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Abstract
We introduce Exemplar VAEs, a family of generative models that bridge the
gap between parametric and non-parametric, exemplar based generative models.
Exemplar VAE is a variant of VAE with a non-parametric prior in the latent space
based on a Parzen window estimator. To sample from it, one first draws a random
exemplar from a training set, then stochastically transforms that exemplar into a
latent code and a new observation. We propose retrieval augmented training (RAT)
as a way to speed up Exemplar VAE training by using approximate nearest neighbor
search in the latent space to define a lower bound on log marginal likelihood. To
enhance generalization, model parameters are learned using exemplar leave-one-
out and subsampling. Experiments demonstrate the effectiveness of Exemplar
VAEs on density estimation and representation learning. Importantly, generative
data augmentation using Exemplar VAEs on permutation invariant MNIST and
Fashion MNIST reduces classification error from 1.17% to 0.69% and from 8.56%
to 8.16%. Code is available at https://github.com/sajadn/Exemplar-VAE.

1 Introduction

Non-parametric, exemplar based methods use large, diverse sets of exemplars, and relatively simple
learning algorithms such as Parzen window estimation [44] and CRFs [34], to deliver impressive
results on image generation (e.g., texture synthesis [15], image super resolution [16], and inpaiting [10,
25]). These approaches generate new images by randomly selecting an exemplar from an existing
dataset, and modifying it to form a new observation. Sample quality of such models improves
as dataset size increases, and additional training data can be incorporated easily without further
optimization. However, exemplar based methods require a distance metric to define neighborhood
structures, and metric learning in high dimensional spaces is a challenge in itself [28, 57].

Conversely, conventional parametric generative models based on deep neural nets enable learning
complex distributions (e.g., [43, 47]). One can use standard generative frameworks [13, 14, 18, 32, 49]
to optimize a decoder network to convert noise samples drawn from a factored Gaussian distribution
into real images. When training is complete, one would discard the training dataset and generate new
samples using the decoder network alone. Hence, the burden of generative modeling rests entirely on
the model parameters, and additional data cannot be incorporated without training.

This paper combines the advantages of exemplar based and parametric methods using amortized
variational inference, yielding a new generative model called Exemplar VAE. It can be viewed as a
variant of Variational Autoencoder (VAE) [32, 49] with a non-parametric Gaussian mixture (Parzen
window) prior on latent codes.

To sample from the Exemplar VAE, one first draws a random exemplar from a training set, then
stochastically transforms it into a latent code. A decoder than transforms the latent code into a
new observation. Replacing the conventional Gaussian prior into a non-parameteric Parzen window
improves the representation quality of VAEs as measured by kNN classification, presumably because
a Gaussian mixture prior with many components captures the manifold of images and their attributes
better. Exemplar VAE also improves density estimation on MNIST, Fashion MNIST, Omniglot, and
CelebA, while enabling controlled generation of images guided by exemplars.
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We are inspired by recent work on generative models augmented with external memory (e.g., [23, 37,
55, 30, 4]), but unlike most existing work, we do not rely on pre-specified distance metrics to define
neighborhood structures. Instead, we simultaneously learn an autoencoder, a latent space, and a
distance metric by maximizing log-likelihood lower bounds. We make critical technical contributions
to make Exemplar VAEs scalable to large datasets, and enhance their generalization.

The main contributions of this paper are summarized as follows:
1. We introduce Exemplar VAE along with critical regularizers that combat overfitting;
2. We propose retrieval augmented training (RAT), using approximate nearest neighbor search in

the latent space, to speed up training based on a novel log-likelihood lower bound;
3. Experimental results demonstrate that Exemplar VAEs consistently outperform VAEs with a

Guassian prior or VampPrior [55] on density estimation and representation learning;
4. We demonstrate the effectiveness of generative data augmentation with Exemplar VAEs for

supervised learning, reducing classification error of permutation invariant MNIST and Fashion
MNIST significantly, from 1.17% to 0.69% and from 8.56% to 8.16% respectively.

