A Further Preliminaries

For a sequence of vectors v_{1}, \ldots, v_{ℓ}, we let $v_{1} v_{2} \ldots v_{\ell}=v_{1} \circ v_{2} \circ \ldots \circ v_{\ell}=\bigcirc_{i=1}^{\ell} v_{i}$ denote their concatenation.

By the following observation, when proving a lower bound for a compression of size $\Theta\left(N^{\gamma}\right)$, the main task is to prove the upper bound $n=O\left(N^{\gamma}\right)$; the lower bound $n=\Omega\left(N^{\gamma}\right)$ can be ensured mechanically.
Observation A.1. Let $0 \leqslant \gamma \leqslant 1$. Given two N-dimensional vectors u, v of compressed size $O\left(N^{\gamma}\right)$, we can compute two $O(N)$-dimensional vectors u^{\prime}, v^{\prime} of compressed size $\Theta\left(N^{\gamma}\right)$ with the same inner product.

Proof. Append $0^{N^{\gamma}}$ using $\Theta\left(N^{\gamma}\right)$ additional rules to the encodings of u and v.
The Strong k SUM Assumption To generalize the lower bound of Theorem 1.1 so that it works for an arbitrary relationship between compressed and uncompressed sizes, we will use an assumption about a generalized version of 3SUM.
Definition A. 2 (The k SUM Problem). Given k sets A_{1}, \ldots, A_{k} of m integers in $\{1, \ldots, U\}$, decide if there are k numbers $a_{1} \in A_{1}, \ldots, a_{k} \in A_{k}$ such that $a_{1}+\cdots+a_{k-1}=a_{k}$.

For all constant $k \geqslant 3$ a simple meet-in-the-middle algorithm with hashing solves k SUM in $O\left(m^{[k / 2\rceil}\right)$ time, and no faster algorithm by m^{ε} factors, for any $\varepsilon>0$, is known to date, unless the universe size U is smaller than $O\left(m^{[k / 2]-\varepsilon}\right)$. This is because Fast Fourier Transform gives an $O(m+k U \log U)$ time algorithm [27]. It is conjectured that substantially faster algorithms do not exist (e.g. in [4, 2]).
The Strong $k S U M$ Conjecture. For all constant $k \geqslant 3$ it holds that: no algorithm can solve the k SUM problem with $U=O\left(m^{[k / 2\rceil}\right)$ in $O\left(m^{[k / 2]-\varepsilon}\right)$ time, where $\varepsilon>0$.

Observe that this assumption is about all $k \geqslant 3$ and therefore implies the Strong 3SUM conjecture as a special case. Intuitively, the reason this problem helps us give reductions where the vectors are much more compressible is that, compared to 3 SUM , as k grows the ratio between the time complexity $m^{k / 2}$ and the input size m grows.

B Vector Inner Product

In this section, we prove the generalization of the lower bound of Theorem 1.1 to arbitrary relationships between compressed and uncompressed sizes of the vectors.
Theorem B.1. Let $0<\varepsilon<1 / 3$. Assuming the Strong $k S U M$ conjecture for all constant k, the inner product of two N-dimensional vectors that are grammar-compressed to size $n=\Theta\left(N^{\varepsilon}\right)$ cannot be computed in $O\left(N^{1 / 3-\delta}\right)$ time, where $\delta>0$.

This result follows from the following stronger statement.
Theorem B.2. Let $k \geqslant 3$. Assuming the Strong kSUM conjecture, the inner product of two N dimensional vectors that are grammar-compressed to size $n=\Theta\left(N^{1 /\left[\frac{3 k-4}{2} 1\right.}\right)$ cannot be computed in $O\left(N^{\left(1 / 3+\gamma_{k}\right)-\delta}\right)$ time, where $\delta>0$ and

$$
\gamma_{k}:= \begin{cases}\frac{2}{3(k-1)}, & \text { if } k \text { is odd } \\ \frac{4}{9 k-12}, & \text { if } k \text { is even } .\end{cases}
$$

Observe that the above statement implies Theorem B.1. For any $0<\varepsilon<1 / 3$, we choose k sufficiently large such that $1 /\left\lceil\frac{3 k-4}{2}\right\rceil<\varepsilon$. Then using Observation A.1, we obtain that any $O\left(N^{1 / 3-\delta}\right)$-time algorithm for Vector Inner Product with compressed size $n=\Theta\left(N^{\varepsilon}\right)$ would give an $O\left(N^{1 / 3+\gamma_{k}-\delta^{\prime}}\right)$-time algorithm for Vector Inner Product with compressed size $O\left(N^{1 /\left\lceil\frac{3 k-4}{2}\right\rceil}\right)=$ $O\left(N^{\varepsilon}\right)$, where $\delta^{\prime}=\gamma_{k}+\delta$ - this would refute the Strong k SUM conjecture by Theorem B. 2
Furthermore, observe that if we set $k=3$, we obtain a $\tilde{\Omega}\left(N^{2 / 3}\right)$ lower bound for compressed size $n=\Theta\left(N^{1 / 3}\right)$ under the Strong 3SUM conjecture.

