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Abstract

Signed distance field (SDF) is a prominent implicit representation of 3D meshes.
Methods that are based on such representation achieved state-of-the-art 3D shape
reconstruction quality. However, these methods struggle to reconstruct non-convex
shapes. One remedy is to incorporate a constructive solid geometry framework
(CSG) that represents a shape as a decomposition into primitives. It allows to
embody a 3D shape of high complexity and non-convexity with a simple tree
representation of Boolean operations. Nevertheless, existing approaches are su-
pervised and require the entire CSG parse tree that is given upfront during the
training process. On the contrary, we propose a model that extracts a CSG parse
tree without any supervision - UCSG-NET. Our model predicts parameters of
primitives and binarizes their SDF representation through differentiable indicator
function. It is achieved jointly with discovering the structure of a Boolean operators
tree. The model selects dynamically which operator combination over primitives
leads to the reconstruction of high fidelity. We evaluate our method on 2D and
3D autoencoding tasks. We show that the predicted parse tree representation is
interpretable and can be used in CAD software.1

1 Introduction

Neural networks for 3D shape analysis gained much popularity in recent years. Among their main
advantages are fast inference for unknown shapes and high generalization power. Many approaches
rely on the different representations of the input: implicit such as voxel grids, point clouds and
signed distance fields [1–3], or explicit - meshes [4]. Meshes can be found in computer-aided design
applications, where a graphic designer often composes complex shapes out simple shapes primitives,
such as boxes and spheres.

Existing methods for representing meshes, such as BSP-NET [5] and CVXNET [6], achieve remark-
able accuracy on a reconstruction tasks. However, the process of generating the mesh from predicted
planes requires an additional post-processing step. These methods also assume that any object can be
decomposed into a union of convex primitives. While holding, it requires many such primitives to
represent concave shapes. Consequently, the decoding process is difficult to explain and modified
with some external expert knowledge. On the other hand, there are fully interpretable approaches,
like CSG-NET [7, 8], that utilize CSG parse tree to represent 3D shape construction process. Such
solutions require expensive supervision that assumes assigned CSG parse tree for each example given
during training.

∗Now at Warsaw University of Technology
1We published our code at https://github.com/kacperkan/ucsgnet
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Figure 1: Pipeline of the UCSG-NET. Example of CSG layer is shown in Figure 3.

In this work, we propose a novel model for representing 3D meshes capable of learning CSG parse
trees in an unsupervised manner - UCSG-NET. We achieve the stated goal by introducing so-called
CSG Layers capable of learning explainable Boolean operations for pairs primitives. CSG Layers
create the interpretable network of the geometric operations that produce complex shapes from a
limited number of simple primitives. We evaluate the representation capabilities of meshes of our
approach using challenging 2D and 3D datasets. We summarize our main contributions as:

• Our method is the first one that is able to predict CSG tree without any supervision and
achieve state-of-the-art results on the 2D reconstruction task comparing to CSG-NET trained
in a supervised manner. Predictions of our method are fully interpretable and can aid in
CAD applications.

• We define and describe a novel formulation of constructive solid geometry operations for
occupancy value representation for 2D and 3D data.

2 Method

We propose an end-to-end neural network model that predicts parameters of simple geometric
primitives and their constructive solid geometry composition to reconstruct a given object. Using
our approach, one can predict the CSG parse tree that can be further passed to an external rendering
software in order to reconstruct the shape. To achieve this, our model predicts primitive shapes in
SDF representation. Then, it converts them into occupancy values O taking 1 if a point in the 2D
or the 3D space is inside the shape and 0 otherwise. CSG operations on such a representation are
defined as clipped summations and differences of binary values. The model dynamically chooses
which operation should be used. During the validation, we retrieve the predicted CSG parse tree and
shape primitives, and pass them to the rendering software. Thus, we need a single point in 3D space
to infer the structure of the CSG tree. It is possible since primitive parameters and CSG operations are
predicted independently from sampled points. In the following subsections, we present 2D examples
for clarity. The method scales to 3D inputs trivially.

2.1 Constructive Solid Geometry Network

The UCSG-NET architecture is provided in Figure 1. The model is composed of the following main
components: encoder, primitive parameter prediction network, signed distance field to indicator
function converter and constructive solid geometry layers.

