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Abstract

Hybrid Privacy-Preserving Neural Network (HPPNN) implementing linear layers
by Homomorphic Encryption (HE) and nonlinear layers by Garbled Circuit (GC)
is one of the most promising secure solutions to emerging Machine Learning as
a Service (MLaaS). Unfortunately, a HPPNN suffers from long inference latency,
e.g., ∼ 100 seconds per image, which makes MLaaS unsatisfactory. Because
HE-based linear layers of a HPPNN cost 93% inference latency, it is critical to
select a set of HE parameters to minimize computational overhead of linear layers.
Prior HPPNNs over-pessimistically select huge HE parameters to maintain large
noise budgets, since they use the same set of HE parameters for an entire network
and ignore the error tolerance capability of a network.
In this paper, for fast and accurate secure neural network inference, we propose
an automated layer-wise parameter selector, AutoPrivacy, that leverages deep
reinforcement learning to automatically determine a set of HE parameters for
each linear layer in a HPPNN. The learning-based HE parameter selection policy
outperforms conventional rule-based HE parameter selection policy. Compared
to prior HPPNNs, AutoPrivacy-optimized HPPNNs reduce inference latency by
53% ∼ 70% with negligible loss of accuracy.

1 Introduction
Machine Learning as a Service (MLaaS) is an emerging computing paradigm that uses powerful
cloud infrastructures to provide machine learning inference services to clients. However, in the setting
of MLaaS, cloud servers can arbitrarily access input and output data of clients, thereby introducing
privacy risks. Privacy is important when clients upload their sensitive information, e.g., healthcare
records and financial data, to cloud servers. Recent works [1, 2, 3, 4, 5] create Hybrid Privacy-
Preserving Neural Networks (HPPNNs) to achieve both low inference latency and high accuracy
using a combination of Homomorphic Encryption (HE) and Garbled Circuit (GC). Particularly,
DELPHI [5] obtains the state-of-the-art inference latency and accuracy through implementing linear
layers by HE, and computing activation layers by GC. However, HPPNNs still suffer from long
inference latency. For instance, inferring one single CIFAR-10 image by DELPHI ResNet-32 [5]
costs ∼ 100 seconds and has to exchange 2GB data. Particularly, the HE-based linear layers of
DELPHI cost 93% of its inference latency, thereby becoming its performance bottleneck.

The computational overhead of HE-based linear layers in prior HPPNNs is decided by their HE
parameters including the plaintext modulus p, the ciphertext modulus q, and the polynomial degree n.
HE enables homomorphic additions and multiplications on ciphertexts by manipulating polynomials
whose total term number and coefficients are defined by p, q and n. Each HE operation introduces
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Figure 1: The bottleneck analysis, working flow and HE parameter selection of DELPHI.

a small noise. Decrypting a HE output may have errors, if the total noise accumulated along a HE
computation path exceeds the noise budget decided by p, q and n. Fully HE adopts bootstrapping
operations to eliminate noises, and thus is not sensitive to noise budget. However, to avoid extremely
slow bootstrapping operations of fully HE, prior HPPNNs use leveled HE that allows only a limited
noise budget. A large noise budget requires large p, q and n, significantly increasing computational
overhead of polynomial additions and multiplications.

In order to keep a fixed (and extremely small) decryption failure rate for correct ciphertext decryption,
prior HPPNNs over-pessimistically assume huge noise budgets using large p, q and n. First, prior
HPPNNs do not consider the error tolerance of neural networks when defining their HE parameters
p, q and n. We found that a HPPNN can tolerate some decryption errors without degrading private
inference accuracy. Second, prior HPPNNs assume the same p, q and n for all layers. Different
layers in a neural network have different architectures, e.g., weight kernel size and output channel
number, and thus different error tolerances. Therefore, assuming the same worst case HE parameters
for all layers substantially increases the computational overhead of a HPPNN. However, defining
a set of p, q and n for each layer via hand-crafted heuristics is so complicated that even HE and
machine learning experts may obtain only sub-optimal results. In this paper, we propose an automated
layer-wise HE parameter selection technique, AutoPrivacy, for fast and accurate HPPNN inferences.

2 Background and Motivation
Threat Model. Our threat model is the same as that in [5]. AutoPrivacy is designed for the two-party
semi-honest setting, where only one of the parties may be corrupted by an adversary. Both parties
adhere the security protocol, but try to learn information about private inputs of the other party from
messages they receive. AutoPrivacy aims to protect the client’s privacy, but does not prevent the
client from learning the architecture of the neural network used by the server [5].