2 Exemplar based Generative Models

By way of background, an exemplar based generative model is defined in terms of a dataset of N
exemplars, X ≡ {xn}Nn=1, and a parametric transition distribution, Tθ(x | x′), which stochastically
transforms an exemplar x′ into a new observation x. The log density of a data point x under an
exemplar based generative model {X,Tθ} can be expressed as

log p(x | X, θ) = log
∑N

n=1

1

N
Tθ(x | xn) , (1)

where we assume the prior probability of selecting each exemplar is uniform. Suitable transition
distributions should place considerable probability mass on the reconstruction of an exemplar from
itself, i.e., Tθ(x | x) should be large for all x. Further, an ideal transition distribution should be
able to model the conditional dependencies between different dimensions of x given x′, since the
dependence of x on x′ is often insufficient to make dimensions of x conditionally independent.

One can view the Parzen window or Kernel Density estimator [44], as a simple type of exemplar
based generative model in which the transition distribution is defined in terms of a prespecified kernel
function and its meta-parameters. With a Gaussian kernel, a Parzen window estimator takes the form

log p(x | X,σ2) = − logC − logN + log
∑N

n=1
exp
−‖x− xn‖2

2σ2
, (2)

where logC = dx log(
√

2πσ) is the log normalizing constant of an isotropic Gaussian in dx dimen-
sions. The non-parametric nature of Parzen window estimators enables one to exploit extremely large
heterogeneous datasets of exemplars for density estimation. That said, simple Parzen window estima-
tion typically underperforms parametric density estimation, especially in high dimensional spaces,
due to the inflexibility of typical transition distributions, e.g., when T (x | x′) = N (x | x′, σ2I).

This work aims to adopt desirable properties of non-parametric exemplar based models to help scale
parametric models to large heterogeneous datasets and representation learning. In effect, we learn a
latent representation of the data for which a Parzen window estimator is an effective prior.

3 Exemplar Variational Autoencoders

The generative process of an Exemplar VAE is summarized in three steps:
1. Sample n∼Uniform(1, N) to obtain a random exemplar xn from the training set, X ≡ {xn}Nn=1.
2. Sample z∼ rφ(· | xn) using an exemplar based prior, rφ, to transform an exemplar xn into a

distribution over latent codes, from which z is drawn.
3. Sample x∼pθ(· | z) using a decoder to transform z into a distribution over observations, from

which x is drawn.
Accordingly, the Exemplar VAE can be interpreted as a variant of exemplar based generative models
in (1) with a parametric transition function defined in terms of a latent variable z, i.e.,

Tφ,θ(x | x′) =

∫
z

rφ(z | x′) pθ(x | z) dz . (3)
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Figure 1: Exemplar VAE is a type of VAE with a non-parametric mixture prior in the latent space. Here, only 3
exemplars are shown, but the set of exemplars often includes thousands of data points from the training dataset.
The objective function is similar to a standard VAE with the exception that the KL term measures the disparity
between the variational posterior qφ(z |x) and a mixture of exemplar based priors

∑N
n=1 rφ(z | xn)/N .

This model assumes that, conditioned on z, an observation x is independent from an exemplar
x′. This conditional independence simplifies the formulation, enables efficient optimization, and
encourages a useful latent representation.

By marginalizing over the exemplar index n and the latent variable z, one can derive an evidence
lower bound (ELBO) [3, 29] on log marginal likelihood for a data point x as follows (derivation in
section F of supplementary materials):

log p(x;X, θ, φ) = log

N∑
n=1

1

N
Tφ,θ(x | xn) = log

N∑
n=1

1

N

∫
z

rφ(z | xn) pθ(x | z) dz (4)

≥ E
qφ(z|x)

log pθ(x |z)︸ ︷︷ ︸
reconstruction

− E
qφ(z|x)

log
qφ(z | x)∑N

n=1 rφ(z | xn)/N︸ ︷︷ ︸
KL term

= O(θ, φ;x, X). (5)

We use (5) as the Exemplar VAE objective to optimize parameters θ and φ. Note that O(θ, φ;x, X)
is similar to the ELBO for a standard VAE, the difference being the definition of the prior p(z)
in the KL term. The impact of exemplars on the learning objective can be summarized in the
form of a mixture model prior in the latent space, with one mixture component per exemplar, i.e.,
p (z |X) =

∑
nrφ(z | xn)/N . Fig. 1 illustrates the training procedure and objective function for

Exemplar VAE.