In the remainder of this section, we give the proof of Theorem B.2. The central construction is captured by the following lemma.
Lemma B.3. Given sets A_{1}, \ldots, A_{k} of integers in $\{1, \ldots, U\}$, we define

$$
\begin{aligned}
v_{A_{1}+\cdots+A_{k-1}}^{\prime} & :=\bigcirc_{\left(a_{1}, \ldots, a_{k-2}\right) \in A_{1} \times \cdots \times A_{k-2}} 0^{\text {in lexicographic order }^{a_{1}+\cdots+a_{k-2}} v_{A_{k-1}} 0^{(k-2) U-a_{1}-\cdots-a_{k-2}},} \\
v_{A_{k}}^{\prime} & :=\left(v_{A_{k}} 0^{(k-2) U}\right)^{m^{k-2}},
\end{aligned}
$$

where $v_{A_{k-1}}, v_{A_{k}} \in\{0,1\}^{U}$ denote the characteristic vectors of the sets A_{k-1}, A_{k}. We have the following properties:

1. The inner product of the $m^{k-2}(k-1) U$-dimensional vectors $v_{A_{1}+\cdots+A_{k-1}}^{\prime}$ and $v_{A_{k}}^{\prime}$ is nonzero if and only if there is a tuple $\left(a_{1}, \ldots, a_{k}\right) \in A_{1} \times \cdots \times A_{k}$ with $a_{1}+\cdots+a_{k-1}=a_{k}$.
2. We can compute compressions of $v_{A_{1}+\cdots+A_{k-1}}^{\prime}, v_{A_{k}}^{\prime}$ of size $O(k m \log U)=O(m \log U)$ in time $O(m \log U)$.

Proof. For 1., observe that by construction, $v_{A_{1}+\cdots+A_{k_{1}}}^{\prime}$ and $v_{A_{k}}^{\prime}$ consist of m^{k-2} blocks, indexed by $\left(a_{1}, \ldots, a_{k-2}\right) \in A_{1} \times \cdots \times A_{k-2}$ and consisting of the sequence $0^{a_{1}+\cdots+a_{k-2}} v_{A_{k-1}} 0^{(k-2) U-a_{1}-\cdots-a_{k-2}}$ and $v_{A_{k}} 0^{(k-2) U}$ of length $(k-1) U$, respectively. In particular, in block $\left(a_{1}, \ldots, a_{k-2}\right)$ there is a common 1-entry t if and only if $t=\left(a_{1}+a_{2}+\cdots+a_{k-2}\right)+a$ for some $a \in A_{k-1}$ and $t=a^{\prime}$ for some $a^{\prime} \in A_{k}$. Thus, there exists a common 1-entry in $v_{A_{1}+\cdots+A_{k-2}}^{\prime}$ and $v_{A_{k}}^{\prime}$ if and only if there are $\left(a_{1}, \ldots, a_{k}\right) \in A_{1} \times \cdots \times A_{k}$ with $a_{1}+\cdots+a_{k-1}=a_{k}$.
For 2., we first recall that as shown in the proof of Theorem 1.1, we can compute a compression of the characteristic vectors $v_{A_{k-1}}$ and $v_{A_{k}}$ of size $O(m \log U)$ in time $O(m \log U)$. Thus, using Proposition 2.1, we can compute a compression of $v_{A_{k}}^{\prime}=\left(v_{A_{k}} 0^{(k-2) U}\right)^{m^{k-2}}$ of size $O(m \log U)+$ $O(\log ((k-2) U))+O\left(\log m^{k-2}\right)=O(m \log U)$ in time $O(m \log U)$. To show the claim for $v_{A_{1}+\cdots+A_{k-1}}^{\prime}$, we proceed inductively and construct the strings $v_{A_{k-1}}^{\prime}:=v_{A_{k-1}}$ and

$$
v_{A_{i}+\cdots+A_{k-1}}^{\prime}:=\bigcirc_{\substack{\left.a_{i}, \ldots, a_{k-2}\right) \in A_{i} \times \cdots \times A_{k-2} \\ \text { in lexicographic order }}} 0^{a_{i}+\cdots+a_{k-2}} v_{A_{k-1}} 0^{(k-1-i) U-a_{i}-\cdots-a_{k-2}},
$$

for $i=k-2, \ldots, 1$. The central observation is that we can write $A_{i}=\left\{a_{1}^{(i)}, \ldots, a_{m}^{(i)}\right\}$ with $a_{1}^{(i)}<a_{2}^{(i)}<\cdots<a_{m}^{(i)}$ and obtain

$$
v_{A_{i}+\cdots+A_{k-1}}^{\prime}=\bigcirc_{j=1}^{m} 0^{a_{j}^{(i)}} v_{A_{i+1}+\cdots+A_{k-1}}^{\prime} 0^{U-a_{j}^{(i)}}
$$