Privacy-Preserving Neural Network. Prior HPPNNs [1, 2, 3, 4] combine Homomorphic Encryption
(HE) and Garbled Circuit (GC) to support privacy-preserving inferences. An HPPNN inference
includes a preprocessing stage and an online stage. During a preprocessing stage, a server and a
client prepare Beaver’s triples, setup HE parameters, and perform oblivious transfers (OT) for the
next online stage. In the online stage, the server and the client jointly compute to obtain the inference
result. As Figure 1(a) shows, the preprocessing stage for activation and linear layers dominates
HPPNN inference latency in one of the best performing recent works [5]. The security protocol of
the preprocessing stage for [5] is summarized as follows.

• HE-based linear layer. Linear layers in a HPPNN are either implemented through HE or Beaver’s
triples generated by HE. HE enables homomorphic computations on ciphertexts without decryption.
Given a public key pk, a secret key sk, an encryption function ε(), and a decryption function σ(),×
is a homomorphic operation, if there is another operation⊗ such that σ(ε(x1, pk)⊗ε(x2, pk), sk) =
σ(ε(x1 × x2, pk), sk), where x1 and x2 are plaintexts. Although most HE schemes, e.g., BFV [6],
can support fast matrix-vector multiplications with SIMD evaluation, HE-based linear layers are still
the performance bottleneck of a HPPNN. As Figure 1(a) shows, HE-based linear layers consume
71% of inference latency of the latest HPPNN DELPHI [3]. During the preprocessing stage of a
linear layer (Li), the client and the server generate two masking vector ri and si respectively for
Li, as shown in Figure 1(b). The client encrypts ri as [ri], and sends [ri] to the server, while the
server homomorphically computes [Mi · ri − si] and sends it to the client, where Mi indicates the
weights and biases of Li. The client decrypts [Mi · ri − si]. The server holds si, so the client and
the server hold an additive secret sharing of Mi · ri.

• GC-based nonlinear layer. Prior HPPNNs implement nonlinear layers by GC that is a cryptographic
protocol enabling the server and the client to jointly compute a nonlinear layer over their private
data without learning the other party’s data. In GC, an activation is represented by a Boolean circuit.
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Figure 2: AutoPrivacy: (a) HE parameter generation of prior HPPNNs; and (b) HE parameter
generation of AutoPrivacy.

As Figure 1(c) shows, the server firstly garbles an activation, generates its garbled table (Ci), and
sends it to the client. The client receives Ci by Oblivious Transfer (OT) [3]. In the online stage, the
client evaluates Ci to produce an activation result.

• Beaver’s-Triples-based activations. The latest HPPNN DELPHI [3] also adopts Beaver’s Triples
(BT) to implement quadratic approximations of the activation function to further reduce computing
overhead of GC-based nonlinear layers. To maintain the same inference accuracy, DELPHI uses
both GC- and BT-based activations in its nonlinear layers.

Compared to GC-only-based neural networks, e.g., DeepSecure [7], and HE-only-based neural
networks, e.g., CryptoNets [8], SHE [9], and Lola [10], HPPNNs [5] decrease inference latency by
∼ 100× and improve inference accuracy by 1% ∼ 4%.

The BFV Cryptosystem and Its HE Parameters. By following DELPHI [5], we adopt BFV [11] to
implement HE operations in a HPPNN. We use [r] to indicate a ciphertext holding a message vector r,
where the plaintext is a ringRp = Zp[x]/(xn+1) with plaintext modulus p and cyclotomic order n. In
BFV, due to its packing technique, a ciphertext [r] ∈ R2

q is a set of two polynomials in a quotient ring
Rq with ciphertext modulus q. For the encryption of a packed polynomial m containing the elements
in r, a BFV ciphertext is structured as a vector of two polynomials (c0, c1) ∈ R2

q . Specifically,

c0 = −a (1) c1 = a · s+ q

p
m+ e0 (2)

where a is a uniformly sampled polynomial, while s and e0 are polynomials whose coefficients drawn
from Xσ , where σ is the standard deviation. The decryption simply computes pq (c0s+c1) = m+ p

q e0.
When q

p � e0, e0 can be removed. As Figure 1(d) exhibits, the larger q is, the more likely e0 can
be omitted, the more accurate the BFV cryptosystem is. For each group of p, q, n and σ, the LWE-
Estimator [12] can estimate the BFV security level λ based the BFV standard. The larger q and n are,
the more secure a BFV-based cryptosystem is. To guarantee the correctness and execution efficiency
of BFV, the HE parameters have to follow the 5 rules [3]: ¶ n is a power of two; · q ≡ 1 mod n;
¸ p ≡ 1 mod n; ¹ |q mod p| ≈ 1; and º q is pseudo-Mersenne.

