A Analysis of Existing Algorithms

Let $f^{*, \star}$ denote a function that incorporates an attacker strategy. When $k=0, f^{\mathrm{CH}, \mathrm{IS}}\left(D, w_{y}, g_{y}, k\right)$ is the result of applying the CH inequality to the IS weighted returns, obtained from D, which additionally includes k copies of a trajectory with an IS weight of w_{y} and return of g_{y}. Notice that $f^{*, \star}$ is written in terms of IS weights. The following defines $f^{\text {CH, wIS }}$, written in terms of IS weights, when $k=0$:

$$
f^{\mathrm{CH}, \mathrm{wIS}}\left(D, w_{y}, g_{y}, 0\right)=\frac{1}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

For the rest of the paper, we use the following notation. Let $\mathcal{I}=\{I: \exists a \in \mathcal{A}, \exists s \in \mathcal{S}, I=$ $\left.\prod_{t=0}^{\tau-1} \pi_{e}\left(A_{t}=a, S_{t}=s\right) / \pi_{b}\left(A_{t}=a, S_{t}=s\right)\right\}$, i.e., the set of all IS weights that could be obtained from policies π_{e} and π_{b}. The maximum and minimum IS weight is denoted by $i^{*}=\max (\mathcal{I})$ and $i^{\min }=\min (\mathcal{I})$, respectively. For shorthand, let the sum of IS weights in D be written as $\beta=\sum_{i=1}^{n} w_{i}$. Also, we assume that $\beta>0$ to ensure that WIS is well-defined.
Next, we define a new term to describe how an attacker can increase the $1-\delta$ confidence lower bound on the mean of a bounded and real-valued random variable. We say that $f^{*, \star}$ is adversarially monotonic given its inputs, if an attacker can maximize $f^{*, \star}$ by maximizing the value of the added samples. For brevity, we say that $f^{*, \star}$ is adversarially monotonic.
Definition 1. $f^{*, \star}$ is adversarially monotonic for $n>1, k>0, \pi_{b}, \pi_{e}$ and D if both

1. There exists two constants $p \geq 0$ and $q \in[0,1]$, with $p q \in\left[0, i^{*}\right]$, such that $f^{*, \star}(D, p, q, k) \geq f^{*, \star}(D, p, q, 0)$, i.e., adding k copies of pq does not decrease f;
2. $\frac{\partial}{\partial g_{y}} f^{*, \star}\left(D, i^{*}, g_{y}, k\right) \geq 0$ and $\frac{\partial}{\partial w_{y}} f^{*, \star}\left(D, w_{y}, 1, k\right) \geq 0$, with no local maximums, i.e., f is a non-decreasing function w.r.t. the $I S$ weight and return added by the attacker, respectively.

Definition 1 means that $f^{*, \star}$ is maximized when w_{y} and g_{y} is maximized. In other words, the optimal strategy is to add k copies of the trajectory with the maximum IS weight and return. Notice that $f^{*, \star}$ does not incorporate all possible attack functions, \mathcal{M} : specifically, the set of attacks, where the attacker can choose to add k different trajectories, is omitted. As described in Theorem 1 , to perform a worst-case analysis, only the optimal attack must be incorporated as part of $f^{*, \star}$.
In the following two lemmas, we show that a couple well-known Seldonian algorithms are adversarially monotonic.
Lemma 1. Under Assumptions 1,2 and $3 f^{C H}, I S$ is adversarially monotonic.

Proof. Let $w_{y} \geq \frac{1}{n} \sum_{i=1}^{n} w_{i} g_{i}+\frac{(n+k)}{k}\left(b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right)$ and $g_{y}=1$. To show that $w_{y} g_{y} \in\left[0, i^{*}\right]$ as stated in 13 in Definition 1, it must be that $w_{y} \in\left[0, i^{*}\right]$. For all $i \in\{1, \ldots, n\}$, $w_{i} g_{i} \in\left[0, i^{*}\right]$. Thus, for any given dataset, $0 \leq 1 / n \sum_{i=1}^{n} w_{i} g_{i} \leq i^{*} / n$. Using this fact, for any given D, the range of w_{y} is

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{n}(0)+\frac{(n+k)}{k}\left(b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \leq w_{y} \leq \frac{1}{n} \sum_{i=1}^{n}\left(i^{*}\right)+\frac{(n+k)}{k}\left(b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \\
\frac{b(n+k)}{k}(\underbrace{\left.\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-\sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \leq w_{y} \leq \frac{i^{*}}{n}+\underbrace{\frac{b(n+k)}{k}\left(\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-\sqrt{\frac{\ln (1 / \delta)}{2 n}}\right)}_{<0} \leq i^{*}}_{<0} .
\end{gathered}
$$