Thus, given an $\operatorname{SLP} \mathcal{G}_{i+1}$ for $v_{A_{i+1}+\cdots+A_{k-1}}^{\prime}$ with starting symbol S_{i+1}, we can give an SLP \mathcal{G}_{i} for $v_{A_{i}+\cdots+A_{k-1}}^{\prime}$ of size $\left|\mathcal{G}_{i+1}\right|+O(m \log U)$ as follows: For each $j=1, \ldots, m$, we encode $0^{a_{j}^{(i)}}$ using $O\left(\log a_{j}^{(i)}\right)=O(\log U)$ additional symbols, re-use S_{i+1} to generate $v_{A_{i+1}+\cdots+A_{k-1}}^{\prime}$, and encode $0^{U-a_{j}^{(i)}}$ using $O\left(\log \left(U-a_{j}^{(i)}\right)\right)=O(\log U)$ additional symbols. Observe that we can obtain this compression in time $O(m \log U)$.
Thus, starting from an SLP for $v_{A_{k-1}}^{\prime}$, after $k-2$ steps we obtain an SLP \mathcal{G}_{1} for $v_{A_{1}+\cdots+A_{k-1}}^{\prime}$ of size $O(k m \log U)=O(m \log U)$. The running time of this construction is $O(k m \log U)=O(m \log U)$, concluding the proof.

Let $A_{1}, \ldots, A_{k} \subseteq\{1, \ldots, U\}$ be a Strong k SUM instance, i.e., $U=O\left(m^{[k / 2\rceil}\right)$. The reduction given in Lemma B. 3 gives two vectors v, v^{\prime} of dimension $m^{k-2} \cdot(k-1) U$ such that their inner product allows us to decide the k SUM instance. Furthermore, the vectors have a compressed size of $O(m \log U)$.

We slightly adapt v, v^{\prime} by appending 0 's to increase the dimension slightly to $N=m^{k-2} \cdot(k-$ 1) $U \log ^{[(3 k-4) / 2]} U$ (this does not change their inner product). We verify the following facts: (1) an $O\left(N^{1 / 3+\gamma_{k}-\delta}\right)$-time Vector Inner Product algorithm for some $\delta>0$ refutes the Strong k SUM
conjecture and (2) $n=O\left(N^{1 /\left[\frac{3 k-4}{2}\right\rceil}\right)$. Using Observation A.1, this concludes the proof of Theorem B. 2
For (1), consider first the case that k is odd. Then $U=O\left(m^{(k+1) / 2}\right)$ and $N=$ $O\left(m^{k-2} U\right.$ polylog $\left.U\right)=O\left(m^{3(k-1) / 2}\right.$ polylog $\left.m\right)$. Observe that

$$
\begin{aligned}
N^{1 / 3+\gamma_{k}-\delta} & =O\left(m^{\frac{3(k-1)}{2} \cdot\left(\frac{1}{3}+\frac{2}{3(k-1)}-\delta\right)} \text { polylog } m\right) \\
& =O\left(m^{\frac{k-1}{2}+1-\frac{3(k-1)}{2} \delta}\right)=O\left(m^{\left[\frac{k}{2}\right\rceil-\delta^{\prime}}\right)
\end{aligned}
$$

for any $0<\delta^{\prime}<3(k-1) \delta / 2$.
Similarly, for even k, we have $U=O\left(m^{k / 2}\right)$ and $N=O\left(m^{k-2} U\right.$ polylog $\left.U\right)=$ $O\left(m^{(3 k-4) / 2}\right.$ polylog $\left.m\right)$. Using $1 / 3+\gamma_{k}=1 / 3+4 /(9 k-12)=k /(3 k-4)$, we obtain that

$$
N^{1 / 3+\gamma_{k}-\delta}=O\left(m^{\frac{3 k-4}{2} \cdot\left(\frac{k}{3 k-4}-\delta\right)} \text { polylog } m\right)=O\left(m^{\frac{k}{2}-\delta^{\prime}}\right),
$$

for any $0<\delta^{\prime}<(3 k-4) \delta / 2$. Thus, in both cases, an $O\left(N^{1 / 3+\gamma_{k}-\delta}\right)$-time Vector Inner Product algorithm refutes the Strong k SUM conjecture by solving the given k SUM instance in time $O\left(m^{\lceil k / 2\rceil-\delta^{\prime}}\right)$ with $\delta^{\prime}>0$.
Finally, for (2), note that $N=O\left(m^{k-2} U \log { }^{\lceil(3 k-4) / 2\rceil} U\right)=O\left(m^{\lceil(3 k-4) / 2\rceil} \log { }^{\lceil(3 k-4) / 2\rceil} m\right)$. Thus $n=O(m \log m)=O\left(N^{1 /[(3 k-4) / 2\rceil}\right)$, as desired.

C Matrix-Vector Product

In this section we provide the full proof of Theorem 1.2 We first prove a self-reduction for 3SUM as a central tool (using standard techniques), and then proceed to give the final reduction.