Encoder We process the input object I by mapping it into low dimensional latent vector z of
length dz using an encoder fθ, e.g. fθ(I) = z. Depending on the data type, we use either a 2D or
3D convolutional neural network as an encoder. The latent vector is then passed to the primitive
parameter prediction network.
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Primitive parameter prediction network The role of this component is to extract the parameters
of the primitives, given the latent representation of the input object. The primitive parameter prediction
network gφ consists of multiple fully connected layers interleaved with activation functions. The last
layer predicts parameters of primitives in the SDF representation. We consider primitives such as
boxes and spheres that allow us to calculate signed distance analytically. We note that planes can
be used as well, thus extending approaches like BSP-NET [5] and CVXNET [6]. The mathematical
formulation of used shapes is provided in the supplementary material. The network producesN tuples
of {i ∈ N |pi, ti,qi}. pi ∈ Rdp describes vector of parameters of a particular shape (ex. radius of a
sphere), while ti ∈ Rdt is the translation of the shape and qi ∈ Rdq - the rotation represented as a
quaternion for 3D shapes and a matrix for 2D shapes. We further combine k different shapes to be
predicted by using a fully connected layer for each shape type separately, thus producing kN =M
shapes and M × (dp + dt + dq) parameters in total.

Once parameters are predicted, we use them to calculate signed distance values for sampled points x
from volume of space that boundaries are normalized to unit square (or unit cube for 3D data). For
each shape, that has an analytical equation dist parametrized by p that calculates signed distance
from a point x to its surface, we obtain Di = dist(q−1i (x− ti);pi).

Signed Distance Field to Indicator Function Converter CSG operations in SDF representation
are often defined as a combination of min and max functions on distance values. One has to apply
either LogSumExp operation as in CVXNET or standard Softmax function to obtain differentiable
approximation. However, we cast our problem to predict CSG operations for occupancy-valued sets.
The motivation is that these are linear operations, hence they provide better training stability.

We transform signed distances D to occupancy values O ∈ {0, 1}. We use parametrized α clipping
function that is learned with the rest of the pipeline:

O =

[
1− D

α

]
[0,1]

{
inside, O = 1

outside, O ∈ [0, 1)
(1)

where α is a learnable scalar and α > 0, [·][0,1] clips values to the given range and O means an
approximation of occupancy values. O = 1 indicates the inside and the surface of a shape. O ∈ [0, 1)
means outside of the shape and limα→0O ∈ {0, 1}. Gradual learning of α allows to distribute
gradients to all shapes in early stages of training. There are no specific restrictions for α initialization
and we set α = 1 in our experiments. The value is pushed towards 0 by optimizing jointly with
the rest of parameters by adding the |α| term to the optimized loss. The method follows findings of
Sakr et al. [9] that increasing slope of clipping function can be used to obtain binary activations.

Constructive Solid Geometry Layer Predicted sets of occupancy values and output of the encoder
z are passed to a sequence of L ≥ 1 CSG layers that combine shapes using boolean operators: union
(denoted by ∪∗), intersection (∩∗) and difference (−∗). To grasp an idea of how CSG is performed
on occupancy-valued sets, we show example operations in Figure 2. CSG operations for two sets A
and B are described as:

A ∪∗ B = [A+B][0,1]

A ∩∗ B = [A+B − 1][0,1]

A−∗ B = [A−B][0,1]

B −∗ A = [B −A][0,1]
(2)

The question is how to choose operands A and B, denoted as left and right operands, from
input shapes O(l) that would compose the output shape in O(l+1). We create two learnable matrices
K

(l)
left,K

(l)
right ∈ RM×dz . Vectors stored in rows of these matrices serve as keys for a query z to

select appropriate shapes for all 4 operations. The input latent code z is used as a query to retrieve
the most appropriate operand shapes for each layer. We perform dot product between matrices
K

(l)
left,K

(l)
right and z, and compute softmax along M input shapes.