Therefore, w_{y} can be selected such that $w_{y} g_{y} \in\left[0, i^{*}\right]$. It follows that

$$
\begin{aligned}
f^{\mathrm{CH}, \mathrm{IS}}\left(D, w_{y}, 1, k\right) & =\frac{1}{n+k} \sum_{i=1}^{n} w_{i} g_{i}+\frac{k}{n+k}\left(w_{y}\right)(1)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
& \geq \frac{1}{n+k} \sum_{i=1}^{n} w_{i} g_{i}+\frac{k}{n+k}\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} g_{i}+\frac{(n+k)}{k}\left(b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right)\right)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
& =\frac{1}{n} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}} \\
& =f^{\mathrm{CH}, \mathrm{IS}}\left(D, w_{y}, g_{y}, 0\right) .
\end{aligned}
$$

Next, we show that (2) in Definition 1 holds.

$$
\begin{aligned}
\frac{\partial}{\partial w_{y}} f^{*, \star}\left(D, w_{y}, g_{y}, k\right) & =\frac{\partial}{\partial w_{y}}\left(\sum_{i=1}^{n} \frac{w_{i} g_{i}}{n+k}\right)+\frac{k w_{y} g_{y}}{n+k}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
& =\frac{k g_{y}}{n+k} \\
\frac{\partial}{\partial w_{y}} f^{*, \star}\left(D, w_{y}, 1, k\right) & =\frac{k}{n+k} . \\
\frac{\partial}{\partial g_{y}} f^{*, \star}\left(D, w_{y}, g_{y}, k\right) & =\frac{\partial}{\partial g_{y}}\left(\sum_{i=1}^{n} \frac{w_{i} g_{i}}{n+k}\right)+\frac{k w_{y} g_{y}}{n+k}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
& =\frac{k w_{y}}{n+k} \\
\frac{\partial}{\partial g_{y}} f^{*, \star}\left(D, i^{*}, g_{y}, k\right) & =\frac{k i^{*}}{n+k} .
\end{aligned}
$$

Notice that both partial derivatives are non-negative when $g_{y}=1$ and $w_{y}=i^{*}$, respectively. To find any critical points, the following equations are solved simultaneously: $\partial / \partial g_{y} f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, k\right)=0$ and $\partial / \partial w_{y} f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, k\right)=0$. Notice that points along the line $\left(w_{g}, 0\right)$ and $\left(0, g_{y}\right)$ are all critical points. The following partial derivatives are computed to classify these points:

$$
\begin{aligned}
\frac{\partial}{\partial\left(w_{y}\right)^{2}}\left(D, w_{y}, g_{y}, k\right) & =0 \\
\frac{\partial}{\partial\left(g_{y}\right)^{2}}\left(D, w_{y}, g_{y}, k\right) & =0 \\
\frac{\partial}{\partial g_{y} w_{y}}\left(D, w_{y}, g_{y}, k\right) & =\frac{k}{n+k} .
\end{aligned}
$$

Using the second partial derivative test, the critical points are substituted into the following equation:

$$
\frac{\partial}{\partial\left(w_{y}\right)^{2}} \cdot \frac{\partial}{\partial\left(g_{y}\right)^{2}}-\left(\frac{\partial}{\partial g_{y} w_{y}}\right)^{2}=-\left(\frac{k}{n+k}\right)^{2}
$$

which is less than zero. Therefore, points along the line $\left(w_{g}, 0\right)$ and $\left(0, g_{y}\right)$ are saddle points.

Lemma 2. Under Assumptions 1 and $2 f^{C H, W I S}$ is adversarially monotonic.

Proof. First, we show that (1) in Definition 1 holds with $g_{y}=1$ and $w_{y}=0$.

$$
\begin{align*}
f^{\mathrm{CH}, \mathrm{wIS}}\left(D, w_{y}, g_{y}, k\right) & =\frac{1}{k w_{y}+\beta}\left(k w_{y} g_{y}+\sum_{i=1}^{n} w_{i} g_{i}\right)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
f^{\mathrm{CH}, \mathrm{wIS}}(D, 0,1, k) & =\frac{1}{\beta} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
& >\frac{1}{\beta} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}} \tag{1}\\
& =f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, 0\right),
\end{align*}
$$

where (1) follows from $b \sqrt{\frac{\ln (1 / \delta)}{2 n}}>b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}$. Second, we show that 12 in Definition 1 holds.