A VAE with a Gaussian prior uses an encoder during training to define a variational bound [32]. Once
training is finished, new observations are generated using the decoder network alone. To sample from
an Exemplar VAE, we need the decoder and access to a set of exemplars and the exemplar based prior
rφ. Importantly, given the non-parametric nature of Exemplar VAEs, one can train this model with
one set of exemplars and perform generation with another, potentially much larger set.

As depicted in Figure 1, the Exemplar VAE employs two encoder networks, i.e., qφ(z | x) as the
variational posterior, and rφ(z |xn) for mapping an exemplar xn to the latent space for the exemplar
based prior. We adopt Gaussian distributions for both qφ and rφ. To ensure that T (x | x) is large,
we share the means of qφ and rφ. This is also inspired by the VampPrior [55] and discussions of the
aggregated variational posterior as a prior [40, 27]. Accordingly, we define

qφ(z | x) = N (z | µφ(x) , Λφ(x)), (6)

rφ(z | xn) = N (z | µφ(xn) , σ2I) . (7)

The two encoders use the same parametric mean function µφ, but they differ in their covariance
functions. The variational posterior uses a data dependent diagonal covariance matrix Λφ, while the
exemplar based prior uses an isotropic Gaussian (per exemplar), with a shared, scalar parameter σ2.
Accordingly, log p (z |X), the log of the aggregated exemplar based prior is given by

log p (z |X) = − logC ′ − logN + log
∑N

j=1
exp
−‖z− µφ(xj)‖2

2σ2
, (8)
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where logC ′ = dz log(
√

2πσ). Recall the definition of Parzen window estimator with a Gaussian
kernel in (2), and note the similarity between (2) and (8). The Exemplar VAE’s Gaussian mixture
prior is a Parzen window estimate in the latent space, hence the Exemplar VAE can be interpreted as
a deep variant of Parzen window estimation.

The primary reason to adopt a shared σ2 across exemplars in (7) is computational efficiency. Having
a shared σ2 enables parallel computation of all pairwise distances between a minibatch of latent
codes {zb}Bb=1 and Gaussian means {µφ(xj)}Nj=1 using a single matrix product. It also enables the
use of existing approximate nearest neighbor search methods for Euclidean distance (e.g., [42]) to
speed up Exemplar VAE training, as described next.

3.1 Retrieval Augmented Training (RAT) for Efficient Optimization

The computational cost of training an Exemplar VAE can become a burden as the number of exemplars
increases. This can be mitigated with fast, approximate nearest neighbor search in the latent space to
find a subset of exemplars that exert the maximum influence on the generation of each data point.
Interesting, as shown below, the use of approximate nearest neighbor for training Exemplar VAEs is
mathematically justified based on a lower bound on the log marginal likelihood.

The most costly step in training an Exemplar VAE is in the computation of log p (z |X) in (8) given
a large dataset of exemplars X , where z ∼ qφ(z | x) is drawn from the variational posterior of x.
The rest of the computation, to estimate the reconstruction error and the entropy of the variational
posterior, is the same as a standard VAE. To speed up the computation of log p (z |X), we evaluate
z against K � N exemplars that exert the maximal influence on z, and ignore the rest. This is a
reasonable approximation in high dimensional spaces where only the nearest Gaussian means matter
in a Gaussian mixture model. Let kNN(z) ≡ {πk}Kk=1 denote the set of K exemplar indices with
approximately largest rφ(z |xπk), or equivalently, the smallest ‖z− µφ(xπk)‖2 for the model in (7).
Since probability densities are non-negative and log is monotonically increasing, it follows that

log p
(
z |X

)
= − logN + log

N∑
j=1

rφ(z |xj) ≥ − logN + log
∑

k∈kNN(z)

rφ(z |xπk) (9)

As such, approximating the exemplar prior with approximate kNN is a lower bound on (8) and (5).