V
(l)
left = softmax(K(l)

leftz) V
(l)
right = softmax(K(l)

rightz) (3)

The index of a particular operand is retrieved using Gumbel-Softmax [10] reparametrization of the
categorical distribution:

V̂
(l)
side,i =

exp
((

log(V
(l)
side,i) + ci

)
/τ (l)

)
∑M
j=1 exp

((
log(V

(l)
side,j) + cj

)
/τ (l)

) for i = 1, ...,M

and side ∈ {left,right} (4)
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Figure 2: Example of constructive solid
geometry on occupancy-valued sets

Figure 3: Example of relation layer prediction. The CSG
layer chooses pairs operands by masking input shapes and
performs all Boolean operations on selected shapes.

where ci is a sample from Gumbel(0, 1). The benefit of the reparametrization is twofold. Firstly, the
expectation over the distribution stays the same despite changing τ (l). Secondly, we can manipulate
τ (l) so for τ (l) → 0 the distribution degenerates to categorical distribution. Hence, a single shape
selection replaces the fuzzy sum of all input shapes in that case. That way, we allow the network to
select the most appropriate shape for the composition during learning by decreasing τ (l) gradually. By
the end of the learning process, we can retrieve a single shape to be used for the CSG. The temperature
τ (l) is learned jointly with the rest of the parameters. Left and right operands O(l)

left,O
(l)
right are

retrieved as:

O(l)
right =

M∑
i=1

O(l)
i V̂

(l)
right,i O(l)

left =

M∑
i=1

O(l)
i V̂

(l)
left,i (5)

A set of output shapes from the l+1 CSG layer is obtained by performing all operations in Equation 2
on selected operands:

O(l+1)
A∪∗B =

[
O(l)
left +O

(l)
right

]
[0,1]

O(l+1)
A∩∗B =

[
O(l)
left +O

(l)
right − 1

]
[0,1]

O(l+1)
A−∗B =

[
O(l)
left −O

(l)
right

]
[0,1]

O(l+1)
B−∗A =

[
O(l)
right −O

(l)
left

]
[0,1]

(6)

O(l+1) =
[
O(l+1)
A∪∗B ;O

(l+1)
A∩∗B ;O

(l+1)
A−∗B ;O

(l+1)
B−∗A

]
(7)

where left,right ∈ M denotes left and right operands of the operation. By performing these
operations manually, we increase the diversity of possible shape combinations and leave to the model
which operations should be used for the reconstruction. Operations can be repeated to output multiple
shapes. Note that the computation overhead increases linearly with the number of output shapes per
layer. The whole procedure can be stacked in l ≤ L layers to create a CSG network. The L-th layer
outputs a union since it is guaranteed to return a non-empty shape in most cases.

At this point, the network has to learn passing primitives untouched by operators if any primitive
should be used in later layers of the CSG tree to create, for example, nested rings. To mitigate the
problem, each l+1 layer receives outputs from the l-th layer concatenated with the original binarized
values O(0). For the first layer l = 1, it means receiving initial shapes only.

Additional information passing The information about what is left to reconstruct changes layer
by layer. Therefore, we incorporate it into the latent code to improve the reconstruction quality and
stabilize training. Firstly, we encode V̂(l) = [V̂

(l)
left; V̂

(l)
right] with a neural network h(l) containing

a single hidden layer. Then, we employ GRU unit [11] that takes the latent code z(l) and encoded
V̂(l) as an input, and outputs the updated latent code z(l+1) for the next layer. The hidden state of the
GRU unit is learnable. The initial z(0) is the output from the encoder.

Interpretability All introduced components of the UCSG-NET lead us to interpretable predictions
of mesh reconstructions. To see this, consider the following case. When α ≈ 0, we obtain occupancy
values calculated with Equation 1. Thus, shapes represented as these values will occupy the same
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volume as meshes reconstructed from parameters {i ∈M |pi, ti,qi}. These meshes can be visualized
and edited explicitly. To further combine these primitives through CSG operations, we calculate
argmaxi∈M V̂

(l)
left,i, argmaxj∈M V̂

(l)
right,j for left and right operands respectively. Then, we

perform operations A∪∗B, A∩∗B, A−∗B and B−∗A. When ∀l≤Lτ (l) ≈ 0, both V̂
(l)
left, V̂

(l)
right

are one-hot vectors, and operations performed on occupancy values, as in Figure 2, are equivalent to
CSG operations executed on aforementioned meshes, ex. by merging binary space partitioning trees
of meshes [12]. Additionally, the whole CSG tree can be pruned to form binary tree, by investigating
which meshes were selected through V̂

(l)
left, V̂

(l)
right for the reconstruction, thus leaving the tree with

2L−l nodes at each layer l ≤ L.2

2.2 Training

The pipeline is optimized end-to-end using a backpropagation algorithm in a two-stage process.