$$
\begin{align*}
\frac{\partial}{\partial w_{y}} f^{\mathrm{CH}, \mathrm{wIS}}\left(D, w_{y}, g_{y}, k\right) & =-\frac{k \sum_{i=1}^{n} w_{i} g_{i}}{\left(k w_{y}+\beta\right)^{2}}-\frac{k^{2} w_{y} g_{y}}{\left(k w_{y}+\beta\right)^{2}}+\frac{k g_{y}}{\left(k w_{y}+\beta\right)} \\
& =-\frac{k \sum_{i=1}^{n} w_{i} g_{i}}{\left(k w_{y}+\beta\right)^{2}}-\frac{k^{2} w_{y} g_{y}}{\left(k w_{y}+\beta\right)^{2}}+\frac{k g_{y}\left(k w_{y}+\beta\right)}{\left(k w_{y}+\beta\right)^{2}} \\
& =-\frac{k \sum_{i=1}^{n} w_{i} g_{i}}{\left(k w_{y}+\beta\right)^{2}}+\frac{k g_{y} \beta}{\left(k w_{y}+\beta\right)^{2}} \\
& =-\frac{k \sum_{i=1}^{n} w_{i} g_{i}}{\left(k w_{y}+\beta\right)^{2}}+\frac{k \sum_{i=1}^{n} w_{i} g_{y}}{\left(k w_{y}+\beta\right)^{2}} \\
& =\frac{k}{\left(\beta+k w_{y}\right)^{2}} \sum_{i=1}^{n} w_{i}\left(g_{y}-g_{i}\right) \\
\frac{\partial}{\partial w_{y}} f^{\mathrm{CH}, \mathrm{wIS}}\left(D, w_{y}, 1, k\right) & =\frac{k}{\left(\beta+k w_{y}\right)^{2}} \sum_{i=1}^{n} w_{i}\left(1-g_{i}\right) . \tag{2}
\end{align*}
$$

Notice that (2) is non-negative: 1) When $g_{y}=1$, (2) is positive as long as there exists at least one $g_{i}<1$ for $i \in\{1, \ldots, n\}$; 2) If all $g_{i}=1$ in D, then (2) is zero. The following is the derivative of $f^{\text {CH, WIS }}\left(D, w_{y}, g_{y}, k\right)$ w.r.t. g_{y} :

$$
\begin{align*}
\frac{\partial}{\partial g_{y}} f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, k\right) & =\frac{k w_{y}}{\left(\beta+k w_{y}\right)} \tag{3}\\
\frac{\partial}{\partial g_{y}} f^{\mathrm{CH}, \mathrm{wIS}}\left(D, i^{*}, g_{y}, k\right) & =\frac{k i^{*}}{\left(\beta+k i^{*}\right)}
\end{align*}
$$

which is also non-negative. To find any critical points, the following equations are solved simultaneously: $\partial / \partial g_{y} f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, k\right)=0$ and $\partial / \partial w_{y} f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, k\right)=0$. Notice that (3) is zero when $w_{y}=0$. Plugging $w_{y}=0$ into $\partial / \partial w_{y} f^{\mathrm{CH}, \mathrm{WIS}}\left(D, w_{y}, g_{y}, k\right)=0$, and then solving for g_{y}, yields the x coordinate of a critical point.

$$
\begin{aligned}
\frac{k}{(\beta+k(0))^{2}} \sum_{i=1}^{n} w_{i}\left(g_{y}-g_{i}\right) & =0 \\
\frac{k}{\beta^{2}} \sum_{i=1}^{n} w_{i}\left(g_{y}-g_{i}\right) & =0 \\
g_{y} \sum_{i=1}^{n} w_{i}-\sum_{i=1}^{n} w_{i} g_{i} & =0 \\
g_{y} & =\frac{\sum_{i=1}^{n} w_{i} g_{i}}{\beta}
\end{aligned}
$$

The following partial derivatives are computed to classify whether $\left(0, \sum_{i=1}^{n} w_{i} g_{i} / \beta\right)$ is a minimum, maximum or saddle point:

$$
\begin{aligned}
\frac{\partial}{\partial\left(w_{y}\right)^{2}}\left(D, w_{y}, g_{y}, k\right) & =\frac{-2 k^{2}}{\left(\beta+k w_{y}\right)^{3}} \sum_{i=1}^{n} w_{i}\left(g_{y}-g_{i}\right) \\
\frac{\partial}{\partial\left(g_{y}\right)^{2}}\left(D, w_{y}, g_{y}, k\right) & =0 . \\
\frac{\partial}{\partial g_{y} w_{y}}\left(D, w_{y}, g_{y}, k\right) & =\frac{\partial}{\partial w_{y}} \frac{k w_{y}}{\left(\beta+k w_{y}\right)} \\
& =\frac{k \beta}{\left(\beta+k w_{y}\right)^{2}}
\end{aligned}
$$