C. 1 Proof of the Self-Reduction

Let us restate Lemma 4.1
Lemma C. 1 (Self-Reduction for 3SUM). Let $1 \leqslant s=s(m) \leqslant m$ and $\varepsilon>0$ be arbitrary. If there is an algorithm that, given a target t and $L=O\left((\mathrm{~m} / \mathrm{s})^{2}\right)$ sets $A_{\ell}, B_{\ell}, C_{\ell}$ of s integers in $\left\{1, \ldots, O\left(s^{3} \log ^{2} s\right)\right\}$, determines for all $1 \leqslant \ell \leqslant L$ whether there are $a \in A_{\ell}, b \in B_{\ell}, c \in C_{\ell}$ with $a+b+c=t$ in total time $O\left(m^{2-\epsilon}\right)$, then the 3SUM conjecture is false.

In the remainder of this section, we give the proof.
Let A, B, C be sets of m integers in $\{1, \ldots, U\}$. We use a couple of results from earlier work that are stated for the following 3SUM formulation: given three sets $A^{\prime}, B^{\prime}, C^{\prime}$ of m integers in $\{-U, \ldots, U\}$ with $U=O\left(m^{3} \log ^{2} m\right)$, we are asked to determine whether there are $a \in A^{\prime}, b \in B^{\prime}, c \in C^{\prime}$ such that $a+b+c=0$. We first reduce our formulation to this formulation by setting $A^{\prime}:=A, B^{\prime}:=B$, and $C^{\prime}:=-C=\{-c \mid c \in C\}$. We can now use the following known self-reduction for 3SUM.
Lemma C. 2 (Reformulated from [62, Theorem 13]). Let $s:=s(m)$ with $1 \leqslant s \leqslant m$. Given three sets $A^{\prime}, B^{\prime}, C^{\prime}$ of m integers in $\{-U, \ldots, U\}$, we can compute, in time $O\left(\mathrm{~m}^{2} / \mathrm{s}\right)$, a list of $L=O\left((m / s)^{2}\right) 3 S U M$ instances, i.e., sets $A_{\ell}^{\prime}, B_{\ell}^{\prime}, C_{\ell}^{\prime}$ with $1 \leqslant \ell \leqslant L$, such that there is an $a \in A^{\prime}, b \in B^{\prime}, c \in C^{\prime}$ with $a+b+c=0$ if and only if there is an instance $1 \leqslant \ell \leqslant L$ and a triple $a \in A_{\ell}^{\prime}, b \in B_{\ell}^{\prime}, c \in C_{\ell}^{\prime}$ with $a+b+c=0$. Furthermore, each $A_{\ell}^{\prime}, B_{\ell}^{\prime}, C_{\ell}^{\prime}$ is a subset of s integers of $A^{\prime}, B^{\prime}, C^{\prime}$, respectively.

Proof sketch. We give the high-level arguments (for details, see the proof of Theorem 13 in [62]). For a set S, let $\min S$ and $\max S$ denote the smallest and largest element in S, respectively. We sort $A^{\prime}, B^{\prime}, C^{\prime}$ and split each array into $\lceil\mathrm{m} / \mathrm{s}\rceil$ consecutive parts $A_{1}^{\prime}, \ldots, A_{\lceil m / s\rceil}^{\prime}, B_{1}^{\prime}, \ldots, B_{\lceil m / s\rceil}^{\prime}, C_{1}^{\prime}, \ldots, C_{\lceil m / s\rceil}^{\prime}$, each of at most s elements, such that max $A_{i}^{\prime}<$ $\min A_{i+1}^{\prime}, \max B_{i}^{\prime}<\min B_{i+1}^{\prime}$ and $\max C_{i}^{\prime}<\min C_{i+1}^{\prime}$ for all i. Instead of searching for a 3SUM triple $a \in A_{i}^{\prime}, b \in B_{j}^{\prime}, c \in C_{k}^{\prime}$ for each $1 \leqslant i, j, k \leqslant\lceil m / s\rceil$ (i.e., $\Theta\left((m / s)^{3}\right)$ subproblems with s elements each), one observes that most subproblems can be trivially solved: We say that a subproblem (i, j, k) is trivial, if $\min A_{i}+\min B_{j}+\min C_{k}>0$ or $\max A_{i}+\max B_{j}+\max C_{k}<0$;
these subproblems cannot contain a solution. The key insight is that there are at most $O\left((\mathrm{~m} / \mathrm{s})^{2}\right)$ non-trivial subproblems (which follows since the domination partial ordering on $\{1, \ldots, u\}^{3}$ has at most $O\left(u^{2}\right)$ incomparable elements); these can be determined in time $O\left((\mathrm{~m} / \mathrm{s})^{2}\right)$. Thus, it suffices to list all $O\left((\mathrm{~m} / \mathrm{s})^{2}\right)$ non-trivial subproblems with s integers in each set in time $O\left(\mathrm{~m}^{2} / \mathrm{s}\right)$.