To avoid re-calculating {µφ(xj)}Nj=1 for each gradient update, we store a cache table of most
recent latent means for each exemplar. Such cached latent means are used for approximate nearest
neighbor search to find kNN(z). Once approximate kNN indices are found, the latent means,
{µφ(xπk)}k∈kNN(z), are re-calculated to ensure that the bound in (9) is valid. The cache is updated
whenever a new latent mean of a training point is available, i.e., we update the cache table for any
point covered by the training minibatch or the kNN exemplar sets. Section C in the supplementary
materials summaries the Retrieval Augmented Training (RAT) procedure.

3.2 Regularizing the Exemplar based Prior

Training an Exemplar VAE by simply maximizing O(θ, φ;x, X) in (5), averaged over training data
points x, often yields massive overfitting. This is not surprising, since a flexible transition distribution
can put all its probability mass on the reconstruction of each exemplar, i.e., p(x | x), yielding
high log-likelihood on training data but poor generalization. Prior work [4, 55] also observed such
overfitting, but no remedies have been provided. To mitigate overfitting we propose two simple but
effective regularization strategies:

1. Leave-one-out during training. The generation of a given data point is expressed in terms of
dependence on all exemplars except that point itself. The non-parametric nature of the generative
model enables easy adoption of such a leave-one-out (LOO) objective during training, to optimize

O1(φ, θ;X) =
∑N

i=1
log
∑N

n=1

1[i 6=n]

N−1
Tφ,θ(xi | xn) , (10)

where 1[i 6=n] ∈ {0, 1} is an indicator function, taking the value of 1 if and only if i 6= n.
2. Exemplar subsampling. Beyond LOO, we observe that explaining a training point using a subset

of the remaining training exemplars improves generalization. To that end, we use a hyper-parameter
M to define the exemplar subset size for the generative model. To generate xi we draw M indices

4



π ≡ {πm}Mm=1 uniformly at random from subsets of {1, . . . , N} \ {i}. Let π ∼ ΠN,i
M denote this

sampling procedure with (N−1 choose M ) possible subsets. This results in the objective function

O2(φ, θ;X) =
∑N

i=1
E
π∼ ΠN,iM

log
∑M

m=1

1

M
Tφ,θ(xi | xπm) . (11)

By moving Eπ inside the log in (11) we recover O1; i.e., O2 is a lower bound on O1, via Jensen’s
inequality. Interestingly, we find O2 often yields better generalization than O1.

Once training is finished, all N training exemplars are used to explain the generation of the validation
or test sets using (1), for which the two regularizers discussed above are not used. Even though cross
validation is commonly used for parameter tuning and model selection, in (11) cross validation is
used as a training objective directly, suggestive of a meta-learning perspective. The non-parameteric
nature of the exemplar based prior enables the use of the regularization techniques above, but this
would not be straightforward for training parametric generative models.

Learning objective. To complete the definition of the learning objective for an Exemplar VAE, we
combine RAT and exemplar sub-sampling to obtain the final Exemplar VAE objective:

O3(θ, φ;X) =

N∑
i=1

E
qφ(z|xi)

[
log

pθ(xi |z)

qφ(z |xi)
+ E

ΠN,iM (π)

log

M∑
m=1

1[πm∈kNN(z)]

(
√

2πσ)dz
exp
−‖z− µφ(xπm)‖2

2σ2

]
,

(12)
where, for brevity, the additive constant − logM has been dropped. We use the reparametrization
trick to back propagate through E qφ(z | xi). For small datasets and fully connected architectures we
do not use RAT, but for convolutional models and large datasets the use of RAT is essential.