Using the second partial derivative test, the critical point is substituted into the following equation:

$$
\begin{aligned}
\frac{\partial}{\partial\left(w_{y}\right)^{2}} \cdot \frac{\partial}{\partial\left(g_{y}\right)^{2}}-\left(\frac{\partial}{\partial g_{y} w_{y}}\right)^{2} & =0-\left(\frac{k \beta}{(\beta+k(0))^{2}}\right)^{2} \\
& =-\left(\frac{k \beta}{\beta^{2}}\right)^{2}
\end{aligned}
$$

which is less that zero. Therefore, $\left(w_{y}=0, g_{y}=\sum_{i=1}^{n} w_{i} g_{i} / \beta\right)$ is a saddle point.
Next, we describe the trajectory that must be added to D to execute the optimal attack.
Definition 2 (Optimal Attack). An optimal attack strategy for $k>0$ is to select

$$
\underset{H \in \mathcal{H}_{\pi_{e}}}{\arg \max } f^{*, \star}\left(D, w_{y}=w\left(H, \pi_{e}, \pi_{b}\right), g_{y}=g(H), k\right) .
$$

Definition 3 (Optimal Trajectory). Given that a maximum exists, let $\left(a^{\prime}, s^{\prime}\right) \in \underset{a \in \mathcal{A}, s \in \mathcal{S}}{\arg \max } \frac{\pi_{e}(a, s)}{\pi_{b}(a, s)}$.
If $\frac{\pi_{e}(a, s)}{\pi_{b}(a, s)}>1$, let $H^{*}=\left\{S_{0}=s^{\prime}, A_{0}=a^{\prime}, R_{0}=1, \ldots, S_{\tau-1}=s^{\prime}, A_{\tau-1}=a^{\prime}, R_{\tau-1}=1\right\}$. Otherwise, let $H^{*}=\left\{S_{0}=s^{\prime}, A_{0}=a^{\prime}, R_{0}=1\right\}$.
Theorem 1. For any adversarially monotonic off-policy estimator, the optimal attack strategy is to add k repetitions of H^{*} to D.

Proof. An optimal attack strategy is equivalent to

$$
\underset{H \in \mathcal{H}_{\pi_{e}}}{\arg \max } f^{*, \star}\left(D, w\left(H, \pi_{e}, \pi_{b}\right), g(H), k\right)=\underset{i^{*} \in \mathcal{I}, g^{*} \in[0,1]}{\arg \max } f^{*, \star}\left(D, i^{*}, g^{*}, k\right) .
$$

For any off-policy estimator that is adversarially monotonic, by (1) of Definition 1, there exists a $p q$ such that

$$
f^{*, \star}(D, p, q, k) \geq f^{*, \star}(D, p, q, 0)
$$

A return that maximizes $f^{*, \star}\left(D, w_{y}, g_{y}, k\right)$ implies that

$$
\max _{g^{*} \in[0,1]} f^{*, \star}\left(D, p, g^{*}, k\right) \geq f^{*, \star}(D, p, q, k) .
$$

$f^{\mathrm{CH} \text {, IS }}$ and $f^{\mathrm{CH} \text {, wIS }}$ are non-decreasing w.r.t. the return. Therefore,

$$
\underset{g^{*} \in[0,1]}{\arg \max } f^{*, \star}\left(D, p, g^{*}, k\right)=\max _{g^{*} \in[0,1]} g^{*}
$$

Setting $g^{*}=1$, an importance weight that maximizes $f^{*, \star}\left(D, w_{y}, 1, k\right)$ implies that

$$
\max _{i^{*} \in \mathcal{I}} f^{*, \star}\left(D, i^{*}, 1, k\right) \geq f^{*, \star}(D, p, 1, k) .
$$

$f^{\mathrm{CH}, \text { IS }}$ and $f^{\mathrm{CH}, \text { WIS }}$ are also non-decreasing w.r.t. the importance weight. So,

$$
\underset{i^{*} \in \mathcal{I}}{\arg \max } f^{*, \star}\left(D, i^{*}, 1, k\right)=\max _{i^{*} \in \mathcal{I}} i^{*} .
$$

Since the IS weight is a product of ratios over the length of a trajectory, the ratio at a single time step is maximized.