Batching. To support SIMD, BFV [11] adopts the Chinese Remainder Theorem (CRT) to pack n
integers modulo p into one plaintext polynomial m. BFV batching only works when p is a primer
number and congruent to 1 (mod 2n). This p assures that there exists a primitive 2n-th root of unity
ζ in the integer domain modulo p (Zp), so that polynomial modulus xn + 1 factors modulo p as:

xn + 1 = (x− ζ)(x− ζ3)...(x− ζ2n−1)(mod p). (3)

CRT offers an isomorphism (∼=) between a plaintext polynomial m ∈ Rp and n integers
∏n−1
i=0 Zp:

Rp =
Zp[x]
xn + 1

=
Z∏n−1

i=0 x− ζ2i+1
∼=
n−1∏
i=0

Zp[x]
x− ζ2i+1

∼=
n−1∏
i=0

Zp[ζ2i+1] ∼=
n−1∏
i=0

Zp. (4)

Based on the BFV batching, n coefficient-wise additions or multiplications in integers modulo p are
computed by one single addition or multiplication inRp.

HE Parameter Selection. Prior HPPNNs [1, 2, 5, 3, 4] decide their HE parameters using the flow
shown in Figure 2(a). For an entire neural network, prior HPPNNs first choose the cyclotomic order
n that is a power of two and typically ≥ 1010, and then select a prime p ≥ M , where M is the
maximum plaintext value of the neural network model (i.e., weights and biases). Prior HPPNNs must
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HPPNN plaintext cyclotomic ciphertext standard security decryption
modulus log(p) order log(n) modulus log(q) deviation σ level λ error %

DELPHI [5] 22 13 180 3.2 > 128 > 2−40

DARL [4] 14 13 165 3.2 > 128 2−40

Table 1: The HE parameters of prior HPPNNs.
guarantee p ≡ 1 mod n, otherwise they increase p. By the LWE-Estimator [12], based on n, p, a
standard deviation σ of noise and a security level value λ (e.g., 128-bit), prior HPPNNs compute
the maximum value (qmax) of q. According to the network architecture, prior HPPNNs obtain the
minimal value (qmin) of q that makes the HE decryption failure rate smaller than 2−40 [4]. From
qmin to qmax, prior HPPNNs choose the smallest q that can meet the other constraints imposed by
the 5 rules of HE parameters. A recent compiler [13] implements the procedure of HE parameter
selection shown in Figure 2(a) for a neural network. To provide circuit privacy, prior HPPNNs [5]
have to implement noise flooding [5] by tripling log2(q) and quadrupling n. The HE parameters of
recent HPPNNs are shown in Table 1.

1 1 - 1 2 0 1 2 - 1 8 0 1 3 - 1 8 001
23
45

no
rm

. e
xe

. ti
me

l o g ( n ) - l o g ( q )
Figure 3: The latency com-
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HE Execution Efficiency. The latency of HE-based linear layers
of a HPPNN is decided by its HE parameters, i.e., n and q. In-
puts of a HPPNN are encrypted into polynomials consisting of n
terms. Homomorphic multiplications during a HPPNN inference
are performed through polynomial multiplications, where the co-
efficient of each term has a modulus of q. BFV [11] adopts the
Number-Theoretic Transform (NTT) [14] with modular reduction
to accelerate polynomial multiplications. The time complexity of a
NTT-based polynomial multiplication is O(n log n). Because q can
be larger than 64-bit, recent BFV implementations use the Residue
Number System (RNS) [6] to decompose large q into vectors of
smaller integers. A smaller q greatly accelerates HE operations. As
Figure 3 shows, 2 × n and 1.5 × log(q) increases the latency of a
HE multiplication by 3.2×.