First stage The goal is to find compositions of primitives that minimize the reconstruction error.
We employ mean squared error of predicted occupancy values Ô(L) with the ground truthO∗. Values
are calculated for X which combines points sampled from the surface of the ground truth, and
randomly sampled inside a unit cube (or square for 2D case):

LMSE = Ex∈X[(O(L) −O∗)2] (8)

We also ensure that the network predicts only positive values of parameters of shapes since only for
such these shapes have analytical descriptions:

LP =

M∑
i=1

∑
pi∈pi

max(−pi, 0) (9)

To stop primitives from drifting away from the center of considered space in the early stages of the
training, we minimize the clipped squared norm of the translation vector. At the same time, we allow
primitives to be freely translated inside the space of interest:

LT =

M∑
i=1

max(||ti||2, 0.5) (10)

The last component includes minimizing |α| to perform continuous binarization of distances into
{inside, outside} indicator values. Our goal is to find optimal parameters of our model by
minimizing the total loss:

Ltotal = LMSE + LP + λTLT + λα|α| (11)

where we set λT = λα = 0.1.

Second stage We strive for interpretable CSG relations. To achieve this, we output occupancy
values, obtained with Equation 1, so these values create binary-valued sets since the α at this stage is
near 0. The stage is triggered, when α ≤ 0.05. Its main goal is to enforce V̂(l) for l ≤ L to resemble
one-hot mask by decreasing the temperature τ (l) in CSG layers. The optimized loss is defined as:

L∗total = Ltotal + λτ

L∑
l=1

|τ (l)| (12)

where we set λτ = 0.1 for all experiments. Once α ≈ 0 and ∀l≤Lτ (l) ≈ 0, predictions of the CSG
layers become fully interpretable as described above, i.e. CSG parse trees of reconstructions can
be retrieved and processed using explicit representation of meshes. We also ensure that α and τ (l)
stay positive by manual clipping values to small positive number ε ≈ 10−5, if they become negative.
During experiments, we initialize them to α = 1 and τ (l) = 2. Additional implementation details are
provided in supplementary material.

2We consider the worst case, since some shapes can be reused in consecutive layers, hence number of used
shapes in the layer l can be less than 2L−l.
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3 Related Works

Problem of the 3D reconstruction gained momentum when the ShapeNet dataset was published
[13]. The dataset contains sets of simple, textures meshes, split into multiple, unbalanced categories.
Since then, many methods were invented for a discriminative [14–17] and generative applications
[5, 6, 18, 19]. Currently, presenting results on this dataset allows the potential reader to quickly grasp
how a particular method performs. There exists also a high volume ABC dataset [20] which consists
of many complex CAD shapes. However, it is not well established as a benchmark in the community.

3D surface representation Surface representations fall mainly into two categories: explicit
(meshes) and implicit (ex. point clouds, voxels, signed distance fields). Many approaches working on
meshes assume genus 0 as an initial shape that was refined to retrieve the final shape [21–23, 4, 24, 25].
Recent methods use step-by-step prediction of each vertex which position is conditioned on all
previous vertices [26] and reinforcement learning to imitate real 3D graphics designer [27]. In Mesh-
RCNN [28] a voxelized shape is retrieved first and then converted into mesh with the Pixel2Mesh [4]
framework.

Implicit representations need an external method to convert an object to a mesh. 3D-R2N2 [1]
and Pix2Vox [29] predict voxelized objects and leverage multiple views of the same object. These
methods struggle with the cubic complexity of predictions. To overcome the problem, octree-based
convolutional networks [30, 31] use encoded voxel volume to take an advantage of the sparsity of the
representation.

Point clouds does not include vertex connectivity information. Therefore, ball-pivoting or Poisson
surface reconstruction methods has to be employed to reconstruct the mesh [32, 33]. The representa-
tion is convenient to be processed using PointNet [14] framework. Objects can be generated using
flow-based generative networks [34, 19].