4 Related Work

Variational Autoencoders (VAEs) [32, 49] are versatile, latent variable generative models, used for
non-linear dimensionality reduction [21], generating discrete data [5], and learning disentangled
representations [26, 7], while providing a tractable lower bound on log marginal likelihood. Improved
variants of the VAE are based on modifications to the VAE objective [6], more flexible variational
familieis [33, 48], and more powerful decoders [8, 22]. More powerful latent priors [55, 2, 12, 35]
can improve the effectiveness of VAEs for density estimation, as suggested by [27], and motivated by
the observed gap between the prior and aggregated posterior (e.g., [40]). More powerful priors may
help avoid posterior collapse in VAEs with autoregressive decoders [5]. Unlike most existing work,
Exemplar VAE assumes little about the structure of the latent space, using a non-parameteric prior.

VAEs with a VampPrior [55] optimize a set of pseudo-inputs together with the encoder network to
obtain a Gaussian mixture approximation to the aggregate posterior. They argue that computing the
exact aggregated posterior, while desirable, is expensive and suffers from overfitting, hence they
restrict the number of pseudo-inputs to be much smaller than the training set. Exemplar VAE enjoys
the use of all training points, but without a large increase in the the number of model parameters,
while avoiding overfitting through simple regularization techniques. Training cost is reduced through
RAT using approximate kNN search during training.

Exemplar VAE also extends naturally to large high dimensional datasets, and to discrete data, without
requiring additional pseduo-input parameters. VampPrior and Exemplar VAE are similar in their
reuse of the encoder network and a mixture prior over the latent space. However, the encoder for the
Exemplar VAE prior has a simplified covariance, which is useful for efficient learning. Importantly,
we show that Exemplar VAEs can learn better unsupervised representations of images and perform
generative data augmentation to improve supervised learning.

Memory augmented networks with attention can enhance generative models [36]. Hard attention has
been used in VAEs [4] to generate images conditioned on memory items, with learnable and fixed
memories. One can view Exemplar VAE as a VAE with external memory. One crucial difference
between Exemplar VAE and [4] is in the conditional dependencies assumed in the Exemplar VAE,
which disentangles the prior and reconstruction terms, and enables amortized computation per
minibatch. In [4] discrete indices are optimized which creates challenges for gradient estimation,
and they need to maintain a normalized categorical distribution over a potentially massive set of
indices. By contrast, we use approximate kNN search in latent space to model hard attention, without
requiring a normalized categorical distribution or high variance gradient estimates, and we mitigate
overfitting using regularization.
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Associative Compression Networsk [20] learn an ordering over a dataset to obtain better compression
rates through VAEs. That work is similar to ours in defining the prior based on training data samples
and the use of kNN in the latent space during training. However, their model with a conditional prior
is not comparable with order agnostic VAEs. On the other hand, Exemplar VAE has an unconditional
prior where, after training, defining an ordering is feasible and achieves the same goal

5 Experiments

Experimental setup. We evaluate Exemplar VAE on density estimation, representation learning, and
data augmentation. We use four datasets, namely, MNIST, Fashion-MNIST, Omniglot, and CelebA,
and we consider four different architectures for gray-scale image data, namely, a VAE with MLP
for encoder and decoder with two hidden layers (300 units each), a HVAE with similar architecture
but two stochastic layers, ConvHVAE with two stochastic layers and convolutional encoder and
decoder, and PixelSNAIL [9] with two stochastic layers and an auto-regressive PixelSNAIL shared
between encoder and decoder. For CelebA we used a convolutional architecture based on [17]. We
use gradient normalized Adam [31, 58] with learning rate 5e-4 and linear KL annealing for 100
epochs. See the supplementary material for details.

