
Supplementary Materials for Exemplar VAE:
Linking Generative Models, Nearest Neighbor

Retrieval, and Data Augmentation

A Exemplar VAE samples

MNIST Fashion MNIST Omniglot

CelebA

Figure 1: Random samples drawn from Exemplar VAEs trained on different datasets.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

B Exemplar conditioned samples

Figure 2: Given the input exemplar on the top left of each plate, 11 exemplar conditioned samples using
Exemplar VAE are generated and shown.

2

C Retrieval Augmented Training
Algorithm 1

Input: Training dataset X = {xn}Nn=1
Define Cache:

initialize cache = []
insert(i, c): insert value c with index i into cache
update(i, c): update the value of index i to c
kNN(c): return indices of kNNs of c in cache

for n in {1, . . . , N} do Cache.insert(n,µφ(xn))
for epoch in {1, . . . , L} do

for i in {1, . . . , N} do
π ∼ ΠN,i

M to obtain a set of M exemplar indices
µi,Λi = µφ(xi),Λφ(xi)
ε ∼ N (0, Idz×dz)

z = µi + Λ
1/2
i ε

kNN = Cache.kNN(µi) ∩ π
for j in kNN do µj = µφ(xj)
m(z) = 1

M

∑
j∈kNNN (z |µj , σ2)

ELBO=log pθ(x |z)−logN (z |µi,Λi)+log r(z)
Gradient ascend on ELBO to update φ, θ, and σ2

Cache.update(i,µi)
for j in kNN do Cache.update(j, µj)

D Number of Active Dimensions in the Latent Space

The problem of posterior collapse [2, 5], resulting in a number of inactive dimensions in the latent
space of a VAE. We investigate this phenomena by counting the number of active dimensions based
on a metric proposed by Burda et. al [3]. This metric computes the variance of the mean of the
latent encoding of the data points in each dimension of the latent space, Var(µφ(x)i), where x is
sampled from the dataset. If the computed variance is above a certain threshold, then that dimension
is considered active. The proposed threshold by [1] is 0.01 and we use the same value. We observe
that the Exemplar VAE has the largest number of active dimensions in all cases except one. In the
case of ConvHVAE on MNIST and Fashion MNIST, the gap between Exemplar VAE and other
methods is more considerable.

Number of active dimensions out of 40
Model Dynamic MNIST Fashion MNIST Omniglot

VAE w/ Gaussian prior 24.0±0.63 26.0±1.1 35.2±0.4
VAE w/ Vampprior 27.6±1.36 35.25±1.3 40.0±0.0

Exemplar VAE 29.4±0.49 36.0±1.41 40.0±0.0

HVAE w/ Gaussian prior 15.0±0.63 12.4±0.8 24.8±1.83
HVAE w/ VampPrior 20.4±0.49 23.2±1.47 39.0±0.89

Exemplar HVAE 21.6±0.49 28.6±0.8 38.6±1.5

ConvHVAE w/ Gaussian prior 19.8±2.93 15.4±2.65 39.2±1.6
ConvHVAE w/ VampPrior 19.0±1.55 19.25±0.83 39.8±0.4

Exemplar ConvHVAE 25.8±3.66 33.6±7.86 40.0±0.0

Table 1: The number of active dimensions computed based on a metric proposed by Burda et. al [3].
This metric considers a latent dimension active if the variance of its mean over the dataset is higher
than 0.01. For hierarchical architectures the reported number is for the z2 which is the highest
stochastic layer.

3

E CelebA Quantitative Results

Model bits per dim

VAE w/ Gaussian Prior 5.825
Exemplar VAE 5.780

Table 2: Numerical Evaluations for CelebA

F Derivation of Eqn. (5)

log p(x;X, θ, φ) = log

N∑
n=1

1

N

∫
z

rφ(z | xn) pθ(x | z) dz (1)

= log

∫
z

pθ(x | z)
∑N

n=1

1

N
rφ(z | xn) dz (2)

= log

∫
z

qφ(z | x)pθ(x | z)
∑N
n=1

1
N rφ(z | xn)

qφ(z|x)
dz (3)

≥ E
qφ(z|x)

log pθ(x |z)︸ ︷︷ ︸
reconstruction

− E
qφ(z|x)

log
qφ(z | x)∑N

n=1 rφ(z | xn)/N︸ ︷︷ ︸
KL term

(4)

= O(θ, φ;x, X). (5)

G Iterative generation

The exemplar VAE generates a new sample by stochastically transforming an exemplar. The newly
generated data point can also be used as an exemplar, and we can repeat this procedure again and
again. This kind of generation bears some similarity to MCMC for sampling from energy-based
models. Figure 3 shows how samples evolve and consistently stay near the manifold of MNIST digits.
We can apply the same procedure starting from a noisy input image as an exemplar. Figure 4 shows
that the model is able to quickly transform the noisy images into samples that resemble real MNIST
images.