Signed distance fields allow to model shapes with an arbitrary level details in theory. DeepSDF
[3] and DualSDF [35] use a variational autodecoder approach to generate shapes. OccNet [36] and
IM-NET [18] predict whether a point lies inside or outside of the shape. Such a representation is
explored in BSP-NET [5] and CVXNET [6] which decompose shapes into union of convexes. Each
convex is created by intersecting binary space partitions. Complexity of these methods provide
high reconstruction accuracy but suffer from low interpretability in CAD applications. Convexes
used in both methods are also problematic to modify from the perspective of a 3D graphic designer.
Moreover, their CSG structure is fixed by definition. They use an intersection of hyperplanes first,
and then perform union of predicted convexes.

Other approaches such as Visual Primitives (VP) [37] and Superquadrics (SQ) [38] base on a learnable
union of defined primitives and provide high interpretability of results. However, superquadrics
as primitives contain parameters that control shape and need to be on closed domain. Otherwise,
distance function is not well-defined for them and learning these parameters become unstable.

Constructive Solid Geometry CSG allows to combine shape primitives with boolean operators
to obtain complex shapes. Much research is focused on probabilistic methods that find the most
probable explanation of the shape through the process of inverse CSG [39] that outputs a parse tree.
Approaches such as CSG-NET [7, 8] and DeepPrimitive [40] integrate finding CSG parse trees with
neural networks. However, they heavily rely on a supervision. At each step of the parse tree, a neural
network is given a primitive to output and a relation between primitives. The CSG-NET outputs a
program with a defined grammar that can be used for rendering.

4 Experiments

We evaluate our approach on 2D autoencoding and 3D autoencoding tasks, and compare the results
with state-of-the-art reference approaches for object reconstruction: CSG-NET [8] for the 2D task,
and VP [37], SQ [37], BAE [41] and BSP-NET [5] for 3D tasks.
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Figure 4: Reconstructions of the UCSG-NET from the CAD dataset. Primitives represent all these
primitives that were used during CSG prediction, while CSG Tree - the parse tree of the reconstruction.

4.1 2D Reconstruction

For this experiment, we used CAD dataset [7] consisting of 8,000 CAD shapes in three categories:
chair, desk, and lamps. Each shape was rendered to 64× 64 image. We compare our method with the
CSG-NETSTACK [8], improved version of the CSG-NET [7], on the same validation split. Table 1
contains comparison with CSG-NET working in both modes. Following the methodology introduced
in existing reference works, methods are evaluated on Chamfer Distance (CD) of reconstructions.
We set 2 CSG layers for our method, where each outputs 16 shapes in total. The decoder predicts
parameters of 16 circles and 16 rectangles. Our method, while being fully unsupervised, is better

Table 1: Reconstruction performance on CAD dataset – We evaluate our method and compare it
with CSG-NETSTACK [8]. k denotes the beam search size and i the number of refinement steps of
the reconstruction. i =∞ signifies the refinement until the reconstruction quality converges. Our
method works naturally with k = 1 and i = 0.

Method Mode k i = 0 i =∞
CSG-NETSTACK Supervised 1 3.98 2.25
CSG-NETSTACK Supervised 10 1.38 0.39

CSG-NETSTACK RL 1 1.27 0.57
CSG-NETSTACK RL 10 1.02 0.34

Our Unsupervised 1 0.32 -

then the best variants of CSG-NET and is significantly better with no output refinement. Results
show that the method is able to discover good CSG parse trees without explicit ground truth for each
level of the tree. Therefore, it can be used where such ground truth is not available.

We present qualitative evaluation results in Figure 4 and visualize used shapes for the reconstruction.
The UCSG-NET uses proper operations at each level that lead to the correct shape reconstruction.
In most cases, it puts rectangles only. The nature of the dataset causes that phenomenon. To avoid
possible errors, the network often uses a union of overlapping shapes to pass the primitive untouched.