$$
\begin{aligned}
\max _{i^{*} \in \mathcal{I}} i^{*} & =\max _{a \in \mathcal{A}, s \in \mathcal{S}} \prod_{t=0}^{\tau-1} \frac{\pi_{e}\left(A_{t}=a, S_{t}=s\right)}{\pi_{b}\left(A_{t}=a, S_{t}=s\right)} \\
& = \begin{cases}\left(\max _{a \in \mathcal{A}, s \in \mathcal{S}} \frac{\pi_{e}(a, s)}{\pi_{b}(a, s)}\right)^{\tau} \quad \text { if } \max _{a \in \mathcal{A}, s \in \mathcal{S}} \frac{\pi_{e}(a, s)}{\pi_{b}(a, s)}>1 \\
\max _{a \in \mathcal{A}, s \in \mathcal{S}} \frac{\pi_{e}(a, s)}{\pi_{b}(a, s)} & \text { otherwise. }\end{cases}
\end{aligned}
$$

To create H^{*}, if the ratio at a single time step is greater than $1, a^{\prime}$ and s^{\prime} is repeated for the maximum length of the trajectory, τ; otherwise, a^{\prime} and s^{\prime} is repeated only for a single time step. Thus, H^{*} represents the trajectory with the largest return and importance weight.

Next, we show how Equations (2) and (1), that define quasi- α-security and α-security, respectively, apply to $L^{*, \star}$. Specifically, we show that a safety test using $L^{*, \star}$ as a metric is a valid safety test that first predicts the performance of π_{e} using D, and then bounds the predicted performance with high probability. If $L^{*, \star}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)$, the safety test returns True; otherwise it returns False.
Lemma 3. A safety test using $L^{*, \star}$ is quasi- α-secure if $\forall m \in \mathcal{M}, \operatorname{Pr}\left(L^{\star, *}\left(\pi_{e}, m(D, k)\right)>J\left(\pi_{b}\right)+\right.$ $\alpha) \leq \operatorname{Pr}\left(L^{\star, *}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)\right)$.

Proof. For $x \in \mathbb{N}^{+}$, let $\mathcal{P}: \Pi \times D_{n}^{\pi_{b}} \rightarrow \mathbb{R}^{x}$ denote any function to predict the performance of some $\pi_{e} \in \Pi$, using data D collected from π_{b}. Also, let $\mathcal{B}: \mathbb{R}^{x} \times[0,1] \rightarrow \mathbb{R}$ denote any function that bounds performance with high probability, $1-\delta$, where $\delta \in[0,1]$. Starting with the definition of quasi- α-security, we have that $\forall m \in \mathcal{M}$,

$$
\begin{aligned}
\operatorname{Pr}\left(\varphi \left(\pi_{e}, m\right.\right. & \left.\left.(D, k), J\left(\pi_{b}\right)+\alpha\right)=\text { True }\right) \leq \operatorname{Pr}\left(\varphi\left(\pi_{e}, D, J\left(\pi_{b}\right)\right)=\text { True }\right) \\
& \Longleftrightarrow \operatorname{Pr}\left(\mathcal{B}\left(\mathcal{P}\left(\pi_{e}, m(D, k)\right), \delta\right)>J\left(\pi_{b}\right)+\alpha\right) \leq \operatorname{Pr}\left(\mathcal{B}\left(\mathcal{P}\left(\pi_{e}, D\right), \delta\right)>J\left(\pi_{b}\right)\right) \\
& \Longleftrightarrow \operatorname{Pr}\left(L^{\star, *}\left(\pi_{e}, m(D, k)\right)>J\left(\pi_{b}\right)+\alpha\right) \leq \operatorname{Pr}\left(L^{\star, *}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)\right)
\end{aligned}
$$

Lemma 4. A safety test using $L^{*, \star}$ is α-secure if $\forall m \in \mathcal{M}, \operatorname{Pr}\left(L^{\star, *}\left(\pi_{e}, m(D, k)\right)>J\left(\pi_{b}\right)+\alpha\right)<$ δ.