Drawbacks of Prior HE Parameter Selection Policies. We find prior HPPNNs over-pessimistically
choose huge values of n and q, resulting in unnecessarily long privacy-preserving inference latency.
First, prior HPPNNs ignore their error tolerance capability, i.e., a HPPNN encrypted with smaller n
and q producing a higher decryption error rate may still achieve the same inference accuracy but use
much shorter inference latency. Second, different layers of a HPPNN have distinctive architectures,
and thus can tolerate different amounts of decryption errors. So a HPPNN should select p, n and q
for each layer to shorten its inference latency. Choosing p, n and q for each layer does not expose
more information to the client, since prior HPPNNs [1, 2, 5, 3, 4] cannot protect the architecture of
the network from being known by the client.
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Figure 4: The ineffectiveness of conventional neural architecture search.
Neural Architecture Search. Deep reinforcement learning (DRL) [15, 16], genetic algorithm [17],
and Bayesian optimization [18] are widely used to automatically search a network architecture
improving inference accuracy and latency. DRL-found network architectures without privacy-
preserving awareness can outperform human-designed and rule-based results [15, 16]. However,
naïvely applying DRL on HPPNN architecture search [19] cannot effectively optimize privacy-
preserving inference accuracy and latency, because conventional neural architecture search explores
the design space of layer number, weight kernel size and model quantization bitwidth, but not HE
parameters. Particularly, n and q are not sensitive to changes of weight kernel size, as shown in
Figure 4(a). In Figure 4(b), n and q are not sensitive to model quantization bitwidth either, particularly
when model quantization bitwidth is < 16. Although smaller weight and bias bitwidths reduce p, p
has to follow the 5 rules of HE parameters, and thus cannot be reduced in a highly quantized model.

4



reward Rt = -err

embeding

critic

actor action

DDPG agent

...

at

Lt-1

Lt

Lt+1

...

Environment

2-18

2-21

2-16
state Ot = [t,cin, … ,pt,qt,nt,at-1]

HE Parameter
Selection

❶

❷

❸

❹
Figure 5: The working flow of AutoPrivacy.

DRL-based Layer-wise HE Parameter Search. On the contrary, if the HE decryption error rate is
moderately enlarged, as Figure 4(c) shows, q can be obviously reduced. In this paper, as Figure 2(b)
shows, we propose a DDPG agent [20], AutoPrivacy, to predict a HE decryption error rate for each
layer of a HPPNN to reduce n and q, without sacrificing its accuracy. In this way, HPPNN inferences
can be accelerated. As Figure 4(d) shows, prior HPPNNs [1, 2, 5, 3] (net) has to select a 60-bit
q to guarantee a > 2−40 HE decryption error rate for the whole network without considering the
error tolerance capability of a neural network. Recent DARL [4] (net-L) finds the upper bounds of
HE matrix multiplications, so it can use smaller q but still achieve a 2−40 HE decryption error rate.
However, DARL does not take the error tolerance capability of a neural network into its consideration,
nor select a set of n and q for each layer. AutoPrivacy (layer) can choose and minimize n and q for
each HPPNN layer by considering its error tolerance capability. As a result, AutoPrivacy greatly
decreases HPPNN inference latency without degrading its HE security level or inference accuracy.
The search space of selecting a decryption error rate for each layer of a HPPNN is so large that even
HE and machine learning experts may obtain only sub-optimal results. There are totally (D × S)NL ,
e.g., ∼ 108, options, where D is the number of possible decryption error rates for each layer, e.g.,
D = 20; S is the number of possible HE parameter sets, e.g., S ≈ 5; and NL is the layer number of
a HPPNN, e.g., NL = 8.

3 AutoPrivacy
For each layer in a HPPNN, our goal is to precisely find out the maximal decryption error rate
that can be tolerated by the layer without degrading the HE security level (128-bit) or the inference
accuracy. The HE parameter selection procedure obtains smaller q and n with a higher decryption
error rate to shorten the HPPNN inference latency. We first quantize the HPPNN with 8-bit [21] to
minimize p. Further decreasing the bitwidth of a HPPNN only decreases its accuracy, but cannot
further reduce p due to the 5 rules of HE parameters. We formulate the layer-wise decryption error
rate prediction task as a DRL problem.

3.1 Automated Layer-wise Decryption Error Rate Prediction

As Figure 5 shows, AutoPrivacy leverages a DDPG agent [20] for efficient search over the action
space. We introduce the detailed setting of our DDPG framework.