The resulting instances $A_{\ell}^{\prime}, B_{\ell}^{\prime}, C_{\ell}^{\prime}$ consist of integers in $\{-U, \ldots, U\}$ with large universe size $U=$ $O\left(m^{3} \log ^{2} m\right)$. We reduce the universe size to $O\left(s^{3} \log ^{2} s\right)$ using a folklore technique (a slightly stronger result with $U=O\left(s^{3}\right)$ can be achieved using the techniques of [15]). To prepare notation, for any set S, we let $S \bmod p:=\{s \bmod p \mid s \in S\}$.
Lemma C. 3 (Adaptation of [5, Lemma B.1]). There is some α such that $U^{\prime}:=\alpha s^{3} \log s \log U$ satisfies the following property: Let A, B, C be sets of s integers in $\{-U, \ldots, U\}$ such that no $a \in A, b \in B, c \in C$ satisfies $a+b+c=0$. Let p be a prime chosen uniformly at random from $\left\{2, \ldots, U^{\prime}\right\}$. Then the probability that there are $a_{p} \in A \bmod p, b_{p} \in B \bmod p, c_{p} \in C \bmod p$ with $a_{p}+b_{p}+c_{p} \equiv 0(\bmod p)$ is at most $1 / 2$.

Proof. Let $a \in A, b \in B, c \in C$ be arbitrary. Since $a+b+c \neq 0$, note that $(a \bmod p)+(b \bmod p)+$ $(c \bmod p) \equiv 0(\bmod p)$ if and only if p divides $a+b+c$. Since $a+b+c \in\{-3 U, \ldots, 3 U\}, a+b+c$ has at $\operatorname{most}^{\log _{2}(3 U)}$ prime factors. Let P denote the number of prime numbers in $\left\{2, \ldots, U^{\prime}\right\}$; by the prime number theorem we can choose α large enough such that $P \geqslant 2 s^{3} \log _{2}(3 U)$. Thus, the probability that p was chosen among these at $\operatorname{most}^{\log _{2}(3 U) \text { prime factors is at } \operatorname{most} \log _{2}(3 U) / P \leqslant}$ $1 /\left(2 s^{3}\right)$. Thus, by a union bound over all s^{3} triples $a \in A, b \in B, c \in C$, the probability that there are $a_{p} \in A \bmod p, b_{p} \in B \bmod p, c_{p} \in C \bmod p$ with $a+b+c \equiv 0(\bmod p)$ is at most $1 / 2$.

Note that if A, B, C contain a triple a, b, c with $a+b+c=0$, then also $A \bmod p, B \bmod p, C \bmod p$ contain a triple a_{p}, b_{p}, c_{p} with $a_{p}+b_{p}+c_{p} \equiv 0(\bmod p)$ for any p.
We can finally prove Lemma C.1. Assume that there is an algorithm \mathcal{A} that given a target t and $L=O\left((m / s)^{2}\right)$ instances $A_{\ell}, B_{\ell}, C_{\ell}, 1 \leqslant \ell \leqslant L$ of s integers in $\left\{1, \ldots, U^{\prime}\right\}$, determines for all $1 \leqslant \ell \leqslant L$ whether there are $a \in A_{\ell}, b \in B_{\ell}, c \in C_{\ell}$ with $a+b+c=t$ in total time $O\left(m^{2-\varepsilon}\right)$ with $\varepsilon>0$. Observe that since \mathcal{A} runs in time $O\left(m^{2-\varepsilon}\right)$, we must have $s=\Omega\left(m^{\varepsilon}\right)$, since otherwise already the size of the input to \mathcal{A} of $\Theta\left(m^{2} / s\right)$ would be $\omega\left(m^{2-\varepsilon}\right)$. Thus, we have $U^{\prime}=O\left(s^{3} \log ^{2} s\right)$.
For $r=1, \ldots, \gamma \log m$ many repetitions, we do the following: We choose a random prime $p_{r} \in$ [$\left.2, U^{\prime}\right]$ and obtain ℓ instances in $\left\{0, \ldots, p_{r}-1\right\} \subseteq\{0, \ldots, U\}$ by taking the sets modulo p_{r}, i.e., $A_{\ell}^{(r)}:=A_{\ell}^{\prime} \bmod p_{r}, B_{\ell}^{(r)}:=B_{\ell}^{\prime} \bmod p_{r}$, and $C_{\ell}^{(r)}=C_{\ell}^{\prime} \bmod p_{r}$. Observe that we may determine whether there is some $a \in A_{\ell}^{(r)}, b \in B_{\ell}^{(r)}, c \in C_{\ell}^{(r)}$ with $a+b+c \equiv 0\left(\bmod p_{r}\right)$ by testing for each $t \in\left\{0, p_{r}, 2 p_{r}\right\}$, whether there $a \in A_{\ell}^{(r)}, b \in B_{\ell}^{(r)}, c \in C_{\ell}^{(r)}$ with $a+b+c=t$. Thus, to do this, and additionally ensure that each integer is in $\left\{1, \ldots, U^{\prime}\right\}$, we add 1 to each integer in $A_{\ell}^{(r)}, B_{\ell}^{(r)}, C_{\ell}^{(r)}$ and for each $\lambda \in\{0,1,2\}$, call \mathcal{A} on the sets $A_{\ell}^{(r)}, B_{\ell}^{(r)}, C_{\ell}^{(r)}, 1 \leqslant \ell \leqslant L$ with common target $t_{\lambda}:=3+\lambda p_{r}$.
Observe that after these $3 \gamma \log m$ calls to \mathcal{A}, we know for each $1 \leqslant \ell \leqslant L$ and $1 \leqslant r \leqslant \gamma \log m$ whether there are $a \in A_{\ell}^{\prime}, b \in B_{\ell}^{\prime}, c \in C_{\ell}^{\prime}$ with $a+b+c \equiv 0\left(\bmod p_{r}\right)$. We declare our original 3SUM instance A, B, C to be a YES instance if and only if there is some ℓ such that for all r we have found a witness $a \in A_{\ell}^{\prime}, b \in B_{\ell}^{\prime}, c \in C_{\ell}^{\prime}$ with $a+b+c \equiv 0\left(\bmod p_{r}\right)$. Note that if A, B, C is a YES instance, we always return YES by Lemma C.2. Otherwise, if A, B, C is a NO instance, consider a fixed ℓ. By Lemmas C. 2 and C.3, the probability that for all r, we find $a \in A_{\ell}^{\prime}, b \in B_{\ell}^{\prime}, c \in C_{\ell}^{\prime}$ with $a+b+c \equiv 0\left(\bmod p_{r}\right)$ is bounded by $2^{-\gamma \log m}=m^{-\gamma}$. Thus, by a union bound over all ℓ, the probability that we incorrectly return YES in this case is at most $L m^{-\gamma}=O\left((m / s)^{2} m^{-\gamma}\right)=O\left(m^{2-\gamma}\right)$. We can make this error probability polynomially small by choosing $\gamma>2$.