Proof. For $x \in \mathbb{N}^{+}$, let $\mathcal{P}: \Pi \times D_{n}^{\pi_{b}} \rightarrow \mathbb{R}^{x}$ denote any function to predict the performance of some $\pi_{e} \in \Pi$, using data D collected from π_{b}. Also, let $\mathcal{B}: \mathbb{R}^{x} \times[0,1] \rightarrow \mathbb{R}$ denote any function that bounds performance with high probability, $1-\delta$, where $\delta \in[0,1]$. Starting with the definition of α-security, we have that $\forall m \in \mathcal{M}$,

$$
\begin{aligned}
\operatorname{Pr}\left(\varphi \left(\pi_{e}, m(D, k), J\right.\right. & \left.\left.\left(\pi_{b}\right)+\alpha\right)=\operatorname{True}\right)<\delta \\
& \Longleftrightarrow \operatorname{Pr}\left(\mathcal{B}\left(\mathcal{P}\left(\pi_{e}, m(D, k)\right), \delta\right)>J\left(\pi_{b}\right)+\alpha\right)<\delta \\
& \Longleftrightarrow \operatorname{Pr}\left(L^{\star, *}\left(\pi_{e}, m(D, k)\right)>J\left(\pi_{b}\right)+\alpha\right)<\delta .
\end{aligned}
$$

In Lemma 5, we describe a condition that must hold in order to compute a valid α. The condition states that a valid α must be equal to or greater than the largest increase in the $1-\delta$ confidence lower bound on $J\left(\pi_{e}\right)$ across all datasets $D \in \mathcal{D}_{n}^{\pi_{b}}$ and all attack strategies (i.e., the optimal attack).
Lemma 5. A safety test using $L^{*, \star}$ is quasi- α-secure or α-secure if $\forall D \in \mathcal{D}_{n}^{\pi_{b}}$ and $\forall m \in \mathcal{M}$, $L^{*, \star}\left(\pi_{e}, m(D, k)\right) \leq L^{*, \star}\left(\pi_{e}, D\right)+\alpha$.

Proof. If $L^{*, \star}\left(\pi_{e}, m(D, k)\right) \leq L^{*, \star}\left(\pi_{e}, D\right)+\alpha$, then

$$
\begin{equation*}
L^{*, \star}\left(\pi_{e}, D\right) \geq L^{*, \star}\left(\pi_{e}, m(D, k)\right)-\alpha \tag{4}
\end{equation*}
$$

A safety test checks whether $L^{*, \star}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)$. When (4) holds $\forall D \in \mathcal{D}_{n}^{\pi_{b}}$ and $\forall m \in \mathcal{M}$,

$$
\begin{equation*}
\operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)\right) \geq \operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, m(D, k)\right)-\alpha>J\left(\pi_{b}\right)\right) \tag{5}
\end{equation*}
$$

and hence via algebra that

$$
\operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, m(D, k)\right)>J\left(\pi_{b}\right)+\alpha\right) \leq \operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)\right)
$$

which, by Lemma (3), implies that a safety test using $L^{*, \star}$ is quasi- α-secure. In the case of α-security, by Assumption 3. we require a "safe" safety test. That is,

$$
\begin{equation*}
\operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, D\right)>J\left(\pi_{b}\right)\right)<\delta \tag{6}
\end{equation*}
$$

From the transitive property of \geq, we can conclude from (5) and (6) that

$$
\operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, m(D, k)\right)-\alpha>J\left(\pi_{b}\right)\right)<\delta
$$

and hence via algebra that

$$
\operatorname{Pr}\left(L^{*, \star}\left(\pi_{e}, m(D, k)\right)>J\left(\pi_{b}\right)+\alpha\right)<\delta,
$$

which, by Lemma (4), implies that a safety test using $L^{*, \star}$ is α-secure.

B Proof of Theorem 1

The result of (5) for the estimator that uses CH and IS is the following:

$$
\begin{aligned}
\alpha^{\prime} & =\max _{D \in \mathcal{D}_{n}^{H}} f^{\mathrm{CH}, \mathrm{IS}}\left(D, i^{*}, 1, k\right)-L^{\mathrm{CH}, \mathrm{IS}}\left(\pi_{e}, D\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} \frac{1}{n+k} \sum_{i=1}^{n} w_{i} g_{i}+\frac{k}{n+k}\left(i^{*}\right)(1)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} b \sqrt{\frac{\ln (1 / \delta)}{2 n}}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\left(i^{*}-\frac{\sum_{i=1}^{n} w_{i} g_{i}}{n}\right) .
\end{aligned}
$$

Recall that b represents the upper bound of all IS weighted returns. Let $b=i^{*}$, and $g_{i}=0$ for all $i \in\{1, \ldots, n\}$.

$$
\begin{aligned}
\alpha^{\prime} & =i^{*} \sqrt{\frac{\ln (1 / \delta)}{2 n}}-i^{*} \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\left(i^{*}-0\right) \\
& =i^{*}\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right) .
\end{aligned}
$$