Evaluation. For density estimation we use Importance Weighted Autoencoders (IWAE) [6] with
5000 samples, using the entire training set as exemplars, without regularization or kNN acceleration.
This makes the evaluation time consuming, but generating an unbiased sample from the Exemplar
VAE is efficient. Our preliminary experiments suggest that using kNN for evaluation is feasible.

5.1 Ablation Study

First, we evaluate the effectiveness of the regularization techniques proposed (Figure 2), i.e., leave-
one-out and exemplar subsampling, for enhancing generalization.

Leave-one-out (LOO). We train an Exemplar VAE with a full aggregated exemplar based prior
without RAT with and without LOO. Figure 2 plots the ELBO computed on training and validation
sets, demonstrating the surprising effectiveness of LOO in regularization. Table 1 gives test log-
likelihood IWAE bounds for Exemplar VAE on MNIST and Omniglot with and without LOO.

Figure 2: Training and validation ELBO on Dynamic
MNIST for Exemplar VAE with and without LOO.

Exemplar VAE
Dataset w/ LOO w/o LOO

MNIST −82.35 −101.33
Omniglot −105.80 −139.12

Table 1: Log likelihood lower bounds on the
test set (nats) for Exemplar VAE with and with-
out leave-one-out (LOO).

Exemplar subsampling. As explained in Sec. 3.2, the Exemplar VAE uses a hyper-parameter M to
define the number of exemplars used for estimating the prior. Here, we report the Exemplar VAE’s
density estimates as a function of M divided by the number of training data points N . We consider
M/N ∈ {1.0, 0.5, 0.2, 0.1}. All models use LOO, and M/N = 1 reflects M = N − 1. Table 2
presents results for MNIST and Omniglot. In all of the following experiments we adopt M/N = 0.5.

Dataset
M/N 1 0.5 0.2 0.1

MNIST −82.35 −82.09 −82.12 −82.20
Omniglot −105.80 −105.22 −104.95 −105.42

Table 2: Test log likelihood lower bounds (nats) for Exemplar VAE versus fraction of exemplar subsampling.

5.2 Density Estimation

For each architecture, we compare to a Gaussian prior and a VampPrior, which represent the state-of-
the-art among VAEs with a factored variational posterior. For training VAE and HVAE we did not
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Method Dynamic MNIST Fashion MNIST Omniglot

VAE w/ Gaussian prior −84.45 ±0.12 −228.70 ±0.15 −108.34 ±0.06
VAE w/ VampPrior −82.43 ±0.06 −227.35 ±0.05 −106.78 ±0.21

Exemplar VAE −82.09 ±0.18 −226.75 ±0.07 −105.22 ±0.18
HVAE w/ Gaussian prior −82.39 ±0.11 227.37 ±0.1 −104.92 ±0.08

HVAE w/ VampPrior −81.56 ±0.09 −226.72 ±0.08 −103.30 ±0.43
Exemplar HVAE −81.22 ±0.05 −226.53 ±0.09 −102.25 ±0.43

ConvHVAE w/ Gaussian prior −80.52 ±0.28 −225.38 ±0.08 −98.12 ±0.17
ConvHVAE w/ Lars −80.30 −225.92 −97.08

ConvHVAE w/ SNIS −79.91 ±0.05 −225.35 ±0.07 N/A
ConvHVAE w/ VampPrior −79.67 ±0.09 −224.67 ±0.03 −97.30 ±0.07

Exemplar ConvHVAE −79.58 ±0.07 −224.63 ±0.06 −96.38 ±0.24
PixelSNAIL w/ Gaussian Prior −78.20 ±0.01 −223.68 ±0.01 −89.59 ±0.04

PixelSNAIL w/ VampPrior −77.90 ±0.01 −223.45 ±0.01 −89.50 ±0.05
Exemplar PixelSNAIL −77.95 ±0.01 −223.26 ±0.01 −89.28 ±0.06

Table 3: Density estimation on dynamic MNIST, Fashion MNIST, and Omniglot for different methods and
architectures, all with 40-D latent spaces. Log likelihood lower bounds (nats), estimated with IWAE with 5000
samples, are averaged over 5 training runs. For LARS [2] and SNIS [35], the IWAE used 1000 samples; their
architectures and training procedures are also somewhat different.