Observe that the running time of the above process is $O(\log m)$ times the running time of \mathcal{A} (note that the running time used for Lemma C. 2 is linear in its output size, which is the input size of \mathcal{A} and thus dominated by the running time of \mathcal{A}). Thus, we can solve any 3SUM instance in time $O\left(m^{2-\varepsilon} \log m\right)$, which would refute the 3 SUM conjecture. This concludes the proof of Lemma C. 1

C. 2 Main Reduction for Matrix-Vector Multiplication

We now turn to the proof of Theorem 1.2

Proof. Let s be a parameter to be chosen later. By Lemma 4.1, it suffices to solve $L=O\left((\mathrm{~m} / \mathrm{s})^{2}\right)$ 3SUM instances $A_{\ell}, B_{\ell}, C_{\ell}$ consisting of s integers in $\{1, \ldots, U\}, U=O\left(s^{3} \log ^{2} s\right)$ with common target $1 \leqslant t \leqslant 3 U$ in time $O\left(m^{2-\epsilon}\right)$ for some $\epsilon>0$ to contradict the 3SUM conjecture.

We construct an $\left(L \times 3 s^{2} U\right)$ matrix M and $v \in\{0,1\}^{3 s^{2} U}$ as follows. Intuitively, each row M_{ℓ} and the vector v are partitioned into s^{2} blocks of size $3 U$. Each block is indexed by (i, j) with $i, j \in\{1, \ldots, s\}$ in lexicographic order and the block of M_{ℓ} corresponding to (i, j) encodes the characteristic vector of the set $a_{i}+b_{j}+C_{\ell}=\left\{a_{i}+b_{j}+c \mid c \in C_{\ell}\right\} \subseteq\{1, \ldots, 3 U\}$, where a_{i} is the i-th integer in A_{ℓ} and b_{j} is the j-th integer in B_{ℓ}. Correspondingly, every block (i, j) in v encodes the characteristic vector of the singleton set $\{t\} \subseteq\{1, \ldots, 3 U\}$. Thus, there is a position in block (i, j) in which both M_{ℓ} and v have a 1 if and only if there is a $c \in C_{\ell}$ such that $a_{i}+b_{j}+c=t$.
Formally, for any $1 \leqslant \ell \leqslant L$, we write $A_{\ell}=\left\{a_{1}^{\ell}, \ldots, a_{s}^{\ell}\right\}, B_{\ell}=\left\{b_{1}^{\ell}, \ldots, b_{s}^{\ell}\right\}$ and define
where $v_{C \ell} \in\{0,1\}^{U}$ denotes the characteristic vector of C_{ℓ}. By this structure, it is clear that $M_{\ell} v \geqslant 1$ if and only if there are $a \in A_{\ell}, b \in B_{\ell}, c \in C_{\ell}$ with $a+b+c=t$.
We will show that each row M_{ℓ} can be compressed to size $\Theta(s \log s)$ (as opposed to its RLE of length $\Theta\left(s^{3} \log s\right)$). We thus will set $N=\left\lceil 3 s^{2} U \log ^{3} s\right\rceil=\Theta\left(s^{5} \log ^{5} s\right)$, and append $0^{N-3 s^{2} U}$ to each row M_{ℓ} and v, so that we obtain an $L \times N$ matrix M^{\prime} and N-dimensional vector v^{\prime} whose product $M^{\prime} v^{\prime}$ can be used to solve all instances $A_{\ell}, B_{\ell}, C_{\ell}$ in linear time. Observe that each row has a compression of size $\Theta\left(N^{1 / 5}\right)=\Theta(s \log s)$, as desired. Since $L=O\left((m / s)^{2}\right)$ and $N \geqslant s^{5}$, we can set $s=\Theta\left(m^{2 / 7}\right)$ such that $L \leqslant N$ (we can indeed make $L=N$ by introducing zero rows, if necessary). Thus, an $O\left(N n^{2-\epsilon}\right)$-time algorithm for multiplying M^{\prime} and v^{\prime} would solve all L 3SUM instances in time