The result of (5) for the estimator that uses CH and WIS is the following:

$$
\begin{aligned}
\alpha^{\prime} & =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} f^{\mathrm{CH}, \mathrm{wIS}}\left(D, i^{*}, 1, k\right)-L^{\mathrm{CH}, \mathrm{WIS}}\left(\pi_{e}, D\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} \frac{1}{k i^{*}+\sum_{i=1}^{n} w_{i}}\left(\sum_{i=1}^{n} w_{i} g_{i}+k\left(i^{*}\right)(1)\right)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-\left(\frac{1}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} b \sqrt{\frac{\ln (1 / \delta)}{2 n}}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k i^{*}}{\left(k i^{*}+\beta\right)}\left(1-\frac{\sum_{i=1}^{n} w_{i} g_{i}}{\beta}\right) .
\end{aligned}
$$

Let $g_{i}=0$ for all $i \in\{1, \ldots, n\}$. Also, notice that $b=1$ because importance weighted returns are in range $[0,1]$ for WIS (since only IS weights are clipped).

$$
\alpha^{\prime}=\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} \sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k i^{*}}{\left(k i^{*}+\beta\right)} .
$$

Recall that $\beta \neq 0$. So, let $w_{i}=0$ for all $i \in\{1, \ldots, n-1\}$ and $w_{n}=i^{\min }$.

$$
\alpha^{\prime}=\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k i^{*}}{\left(i^{\min }+k i^{*}\right)} .
$$

C Panacea: An Algorithm for Safe and Secure Policy Improvement

Table 1: $\boldsymbol{\alpha}$-security of Panacea.

Estimator	$\boldsymbol{\alpha}$
CH, IS	$c\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right)$
CH, WIS	$\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k c}{\left(i^{\min }+k c\right)}$

```
Algorithm 1 Panacea \(\left(D, \pi_{e}, \alpha, k\right)\)
    Compute \(c\), using \(\alpha\) and \(k\), given estimator
    for \(H \in D\) do
        if IS weight computed using \(H\) is greater than \(c\) then
            Set IS weight to \(c\)
    return clipped \(D\)
```


C. 1 Proof of Corollary 1

Let α^{\prime} and k^{\prime} denote the user-specified inputs to Panacea. Based on Table $1, c^{\mathrm{CH}, \mathrm{IS}}=$ $\alpha^{\prime} /\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right)$ if $k^{\prime}=k$. Recall that b is the upper bound on all IS weighted returns. Due to clipping, $b=c^{\mathrm{CH}, \text { IS }}$, and let $g_{i}=0$ for all $i \in\{1, \ldots, n\}$. The result of (6) for the estimator that uses CH and IS is the following:

$$
\begin{aligned}
\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} f^{\mathrm{CH}, \text { IS }} & \left(\text { Panacea }\left(D, c^{\mathrm{CH}, \text { IS }}\right), c^{\mathrm{CH}, \text { IS }}, 1, k\right)-L^{\mathrm{CH}, \text { IS }}\left(\pi_{e}, \text { Panacea }\left(D, c^{\mathrm{CH}, \text { IS }}\right)\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} \frac{1}{n+k} \sum_{i=1}^{n} w_{i} g_{i}+\frac{k}{n+k}\left(c^{\mathrm{CH}, \text { IS }}\right)(1)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} b \sqrt{\frac{\ln (1 / \delta)}{2 n}}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\left(c^{\mathrm{CH}, \text { IS }}-\frac{\sum_{i=1}^{n} w_{i} g_{i}}{n}\right) \\
& =c^{\mathrm{CH}, \text { IS }} \sqrt{\frac{\ln (1 / \delta)}{2 n}}-c^{\mathrm{CH}, \text { IS }} \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\left(c^{\mathrm{CH}, \text { IS }}-0\right) \\
& =c^{\mathrm{CH}, \text { IS }}\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right) \\
& =\frac{\alpha^{\prime}}{\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}} \cdot\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right) \\
& =\alpha^{\prime} .
\end{aligned}
$$

For WIS, recall that no matter how the clipping weight is set, $b \leq 1$ because importance weighted returns are in range $[0,1]$, and $\beta \neq 0$. So, let $w_{i}=0$ for all $i \in\{1, \ldots, n-1\}$ and $w_{n}=i^{\min }$. Also, let $g_{i}=0$ for all $i \in\{1, \ldots, n\}$. Based on Table 1 . $c^{\mathrm{CH}, \text { wIS }}=i^{\min }\left(\alpha^{\prime}-\sqrt{\frac{\ln (1 / \delta)}{2 n}}+\right.$ $\left.\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right) / k\left(1-\alpha^{\prime}+\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right)$ if $k^{\prime}=k$. The result of 6) for the estimator that uses