¶ State Space. AutoPrivacy considers only linear layers, and thus processes a HPPNN in-
ference layer by layer. For each linear layer i (Li), the state of Oi is represented by Oi =
(i, cin, cout, xw, xh, ks, ss, pi, qi, ni, ai−1), where i is the layer index; cin indicates the number
of input channels; cout means the number of output channels; xw is the input width, xh is the input
height; ks denotes the kernel size; ss is the stride size; pi is the plaintext modulus; qi means the
ciphertext modulus; ni is the polynomial degree; and ai−1 is the action in the last time step. If Li
is a fully-connected layer, Oi = (i, cin, cout, xw, xh, ks = 1, ss = 0, pi, qi, ni, ai−1). We normalize
each metric in the Oi vector into [0, 1] to make them share the same scale.

· Action Space. AutoPrivacy uses a HE decryption error rate as action ai for each linear layer. We
adopt a continuous action space to determine the HE decryption error rate. Compared to a discrete
action space, the continuous action space maintains the relative order. For example, 2−30 is more
aggressive than 2−40. For Li, we take the continuous action ai ∈ [0, 1], and round it into the discrete
HE decryption error rate (DER) DERi = 2−round(Dl+ai×(Dr−Dl)), where 2−Dl and 2−Dr denote
the maximal and minimal HE decryption error rate. In this paper, we set Dl = 5 and Dr = 15. We
input the predicted HE decryption error rate to the procedure of HE parameter selection shown in
Figure 2(b) to get p, q, and n.

Latency Constraint on Action Space. Some privacy-preserving applications have a limited budget
on their inference latency. We aim to find the HE parameter policy with the best accuracy under a
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latency constraint. We make our agent to meet a given latency budget by limiting its action space.
After our agent produces actions for all layers, we measure the HPPNN inference latency with the
predicted HE parameters. If the current policy exceeds the latency budget, our agent will sequentially
decrease n and/or q of each layer until the latency constraint is satisfied.

Inference Latency Estimation. To avoid high HPPNN inference overhead, we profile and record
the latencies of polynomial multiplications and additions with various values of n and q. From the
network topology, we extract key operation information such as the number of homomorphic SIMD
multiplications, the number of homomorphic slot rotations, and the number of SIMD additions. The
approximate latency of a HPPNN inference can be estimated using the latency and number of each
type of operations.

Inference Accuracy Estimation. Performing millions of HPPNN inferences on encrypted data is
extremely computationally expensive. After AutoPrivacy generates HE parameters for all layers of a
HPPNN, instead, we adopt the HE decryption error simulation infrastructure in [4] to estimate the
HPPNN inference accuracy. We did not observe any accuracy loss on a HPPNN until the decryption
error rate degrades to 2−7. In most cases, we perform brute-force Monte-Carlo runs. However, to
simulate a 2−15 decryption error rate, at least 230 brute-force Monte-Carlo runs are required. To
reduce the simulation overhead, we adopt the Sigma-Scaled Sampling [22] to study high dimensional
Gaussian random variables. A HE-based linear layer with the initial noise vector e can be abstracted
as a function f(e). Its decryption error rate is the probability of the decryption error ‖e‖ being
greater than the noise budget ηt generated by HE parameter p and q. The decryption error rate
can be calculated as Pd =

∫ +∞
−∞ I(e)f(e)de, where I(e) = 1 if and only if ‖e‖ > ηt; otherwise

I(e) = 0. Sigma-Scaled Sampling reduces the error simulation time by sampling from a different
density function g, where g is the same as f but scales the sigma of e by a constant s. Because Pg
offers a much larger probability, we can use less brute-force Monte-Carlo runs to obtain an accurate
Pg . By scaling factors and model fittings, we can run at most 10 million Pgs and convert these values
back to Pd. We record ‖e‖s resulting in decryption errors and decompose them by ICRT. We use
50% of the ICRT-decomposed results to retrain the HPPNN by adding them to the output of each
linear layer in the forward propagation. And then, we use the other 50% of the ICRT-decomposed
results to obtain its inference accuracy.

¸ Reward. Since a latency constraint can be imposed by limiting the action space, we define our
reward R to be related to only the inference accuracy, i.e., R = −err, where err is the HPPNN
inference error rate.