$$
O\left(N n^{2-\epsilon}\right)=O\left((m / s)^{2}(s \log s)^{2-\epsilon}\right)=O\left(\left(m^{2} / s^{\epsilon}\right) \operatorname{polylog} s\right)=O\left(m^{2-\frac{2}{7} \epsilon} \operatorname{poly} \log m\right)
$$

which would refute the 3SUM conjecture.
Analogous to the proof of Theorems 1.1 and B.2, we can compute a compression of size $\Theta(s \log s)$ in time $O(s \log s)$. Indeed, for each \bar{M}_{ℓ}, this already follows from Lemma B.3 when setting $A_{1}:=$ $A_{\ell}, A_{2}:=B_{\ell}, A_{3}:=C_{\ell}$, which shows how to compress the string $v_{A_{1}+A_{2}+A_{3}}^{\prime}=M_{\ell}$ to size $O(s \log U)=O(s \log s)$ in time $O(s \log U)=O(s \log s)$. For v, we simply apply Proposition 2.1 to the straightforward compression of $0^{t-1} 10^{3 U-t}$ to size $O(\log U)$, which leads to a compression of v of size $O(\log U+\log s)=O(\log s)$. Using Observation A.1, we can make all encodings have size $\Theta(s \log s)$, which concludes the proof.

D Matrix-Matrix Product

In this section, we give the full proof of Theorem 5.1

Proof of Theorem 5.1. Let $\ell \in \mathbb{N}$. We first define the matrices A^{\prime}, B^{\prime} where A^{\prime} is a $\left(2^{\ell} \times 2 \ell\right)$ matrix with rows indexed by strings $x \in\{0,1\}^{\ell}$ in lexicographic order, and B^{\prime} is a $\left(2 \ell \times 2^{\ell}(2 \ell)\right)$ matrix with columns indexed by $(y, k) \in\{0,1\}^{\ell} \times\{1, \ldots, 2 \ell\}$ in lexicographic order. For arbitrary $z \in\{0,1\}^{\ell}$, let $\operatorname{diag}(z)$ denote the $\ell \times \ell$ diagonal matrix with z on the diagonal. We define

$$
A_{x}^{\prime}:=\left(x \mid 1^{\ell}\right)
$$

$$
B_{(y, 1), \ldots,(y, 2 \ell)}^{\prime}:=\left(\begin{array}{c|c}
\operatorname{diag}\left(1^{\ell}\right) & 0 \\
\hline 0 & \operatorname{diag}(y)
\end{array}\right)
$$

Let $C^{\prime}=A^{\prime} B^{\prime}$ be the $\left(2^{\ell} \times 2^{\ell}(2 \ell)\right)$ product matrix of A^{\prime} and B^{\prime}, with rows and columns indexed by $\{0,1\}^{\ell}$ and $\{0,1\}^{\ell} \times\{1, \ldots, 2 \ell\}$, respectively. Observe that by definition, $\left(C_{x,(y, 1)}, \ldots, C_{x,(y, 2 \ell)}\right)=$ $(x \mid y)$ for any $x, y \in\{0,1\}^{\ell}$. In particular, when we view C^{\prime} as a $2^{2 \ell}(2 \ell)$-length string, it contains all strings in $\{0,1\}^{2 \ell}$ as substrings, thus by Lemma 5.2. any row-wise compression is of size at least $2^{2 \ell} /(2 \ell)$.
To also ensure column-wise incompressibility, we slightly extend the construction by analogous transposed constructions: We let $N:=2^{\ell}(2 \ell+1)$ and define the final $(N \times N)$ matrices A, B as follows:

$$
A:=\left(\begin{array}{c|c|c}
A^{\prime} & 0 & 0 \\
\hline 0 & B^{\prime T} & 0
\end{array}\right), \quad B:=\left(\begin{array}{c|c}
B^{\prime} & 0 \\
\hline 0 & A^{\prime T} \\
\hline 0 & 0
\end{array}\right) .
$$

