77 2.48 0.74 0.40

MIE
ACC 86.7 80.2∗ 85.2 79.5∗ 84.7 78.7∗ 84.9 79.5∗

NMI 85.4 79.5∗ 84.4 80.4∗ 84.5 79.5∗ 84.2 80.1∗

D 2.44 1.95 1.06 0.57

Graph
ACC 92.5 80.0∗ 91.0 84.6∗ 91.1 84.8∗ 90.6 82.5∗

NMI 87.6 77.7∗ 86.5 80.0∗ 86.6 79.8∗ 86.0 78.6∗

D 5.14 4.67 4.01 4.24

REUTERS

ConvAE
ACC 75.3 70.6∗ 74.3 69.2∗ 74.7 69.1∗ 73.9 68.2∗

NMI 50.0 44.5∗ 49.2 44.8∗ 50.2 45.7∗ 51.2 44.8∗

D 3.13 2.75 2.83 2.12

MIE
ACC 74.2 68.3∗ 73.7 67.5∗ 76.3 69.3∗ 74.2 67.7∗

NMI 49.2 42.1∗ 48.5 41.7∗ 50.8 43.2∗ 49.1 42.5∗

D 2.57 2.35 2.17 2.15

Graph
ACC 80.8 72.0∗ 80.4 71.9∗ 79.5 71.8∗ 80.9 72.1∗

NMI 57.8 39.6∗ 57.4 40.1∗ 56.7 39.4∗ 58.4 39.4∗

D 3.15 3.03 2.87 2.74

We select some samples with inconsistent clustering results before and after the attack strategy.
The results with different γ values are shown in Figure 1, where Figure 1(a) are original samples,
Figure 1(b) are generated samples by clean features, and Figures 1(c)-1(f) are generated samples
from the perturbed features with different γ. The images generated by these features are visually
very similar but the corresponding clustering results are quite different, which indicates that the
learned perturbation can easily fool the clustering layers but not impact the performance of the deep
embedding.
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Table 2: Clustering performances (%) of different methods after the adversarial defense strategy on
two datasets in ACC and NMI.

Dataset Method Matrix 64 128 256 512

STL-10

ConvAE+ ACC 87.4 87.6∗ 85.2 85.0∗ 84.8 84.3∗ 85.1 84.9∗

NMI 86.5 86.3∗ 85.4 85.9∗ 85.1 85.6∗ 84.2 84.0∗

MIE+ ACC 89.5 89.2∗ 90.2 90.3∗ 90.7 90.1∗ 89.9 89.5∗

NMI 87.2 87.0∗ 86.6 86.9∗ 86.2 86.0∗ 85.8 85.3∗

Graph ACC 94.7 94.5∗ 95.1 94.8∗ 94.5 94.3∗ 95.2 94.9∗

NMI 89.5 89.2∗ 89.7 88.7∗ 88.2 88.1∗ 88.5 88.3∗

REUTERS

ConvAE+ ACC 77.6 77.5∗ 76.8 76.5∗ 78.3 78.5∗ 77.6 77.3∗

NMI 53.2 53.1∗ 52.9 52.7∗ 53.1 53.9∗ 52.8 52.2∗

MIE+ ACC 75.5 75.4∗ 76.1 75.7∗ 76.3 76.2∗ 75.7 75.9∗

NMI 50.3 50.2∗ 51.2 51.0∗ 50.8 50.9∗ 49.7 49.6∗

Graph+ ACC 82.3 82.3∗ 83.1 83.2∗ 83.3 83.1∗ 82.7 82.8∗

NMI 58.9 58.2∗ 57.4 58.1∗ 58.3 57.9∗ 58.0 57.5∗

Table 3: Clustering performances (%) of different methods after the re-attack strategy on two datasets
in ACC, NMI, and D.

Method Matrix STL-10 REUTERS
64 128 256 512 64 128 256 512

ConvAE+
ACC 82.1∗ 79.5∗ 81.7∗ 81.5∗ 73.5∗ 74.8∗ 73.7∗ 74.1 ∗

NMI 84.3∗ 80.7∗ 80.9∗ 81.2∗ 48.7∗ 48.9∗ 47.6∗ 48.2 ∗

D 4.13 3.75 2.53 2.37 4.25 4.32 3.87 3.57

MIE+
ACC 85.2∗ 85.1∗ 84.7∗ 84.5∗ 71.2∗ 70.4∗ 70.5∗ 71.2∗

NMI 83.7 ∗ 83.8 ∗ 83.4∗ 83.7∗ 51.2∗ 50.5∗ 50.8∗ 51.4∗

D 3.66 2.56 2.04 2.17 3.17 2.89 2.57 2.30

Graph+
ACC 90.5 ∗ 90.4∗ 89.7 ∗ 89.3 ∗ 75.7∗ 74.8∗ 75.2∗ 74.7∗

NMI 86.7 ∗ 86.5 ∗ 87.1 ∗ 87.5 ∗ 50.2∗ 49.8∗ 50.6∗ 48.9∗

D 7.01 6.57 6.32 5.92 4.23 4.12 3.89 3.19

(a) Data samples (b) Generated clean samples (c) γ=0.02

(d) γ=0.03 (e) γ=0.04 (f) γ=0.05

Figure 1: Some clustering samples of MNIST. a) Data samples; b) The samples generated by clean
features; c-f) The samples generated by perturbed features with different γ.
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