Figure 3: Iterative generation starting from a training data point. Samples generated from an Exemplar
VAE starting from a training data point, and then reusing the generated data as exemplars for the next
round of generation (left to right).

Figure 4: Iterative generation starting from a noise input (left to right).

4

H Computation and Memory Complexity

The cost of training Exemplar VAE is similar to that of VampPrior, which uses mixture of variational
posteriors. When the number of exemplars per minibatch is equal to the number of pseudo-inputs in
VampPrior the computational complexity is very similar. For example, for ConvHVAE on Omniglot,
VampPrior with 1000 pseudo-inputs takes 58s/epoch and Exemplar VAE with a minibatch of 100
and 10 NNs takes 51s/epoch on a single Nvidia T4 GPU (it runs faster because we use an isotropic
gaussians in our prior). In case of ConvHVAE on MNIST and FashionMNIST VampPrior with
500 pseudo inputs takes 82s/epoch vs 107s/epoch for Exemplar VAE with batch size of 100 and 10
NNs per data point. Regarding memory complexity, Exemplar VAE stores low-dimensional latent
embeddings. By comparison, VampPrior stores pseudo inputs with the same dimentionality as the
input data, which can be problematic in case of high dimensional data.

I Reconstruction vs. KL

Table 3 shows the value of KL and the reconstruction terms of ELBO, computed based on a single
sample from the variational posterior, averaged across test set. These numbers show that not only
the exemplar VAE improves the KL term, but also the reconstruction terms are comparable with the
VampPrior.

Dynamic MNIST Fashion MNIST Omniglot
Model KL Neg.Reconst. KL Neg. Reconst. KL Neg. Reconst.

VAE w/ Gaussian prior 25.54±0.12 63.06±0.11 18.38±0.11 213.21±0.18 32.97±0.2 82.3±0.21
VAE w/ VampPrior 25.14±0.16 60.79±0.13 18.44±0.06 211.37±0.04 34.17±0.22 79.49±0.18

Exemplar VAE 24.82±0.22 61.00±0.13 18.32±0.08 211.10±0.1 32.66±0.27 80.25±0.62

HVAE w/ Gaussian prior 26.80±0.13 59.80±0.11 19.08±0.05 211.18±0.14 36.07±0.12 75.96±0.12
HVAE w/ VampPrior 26.69±0.1 58.46±0.06 19.27±0.15 210.04±0.2 38.39±0.16 72.42±0.34

Exemplar HVAE 26.41±0.17 58.48±0.16 18.96±0.15 210.40±0.16 36.76±0.25 73.35±0.63

ConvHVAE w/ Gaussian prior 26.58±0.27 57.64±0.57 20.34±0.04 208.11±0.06 38.90±0.22 67.22±0.1
ConvHVAE w/ VampPrior 26.57±0.17 56.18±0.03 20.65±0.19 206.64±0.15 38.95±0.17 66.38±0.3

Exemplar ConvHVAE 26.41±0.25 56.14±0.27 20.46±0.23 207.18±0.38 37.48±0.37 66.62±0.32

Table 3: KL and reconstruction part of ELBO averaged over test set by a single sample from posterior.

J t-SNE visualization of Fashion MNIST latent space

We showed t-SNE visualization of MNIST latent space in the figure 5. Here we show the same plot
for fashion-mnist. Interestingly, some classes are very close to each other (Pullover-shirt-dress) and
transition between them happens very smoothly while some other classes are more separated.

Exemplar VAE on Fashion MNIST VAE on Fashion MNIST

Table 4: t-SNE visualization of learned latent representations for Fashion-MNIST test points, colored by labels.

5

K Sub-sampling for VampPrior

To regularize the Exemplar VAE, we used leave-one-out and exemplar sub-sampling. The use of
leave-one-out is enabled by the non-parametric nature of the prior. It is not clear how to apply the
same regularization to VampPrior, but it is possible to apply mixture component sub-sampling for
VampPrior as well. VampPrior showed that it outperforms a VAE with a mixture of Gaussians prior.
That is why did not compare directly against a mixture model prior in the primary experimental
section. Here we explore applying subsampling to VampPrior and confirm that mixture of Gaussian
prior exhibit inferior performance when compared to both VampPrior and the exemplar based Prior.