Since $C:=A B=\left(\begin{array}{c|c}A^{\prime} B^{\prime} & 0 \\ \hline 0 & \left(A^{\prime} B^{\prime}\right)^{T}\end{array}\right)$ contains all length-(2ℓ) strings as substrings of the rows (in the $A^{\prime} B^{\prime}$ part) and as substrings of the columns (in the $\left(A^{\prime} B^{\prime}\right)^{T}$ part), any strong compression of C is of size at least $2^{2 \ell} /(2 \ell)=\Omega\left(N / \log ^{2} N\right)$, proving the third part of the claim.
For the first two parts, it remains to show that A and B can be well compressed: For the convenient compression, we observe that any row in A is either of the form ($x 1^{\ell}\left|0^{2 \ell}\right| 0^{N-4 \ell}$), which has a RLE of length at most $\left|x 1^{\ell}\right|+O(\log N)=O(\log N)$, or it is of the form $\left(0^{2 \ell}\left|0^{i-1} \alpha 0^{2 \ell-i}\right| 0^{N-4 \ell}\right)$ for some $\alpha \in\{0,1\}, i \in\{1, \ldots, 2 \ell\}$, which also has a RLE of length at most $O(\log N)$. Thus, each of the N rows of A can be compressed to size $O(\log N)$, as desired. By a symmetric statement, also each column of B has a RLE of size $O(\log N)$.
Finally, for the strong compression, we show that we compress A^{T} when viewed as a string, i.e., we compress the concatenation of the columns of A. The main insight is the following: Imagine a binary ℓ-bit counter. Using grammar compression, we can compress the sequence of values of any fixed bit while the counter counts from 0 to $2^{\ell}-1$ in size $O(\ell)$. Formally, let G_{0}, G_{1} be grammar compressions of strings s_{0}, s_{1}. For any $1 \leqslant i \leqslant \ell$, we can encode $\left(s_{0}^{2^{\ell-i}} s_{1}^{2^{\ell-i}}\right)^{2^{i-1}}$ using only $O(\ell)$ additional non-terminals in the canonical way. Specifically, using $O(\ell-i)$ new symbols, we may encode $s_{0}^{2^{\ell-i}} s_{1}^{2^{\ell-i}} ;$ let \tilde{S} denote the corresponding non-terminal. We then encode $\tilde{S}^{2^{i-1}}$ using $O(i)$ additional new symbols. In total, we only need $O((\ell-i)+i)=O(\ell)$ additional symbols, as desired.
We apply the above idea to encode the concatenation all columns of A as follows: Consider column i.

- For $1 \leqslant i \leqslant \ell$, then by the chosen lexicographic order of the row indices $x \in\{0,1\}^{\ell}$ of A^{\prime}, note that the i-th column of A is of the form $\left(0^{2^{\ell-i}} 1^{2^{\ell-i}}\right)^{2^{i-1}} \mid 0^{N-2^{\ell}}$. Using the above analysis, we can compress it to size $O(\ell)+O(\log N)=O(\log N)$.
- If $\ell+1 \leqslant i \leqslant 2 \ell$, the i-th column is of the form $1^{2^{\ell}} \mid 0^{N-2^{\ell}}$, which we can compress to size $O(\log \ell+\log N)=O(\log N)$.
- If $2 \ell+1 \leqslant i \leqslant 3 \ell$, write $i=2 \ell+i^{\prime}$ and observe that the i-th column of A is of the form $0^{2^{\ell}} \mid\left(0^{i^{\prime}-1} 10^{\ell-i^{\prime}}\right)^{2^{\ell}}$. Using $O(\ell)$ non-terminals to encode $0^{i^{\prime}-1} 10^{\ell-i^{\prime}}$, it is immediate that we can compress the complete column using $O(\ell)$ additional non-terminals, i.e., yielding a total of $O(\ell)=O(\log N)$.
- If $3 \ell+1 \leqslant i \leqslant 4 \ell$, write $i=3 \ell+i^{\prime}$ and observe that by the chosen lexicographic order of the column indices $(y, k) \in\{0,1\}^{\ell} \times\{1, \ldots, 2 \ell\}$ of B^{\prime}, the i-th column of A is of the form $0^{2^{\ell}} \mid\left(s_{0}^{2^{\ell-i^{\prime}}} s_{1}^{2^{\ell-i^{\prime}}} 2^{2^{i^{\prime}-1}}\right.$ where $s_{\alpha}:=0^{i^{\prime}-1} \alpha 1^{\ell-i^{\prime}}$. We can give trivial grammars of size $O(\ell)$ for s_{0}, s_{1}. Then, by the above analysis, we only need $O(\ell)$ additional non-terminals for the counter-like part. In total, we only need $O(\ell)=O(\log N)$ non-terminals to encode the i-th column.
- Finally, observe that the remaining columns $i=4 \ell+1, \ldots, N$ consist of $(N-4 \ell) N$ zeroes, which we can encode together using only $O(\log N)$ non-terminals.

In summary, we can encode the first 4ℓ columns using $O(\log N)$ non-terminals each, and only $O(\log N)$ non-terminals for the remaining columns, so we can fully compress the concatenation of A 's columns to size $O\left(\log ^{2} N\right)$, as claimed.