¹ Agent. AutoPrivacy uses a DDPG agent [20], which is an off-policy actor-critic algorithm for
continuous control. In the environment, one step means that the DDPG agent makes an action to
decide the decryption error rate for a specific linear layer, while one episode is composed of multiple
steps, where the DRL agent chooses actions for all layers. The environment generates a reward Ri
and next state Oi+1. We use a variant form of the Bellman’s Equation, where each transition in an
episode is defined as Ti = (Oi, ai, Ri, Oi+1). During the exploration, the Q-function is computed as
Q̂i = Ri + γ ×Q(Oi+1, µ(Ok+1)|θQ), where µ() is the output of the actor; Q(, ) is the output of
the critic; θQ is the parameters of the critic network; and γ is the discount factor. The loss function
can be approximated by L = 1

Ns

∑Ns

i=1 (Q̂i −Q(Oi, µ(Oi)|θQ))2, where Ns is the number of steps
in this episode.

Implementation. The DDPG agent consists of an actor network and a critic network. They share
the same network architecture with 3 hidden layers: 400 units, 300 units and 1 unit. For the actor
network, we add an additional sigmoid function to normalize the output into range of [0, 1]. The
DDPG agent is trained with fixed learning rates, i.e., 10−4 for the actor network and 10−3 for the
critic network. The replay buffer size of AutoPrivacy is 2000. During exploration, the DDPG agent
adds a random noise to each action. The standard deviation of Gaussian action noise is initially set to
0.5. After each episode, the noise is decayed exponentially with a decay rate of 0.99.

Finetuning. During exploration, we finetune the HPPNN model with generated decryption errors for
one epoch to recover the accuracy. We randomly select 2 categories from CIFAR-10 (10 categories
from CIFAR-100) to accelerate the HPPNN model finetuning during exploration. After exploration,
we generate decryption errors based on the best HE parameter selection policy and finetune it on the
full dataset.
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4 Experimental Methodology
We performed extensive experiments to show the consistent effectiveness of AutoPrivacy to minimize
the HPPNN inference latency with trivial loss of accuracy.

Hardware configuration. We ran HPPNN inferences and measured the latency of each type of
operations on an Intel Xeon E7-4850 CPU with 1TB DRAM. We assume the same network LAN
setting as DELPHI [5]. We implemented and trained AutoPrivacy on a Nvidia GTX1080-Ti GPU.

HE and GC setting. We implemented HE-based linear layers of HPPNNs by Microsoft SEAL
library [6], and GC-based nonlinear layers of HPPNNs through the swanky library [23]. Because
we quantized all network models with 8-bit, we fix the plaintext modulus p as 14 [4]. To evaluate
the security level of a set of HE parameters, we relied on the LWE-Estimator [12]. The same as
DELPHI [5] and DARL [4], all HE parameters we studied satisfy the > 128-bit security level. To
estimate the inference accuracy, we use the original HE parameters n and q. On the contrary, we use
4× n and 3× log(q) to enable noise flooding and evaluate inference latency.

Dataset and model. Our experiments are performed on the CIFAR-10/100 dataset. We studied a
series of neural network architecture including a 7-layer CNN network used by [5] (7CNET), ResNet-
32 [24] (RESNET), and MobileNet-V2 [25] (MOBNET). 7CNET consists of seven convolutional
layers. MOBNET consists of pointwise and depthwise convolution layers, each of which is a pointwise-
depthwise-pointwise block. Only 7CNET is trained and tested on CIFAR-10, while experiments of
RESNET and MOBNET are performed on CIFAR-100.

Network Scheme Latency (s) Communication (GB) accuracy (%)
toff ton ttotal moff mon mtotal

7CNET
DELPHI 41 0.8 41.8 0.12 0.01 0.13 81.63
DARL 28.7 0.42 29.12 0.11 0.01 0.12 81.63

AutoPrivacy 10.24 0.31 19.55 0.09 0.01 0.1 81.5

RESNET
DELPHI 90 6.4 96.4 1.9 0.04 1.94 76.78
DARL 56.7 3.83 60.53 1.7 0.04 1.74 76.78

AutoPrivacy 27 1.56 28.56 1.07 0.03 1.1 76.78

MOBNET
DELPHI 17.4 1.74 19.14 0.24 0.01 0.25 68.08
DARL 11.2 1.23 12.43 0.23 0.01 0.24 68.08

AutoPrivacy 6.2 0.72 6.92 0.19 0.01 0.2 68.05

Table 2: The execution time, communication overhead and inference accuracy comparison.