Model Log-Likelihood

VAE w/ Gaussian Prior −108.34
VAE w/ Mixture of Gaussians Prior −107.49

VAE w/ VampPrior w/o sub-sampling, components=1000 −106.78
VAE w/ VampPrior w/ sub-sampling, components=1000 −106.24
VAE w/ VampPrior w/ sub-sampling, components=2000 −106.16
VAE w/ VampPrior w/ sub-sampling, components=5000 −106.37

VAE w/ Exemplar Prior w/ sub-sampling, components=11500 −105.22

Table 5: Test set log-likelihood numbers on Omniglot for different setups with or without sub-
sampling

While the subsampling of the mixture components helps the performance of vampprior, but still
outperformed by exemplar prior.

L Experimental Details

L.1 Architectures

All of the neural network architectures are based on the VampPrior of Tomczak & Welling [6]1 except
PixelSNAIL. We leave tuning the architecture of Exemplar VAEs to future work. To describe the
network architectures, we follow the notation of LARS [1]. Neural network layers used are either
convolutional (denoted CNN) or fully-connected (denoted MLP), and the number of units are written
inside a bracket separated by a dash (e.g., MLP[300-784] means a fully-connected layer with 300
input units and 784 output units). We use curly bracket to show concatenation.

Three different architectures are used in the experiments, described below. dz refers to the
dimensionality of the latent space.

a) VAE:

qφ(z | x) = N (z; µz(x),Λz(x))

pφ(x | z) = Bernoulli(x, µx(z))

Encoderz(x) = MLP [784− 300− 300]

log Λ2
z(x) = MLP[Encoderz(x)− dz]

µz(x) = MLP[Encoderz(x)− dz]

µx(z) = MLP[dz − 300− 300− 784]

1https://github.com/jmtomczak/vae_vampprior

6

b) HVAE:

qφ(z2 | x) = N (z2; µz2
(x),Λz2

(x))

qφ(z1 | x, z2) = N (z1; µz1
(x, z2),Λz1

(x, z2))

pφ(z1 | z2) = N (z1; µ̂z1
(z2), Λ̂z1

(z2))

pφ(x | z1, z2) = Bernoulli(x, µx(z1, z2))

Encoderz2
(x) = MLP[784− 300− 300]

log Λ2
z2

(x) = MLP[Encoderz2(x)− dz2]

µz2
(x) = MLP[Encoderz2

(x)− dz2
]

Encoderz1
(x, z2) = MLP[{MLP[dz2

− 300],MLP[784− 300]} − 300]

log Λ2
z1

(x, z2) = MLP[Encoderz1
(x, z2)− dz1

]

µz1(x, z2) = MLP[Encoderz1(x, z2)− dz1]

Decoderz1
(z2) = MLP[dz2

− 300− 300]

log Λ̂2
z1

(z2) = MLP[Decoderz1
(z2)− dz1

]

µ̂z1
(z2) = MLP[Decoderz1

(z2)− dz1
]

µx(z1, z2) = MLP [{MLP[dz1
− 300],MLP[dz2

− 300]} − 300− 784]

c) ConvHVAE: The generative and variational posterior distributions are identical to HVAE.

Encoderz2
(x) = CNN[28× 28× 1− 32× 32× 32− 12× 12× 32− 12× 12× 64− 7× 7× 64

−7× 7× 6]

log Λ2
z2

(x) = MLP[Encoderz2
(x)− dz2

]

µz2(x) = MLP[Encoderz2(x)− dz2]

ConvEncoderz1(x) = CNN[28× 28× 1− 32× 32× 32− 12× 12× 32− 12× 12× 64− 7× 7× 64− 7× 7× 6]

Encoderz1
(x, z2) = MLP[{MLP[dz2

−7× 7× 6],ConvEncoderz1
(x)} − 300]

log Λ2
z1

(x, z2) = MLP[Encoderz1(x, z2)− dz1]

µz1
(x, z2) = MLP[Encoderz1

(x, z2)− dz1
]

Decoderz1
(z2) = MLP[dz2

− 300− 300]

log Λ̂2
z1

(z2) = MLP[Decoderz1(z2)− dz1]

µ̂z1(z2) = MLP[Decoderz1(z2)− dz1]

MLPDecoderx(z1, z2) = MLP[{MLP[dz1 − 300],MLP[dz2 − 300]} − 784]

ConvDecoderx = CNN[28× 28× 64− 28× 28× 64− 28× 28× 64− 28× 28× 64− 28× 28× 1]

µx(z1, z2) = [MLPDecoderx(z1, z2)− ConvDecoderx]

7

d) PixelSNAIL HVAE: The generative and variational posterior distributions are identical to HVAE.