MNIST Fashion MNIST Omniglot

CelebA

Figure 3: Given a source exemplar on the top left of each plate, Exemplar VAE samples are generated, showing
a significant diversity while preserving properties of the source exemplar.

utilize RAT, but for convolutional architectures we used RAT with 10NN search (see Sec. 3.1). Note
that the number of nearest neighbors are selected based on computational budget; we believe larger
values work better. Table 3 shows that Exemplar VAEs outperform other models in all cases except
one. Improvement on Omniglot is greater than on other datasets, which may be due to its significant
diversity. One can attempt to increase the number of pseudo-inputs in VampPrior, but this leads to
overfitting. As such, we posit that Exemplar VAEs have the potential to more easily scale to large,
diverse datasets. Note that training an Exemplar ConHVAE with approximate 10NN search is as
efficient as training a ConHVAE with a VampPrior. Also, note that VampPrior [55] showed that a
mixture of variational posteriors outperforms a Gaussian mixture prior, and hence we do not directly
compare to that baseline.

Fig. 3 shows samples generated from an Exemplar ConvVAE, for which the corresponding exemplars
are shown in the top left corner of each plate. These samples highlight the power of Exemplar VAE
in maintaining the content of the source exemplar while adding diversity. For MNIST the changes
are subtle, but for Fashion MNIST and Omniglot samples show more pronounced variation in style,
possibly because those datasets are more diverse.

To assess the scalability of Exemplar VAEs to larger datasets, we train this model on 64×64 CelebA
images [39]. Pixel values are modeled using a discretized logistic distribution [33, 51]. Exemplar
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Figure 4: Interpolation between samples from the CelebA dataset.

Exemplar VAE on MNIST VAE on MNIST

Figure 5: t-SNE visualization of learned latent
representations for test points, colored by labels.

Method MNIST Fashion MNIST

VAE w/ Gaussian Prior 2.41 ±0.27 15.90 ±0.34
VAE w/ VampPrior 1.42 ±0.02 12.74 ±0.18
Exemplar VAE 1.13 ±0.06 12.56 ±0.08

Table 4: kNN classification error (%) on 40-D unsuper-
vised representations.

VAE samples (Figure 3) are high quality with good diversity. Interpolation in the latent space is also
effective (Figure 4). More details and quantitative evaluations are provided in the supplementary
materials.

5.3 Representation Learning

We next explore the structure of the latent representation for Exemplar VAE. Fig. 5 shows a t-SNE
visualization of the latent representations of MNIST test data for the Exemaplar VAE and for VAE
with a Gaussian prior. Test points are colored by their digit label. No labels were used during training.
The Exemplar VAE representation appears more meaningful, with tighter clusters than VAE. We also
use k-nearest neighbor (kNN) classification performance as a proxy for the representation quality.
As is clear from Table 4, Exemplar VAE consistently outperforms other approaches. Results on
Omniglot are not reported since the low resolution variant of this dataset does not include class labels.
We also counted the number of active dimension in the latent to measure posterior collapse. Section
D of supplementary materials shows the superior behavior of Exemplar VAE.

5.4 Generative Data Augmentation

Finally, we ask whether Exemplar VAE is effective in generating augmented data to improve super-
vised learning. Recent generative models have achieved impressive sample quality and diversity, but
limited success in improving discriminative models. Class-conditional models were used to generate
training data, but with marginal gains [46]. Techniques for optimizing geometric augmentation
policies [11, 38, 24] and adversarial perturbations [19, 41] were more successful for classification.