CH and WIS is the following:
$\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} f^{\mathrm{CH}, \mathrm{wIS}}\left(\operatorname{Panacea}\left(D, c^{\mathrm{CH}, \mathrm{wIS}}\right), c^{\mathrm{CH}, \mathrm{wIS}}, 1, k\right)-L^{\mathrm{CH}, \text { wiS }}\left(\pi_{e}, \operatorname{Panacea}\left(D, c^{\mathrm{CH}, \mathrm{wIS}}\right)\right)$

$$
\begin{aligned}
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} \frac{1}{k c^{\mathrm{CH}, \mathrm{WIS}}+\sum_{i=1}^{n} w_{i}}\left(\sum_{i=1}^{n} w_{i} g_{i}+k\left(c^{\mathrm{CH}, \mathrm{WIS}}\right)(1)\right)-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}-\left(\frac{1}{\sum_{i=1}^{n} w_{i}} \sum_{i=1}^{n} w_{i} g_{i}-b \sqrt{\frac{\ln (1 / \delta)}{2 n}}\right) \\
& =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} b \sqrt{\frac{\ln (1 / \delta)}{2 n}}-b \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k c^{\mathrm{CH}, \mathrm{WIS}}}{\left(k c^{\mathrm{CH}, \mathrm{WIS}}+\beta\right)}\left(1-\frac{\sum_{i=1}^{n} w_{i} g_{i}}{\beta}\right) \\
& \leq \sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k c^{\mathrm{CH}, \mathrm{WIS}}}{\left(k c^{\mathrm{CH}, \mathrm{WIS}}+i^{\mathrm{min}}\right)} \\
& =\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right)+\frac{\left(\alpha^{\prime}-\sqrt{\frac{\ln (1 / \delta)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right)}{\left(\alpha^{\prime}-\sqrt{\frac{\ln (1 / \delta)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right)+\left(1-\alpha^{\prime}+\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right)} \\
& =\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\alpha^{\prime}-\sqrt{\frac{\ln (1 / \delta)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
& =\alpha^{\prime} .
\end{aligned}
$$

C. 2 Proof of Corollary 2

Let α and k^{\prime} denote the user-specified inputs to Panacea. If $k^{\prime}=k$, i.e., the user inputs the correct number of trajectories added by the attacker, the result of (6) for the estimator that uses CH and IS is the following:

$$
\begin{aligned}
\alpha & =\max _{D \in \mathcal{D}_{n}^{\mathcal{H}}} f^{\mathrm{CH}, \text { IS }}(\operatorname{Panacea}(D, c), c, 1, k)-L^{\mathrm{CH}, \text { IS }}\left(\pi_{e}, \operatorname{Panacea}(D, c)\right) \\
\alpha & =c\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right) \\
c & =\frac{\alpha}{\left(\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k}{(n+k)}\right)} .
\end{aligned}
$$

If $k^{\prime}=k$, the result of 6) for the estimator that uses CH and WIS is the following:
$\max _{D \in \mathcal{D}_{n}^{H}} f^{\mathrm{CH}, \mathrm{WIS}}($ Panacea $(D, c), c, 1, k)-L^{\mathrm{CH}, \mathrm{WIS}}\left(\pi_{e}, \operatorname{Panacea}(D, c)\right) \leq \sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k c}{\left(k c+i^{\min }\right)}$.
Setting the right-hand side of (7) to α, and solving for c equals:

$$
\begin{aligned}
\alpha & =\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}+\frac{k c}{\left(i^{\min }+k c\right)} \\
\frac{k c}{\left(i^{\min }+k c\right)} & =\alpha-\sqrt{\frac{\ln (1 / \delta)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
k c-k c \alpha+k c \sqrt{\frac{\ln (1 / \delta)}{2 n}}-k c \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} & =i^{\min } \alpha-i^{\min } \sqrt{\frac{\ln (1 / \delta)}{2 n}}+i^{\min } \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
k c\left(1-\alpha+\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right) & =i^{\min } \alpha-i^{\min } \sqrt{\frac{\ln (1 / \delta)}{2 n}}+i^{\min } \sqrt{\frac{\ln (1 / \delta)}{2(n+k)}} \\
c & =\frac{i^{\min }\left(\alpha-\sqrt{\frac{\ln (1 / \delta)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right)}{k\left(1-\alpha+\sqrt{\frac{\ln (1 / \delta)}{2 n}}-\sqrt{\frac{\ln (1 / \delta)}{2(n+k)}}\right.} .
\end{aligned}
$$