Encoderz2(x) = CNN[28× 28× 1− 32× 32× 32− 12× 12× 32− 12× 12× 64

−7× 7× 64− 7× 7× 6]

log Λ2
z2

(x) = MLP[Encoderz2
(x)− dz2

]

µz2
(x) = MLP[Encoderz2

(x)− dz2
]

ConvEncoderz1
(x) = CNN[28× 28× 1− 32× 32× 32− 12× 12× 32− 12× 12× 64

−7× 7× 64− 7× 7× 6]

Encoderz1
(x, z2) = MLP[{MLP[dz2

− 7× 7× 6],ConvEncoderz1
(x)} − 300]

log Λ2
z1

(x, z2) = MLP[Encoderz1
(x, z2)− dz1

]

µz1(x, z2) = MLP[Encoderz1(x, z2)− dz1]

Decoderz1(z2) = MLP[dz2 − 300− 300]

log Λ̂2
z1

(z2) = MLP[Decoderz1
(z2)− dz1

]

µ̂z1
(z2) = MLP[Decoderz1

(z2)− dz1
]

MLPDecoderx(z1, z2,x) = {MLP[dz1
− 784],MLP[dz2

− 784],x}
AutoRegressiveDecoderx = [MaskedCNN[28× 28× 64− 28× 28× 64− 28× 28× 64− 28× 28× 64]

−Self-Attention−MaskedCNN[28× 28× 1]]

µx(z1, z2) = [MLPDecoderx(z1, z2,x)− AutoRegressiveDecoderx]

e) CelebA Architecture:

qφ(z | x) = N (z; µz(x),Λz(x))

pφ(x | z) = Discretized_Logistic(x, µx(z), σ2)

Encoderz(x) = CNN [64× 64× 3− 32× 32× 64− 16× 16× 128− 8× 8× 256− 4× 4× 512]

log Λ2
z(x) = MLP[Encoderz(x)− dz]

µz(x) = MLP[Encoderz(x)− dz]

µx(z) = CNN[8× 8× 512− 16× 16× 256− 32× 32× 128− 64× 64× 64− 64× 64× 3]

As the activation function, the gating mechanism of [4] is used throughout. So for each layer we have
two parallel branches where the sigmoid of one branch is multiplied by the output of the other branch.
In ConvHVAE the kernel size of the first layer of Encoderz2

(x) is 7 and the third layer used kernel
size of 5. The last layer of ConvDecoderx used kernel size of 1 and all the other layers used 3× 3
kernels. For CelebA we used kernel size of 5 for each layer and combination of batch norm and ELU
activation after each convolution layer.

L.2 Hyper-parameters

We use Graident Normalized Adam [7] with Learning rate of 5e− 4 and minibatch size of 100 for all
of the datasets. For gray-scale datasets We dynamically binarize each training data, but we do not
binarize the exemplars that serve as the prior. We utilize early stopping for training VAEs, where we
stopped the training if for 50 consecutive epochs the validation ELBO does not improve. We use 40
dimensional latent spaces for gray-scale datasets while using 128 dimensional latent for CelebA. To
limit the computation costs of convolutional architectures, we considered kNN based on euclidean
distance in the latent space, where k set to 10 for gray-scale datasets and 5 for CelebA. The number
of exemplars set to the half of the training data except in the ablation study section.

M Misclassified MNIST Digits

A classifier trained using exemplar augmentation reached average error of 0.69%. Here we show the
test examples misclassified.

8

Figure 5: Misclassified images from MNIST test set for a two layer MLP trained with Exemplar VAE
augmentation.

References
[1] Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders.

arXiv:1810.11428, 2018.

[2] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv:1511.06349, 2015.

[3] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv:1509.00519, 2015.

[4] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. International Conference on Machine Learning, 70:933–941, 2017.

[5] James Lucas, George Tucker, Roger B Grosse, and Mohammad Norouzi. Don’t blame the elbo!
a linear vae perspective on posterior collapse. NeurIPS, 2019.

[6] Jakub M Tomczak and Max Welling. Vae with a vampprior. AISTATS, 2018.

[7] Adams Wei Yu, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Normalized gradient
with adaptive stepsize method for deep neural network training. arXiv:1707.04822, 18(1), 2017.

9

	Exemplar VAE samples
	Exemplar conditioned samples
	Retrieval Augmented Training
	Number of Active Dimensions in the Latent Space
	CelebA Quantitative Results
	Derivation of Eqn. (5)
	Iterative generation
	Computation and Memory Complexity
	Reconstruction vs. KL
	t-SNE visualization of Fashion MNIST latent space
	Sub-sampling for VampPrior
	Experimental Details
	Architectures
	Hyper-parameters

	Misclassified MNIST Digits