4.2 3D Autoencoding

For the 3D autoencoding task, we train the model on 643 volumes of voxelized shapes in the ShapeNet
dataset. We sample 16384 points as a ground truth with a higher probability of sampling near the
surface. To speed up the training, we applied early stopping heuristic and stop after 40 epochs of
no improvement on the L∗total loss. The data was provided by Chen et al. [5] and bases on the 13
most common classes in the ShapeNet dataset [13]. We used 5 CSG layers to increase the diversity
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Table 2: 3D reconstruction quality measured as Chamfer Distance on 3D autoencoding task.
High interpretability Low interpretability

Ours VP [37] SQ [38] BAE [41] BSP-Net [5]

Chamfer Distance 2.085 2.259 1.656 1.592 0.446

of predictions and set 64 parameters of spheres and boxes to handle the complex nature of the dataset.
Each layer predicts CSG 48 combinations of these primitives. Training takes about two days on
Nvidia Titan RTX GPU. The CSG inference for a single sample takes 0.068s and the reconstruction -
1.68s using the libigl library.

We follow the procedure described in [5] and report Chamfer Distance as a quality measure of the
reconstruction. We evaluate it on 4096 points sampled from the surface of the reconstructed object.
We reconstruct shapes from CSG trees retrieved from predictions of our model. Obtained results are
shown in Table 2. Examples of reconstructed shapes are presented in Figure 5. We can see that it
accurately reconstructs the main components of a shape which resembles Visual Primitives (VP) [37]
approach where outputs can be treated as shape abstractions. The remaining reference approaches

Figure 5: Surface reconstructions of UCSG-NET on 3D autoencoding tasks. Top row: ground
truth. Bottom row: reconstructions.

outperformed our model with respect to CD measure. It was mainly caused by failed reconstructions
of details, such as engines on wings of airplanes, to which the metric is sensitive. However, our
ultimate goal was to provide an effective and interpretable method to construct a CSG tree with
limited number of primitives.

Finally, we show an example parse tree in Figure 6, used to reconstruct an example shape from the
validation set. The model manages to create diverse combinations of primitives and reuse them at
any level. Since many primitives were used in later layers, the tree complexity is not necessarily 2L.
Notice that the main body and wings were reconstructed separately. We found that the model learns
to reconstruct particular semantic parts of the object separately, for example, wings and the hull of an
airplane or legs and the counter of a desk. These parts are merged in the final CSG layer where we
force a union operation to be performed. See the supplementary material for additional CSG tree
visualizations.

5 Conclusions

We demonstrate UCSG-NET - an unsupervised method for discovering constructive solid geometry
parse trees that composes primitives to reconstruct an input shape. Our method predicts CSG trees and
is able to use different Boolean operations while maintaining reasonable accuracy of reconstructions.
Inferred CSG trees are used to form meshes directly, without the need to use explicit reconstruction
methods for implicit representations. We show that these trees can be easily visualized, thus providing
interpretability about reconstructions step-by-step. Therefore, the method can be applied in CAD
applications for quick prototyping of 3D objects.

We identified three interesting venues to be taken in future works. In one of them, we would
incorporate weak supervision to provide hints to the network what CSG operations are expected to
be used for a particular shape. Since there are many CSG trees that reconstruct the same object and
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Figure 6: Retrieved CSG tree from the reconstruction prediction of an airplane from the validation
set. We noticed that the model approximates all airplanes with a similar CSG tree.

the space of solution is vast, such a supervision can improve the final results. Other paths include:
using efficient RANSAC [42] to provide initial primitives, formulating a single CSG layer as a
Set Transformer [43] or applying regularization techniques known in transformers [44] to increase
diversity of predicted CSG trees.
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Broader Impact

UCSG-NET can find applications in CAD software. When applied, it is possible to retrieve a CSG
parse tree for a particular object of interest. Hence, for a situation when a 3D object was modeled with
a sculpting tool, the model can approximate it with single primitives and operations between them.
Then, such a reconstruction can be integrated into existing CAD models. We find that beneficial in
speeding up the prototyping process in 3D modeling.

However, inexperienced CAD software users can rely heavily on presented assumptions. In the era
of 3D printing ubiquity, printed elements out of reconstructed CSG parse trees can be erroneous,
thus breaking the whole item. Therefore, we note that integrating our method into existing software
should serve mainly as a prototyping device.

We encourage further research on an unsupervised CSG parse tree recovery. We suspect that this
area stagnated due to constraining limitations that a CSG tree creates a single object, but a single
object can be created out of infinity many CSG trees. Therefore, new methods need to be invented
that provide good approximations of CSG trees with short inference times.
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