Here we use the original training data as exemplars, generating extra samples from Exemplar VAE.
Class labels of source exemplars are transferred to corresponding generated images, and a combination
of real and generated data is used for supervised learning. Each training iteration involves 3 steps:

1. Draw a minibatch X={(xi, yi)}Bi=1 from training data.
2. For each xi ∈ X , draw zi ∼ rφ(z | xi), and then set x̃i = µφ(x | zi), which inherits the class

label yi. This yields a synthetic minibatch X̃ = {(x̃i, yi)}Bi=1.

3. Optimize the weighted cross entropy: ` = −
∑B
i=1

[
λ log pθ(yi |xi) + (1−λ) log pθ(yi | x̃i)

]
For VAE with Gaussian prior and VampPrior we sampled from variational posterior instead of rφ.
We train MLPs with ReLU activations and two hidden layers of 1024 or 8192 units on MNIST and
Fashion MNIST. We leverage label smoothing [54] with a parameter of 0.1. The Exemplar VAEs
used for data augmentation have fully connected layers and are not trained with class labels.

Fig. 6 shows Exemplar VAE is more effective than other VAEs for data augmentation. Even small
amounts of generative data augmentation improves classifier accuracy. A classifier trained solely on
synthetic data achieves better error rates than one trained on the original data. Given λ = 0.4 on
MNIST and λ = 0.8 on Fashion MNIST, we train 10 networks on the union of training and validation
sets and report average test errors. On permutation invariant MNIST, Exemplar VAE augmentations
achieve an average error rate of 0.69%. Tables 5 and 6 summarize the results in comparison with

8



previous work. Ladder Networks [52] and Virtual Adversarial Training [41] report error rates of
0.57% and 0.64% on MNIST, using deeper architectures and more complex training procedures.

Method Hidden layers Test error

Dropout [53] 3×1024 1.25
Label smoothing [45] 2×1024 1.23±0.06
Dropconnect [56] 2×800 1.20
VIB [1] 2×1024 1.13
Dropout + MaxNorm [53] 2×8192 0.95
MTC [50] 2×2000 0.81
DBM + DO fine. [53] 500-500-2K 0.79

Label Smoothing (LS) 2×1024 1.23±0.01
LS+Exemplar VAE Aug. 2×1024 0.77±0.01
Label Smoothing 2×8196 1.17±0.01
LS+Exemplar VAE Aug. 2×8192 0.69±0.01

Table 5: Test error (%) on permutation invariant
MNIST from [53, 45, 56, 1, 50], and our results
with and without generative data augmentation.

Method Hidden layers Test error

Label Smoothing 2×1024 8.96±0.04
LS+Exemplar VAE Aug. 2×1024 8.46±0.04
Label Smoothing 2×8196 8.56±0.03
LS+Exemplar VAE Aug. 2×8192 8.16±0.03

Table 6: Test error (%) on permutaion invariant Fashion
MNIST.

Figure 6: MNIST validation error versus λ, which con-
trols the relative balance of real and augmented data, for
different generative models.

6 Conclusion

We develop a framework for exemplar based generative modeling called the Exemplar VAE. We
present two effective regularization techniques for Exemplar VAEs, and an efficient learning algorithm
based on approximate nearest neighbor search. The effectiveness of the Exemplar VAE on density
estimation, representation learning, and data augmentation for supervised learning is demonstrated.
The development of Exemplar VAEs opens up interesting future research directions such as application
to NLP (cf. [23]) and other discrete data, further exploration of unsupervised data augmentation, and
extentions to other generative models such as Normalizing Flows and GANs.

Broader Impact Statement
The ideas described in our paper concern the development of a new fundamental class of unsupervised
learning algorithm, rather than an application per se. One important property of the method stems
from it’s non-parametric form, i.e., as an exemplar-based model. As such, rather than having the
"model" represented solely in the weights of an amorphous non-linear neural network, in our case
much of the model is expressed directly in terms of the dataset of exemplars. As such, the model
is somewhat more interpretable and may facilitate the examination or discovery of bias, which has
natural social and ethical implications. Beyond that, the primary social and ethical implications will
derive from the way in which the algorithm is applied in different domains.
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