5 Results and Analysis
Overall Performance. The execution time, communication overhead, and inference accuracy
comparison between prior HPPNNs and AutoPrivacy-optimized HPPNNs are shown in Table 2.
Compared to DELPHI, our AutoPrivacy-optimized counterparts reduce the inference latency by
53% ∼ 70%, decrease the ciphertext size by 20% ∼ 43%, and maintain a trivial inference accuracy
loss (0.1%). Particularly, compared to RESNET, AutoPrivacy reduces the offline inference latency by
70%, and the online inference latency by 75%. If a client infer multiple images, only the first one
costs 28.56 seconds. It takes only 1.56 seconds for each of the other images tested by a heavyweight
RESNET model. The CRT, ICRT, NTT and RNS processing operations during HPPNN inferences are
greatly accelerated by the HE parameters automatically selected by AutoPrivacy. Although smaller q
and n may generate more decryption errors, HPPNNs naturally tolerate most errors without obviously
decreasing inference accuracy. We observe only 0.1% accuracy loss for MOBNET and 7CNET.
Finetuning is critical to recover the inference accuracy degradation caused by smaller HE parameters
q and n. We find on average finetuning improves inference accuracy by 8%. Especially, finetuning
can eliminate the accuracy loss for RESNET.

HE Parameter Selection. We report the details of HE parameter selection of RESNET and MOBNET
inferring on the CIFAR-100 dataset in Figure 6(a) and (b) receptively. For CIFAR-100, besides the
first convolutional layer and the last fully-connected layer, RESNET applies a stack of 6M layers with
3× 3 convolutions on the feature maps of sizes of {32, 16, 8} respectively on 32× 32 images, where
M is an odd integer. 2M layers for each feature map size form a residual block. As Figure 6(a) shows,
AutoPrivacy automatically observes the boundary of each residual block of RESNET. Inside each
residual block, AutoPrivacy identifies the 2nd and 6th layers can work with smaller q and n, since
they have less influence to the inference accuracy. On the contrary, the 4th and 8th layers in a residual
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Figure 6: The HE parameter comparison of AutoPrivacy against prior works (net-log(q) and net-
log(n) indicate the q and n of DELPHI, net-L-log(q) and net-log(n) mean the q and n of DARL, and
layer-log(q) and layer-log(n) denote the q and n of AutoPrivacy).

block have to use larger q and n, because they own larger weights in determining the inference
accuracy. For MOBNET, AutoPrivacy automatically finds the difference between depth-wise and
point-wise convolutions. Depth-wise convolution layers have less accumulations thereby reducing the
number of HE rotation operations that greatly increase the noises in packed ciphertexts. Therefore,
AutoPrivacy assigns smaller n and q to depth-wise convolution layers without sacrificing the inference
accuracy. In contrast, point-wise convolution layers have 1× 1 convolutions and tens to hundreds of
output channels requiring a great number of accumulations. Point-wise convolution layers have to
invoke many HE rotation operations in ciphertexts, and thus increase HE noises in ciphertexts. To
tolerate larger HE noises, AutoPrivacy has to select larger n and q to provide larger noise budgets in
point-wise convolution layers without human guidance.

Name Network Quanti- Latency Communi- Accuracy Search
Architecture zation (bits) (seconds) cation(GB) (%) time (hours)

NASS [19] 5 CONV. + 1 FC 4∼16 20.1 0.978 84.6 60
AutoPrivacy MOBNET 14 6.13 0.2 91.4 8

Table 3: The comparison between NASS and AutoPrivacy.

Comparison against NASS. A recent work, NASS [19], automatically builds a privacy-preserving
neural network architecture by a deep reinforcement learning agent. However, instead of HE
parameters, NASS automatically searches neural network architectures and quantization bitwidths
for each linear and nonlinear layer. As a result, its search space size is too large to be efficiently and
effectively explored. Table 3 highlights the comparison of results achieved by NASS and AutoPrivacy
searching for the CIFAR-10 dataset. NASS finds a network architecture with five convolutional layers
and one fully-connected layer on the CIFAR-10 dataset. It also quantizes each linear and nonlinear
layers with 4 ∼ 16 bits. On the contrary, we train a MOBNET on the CIFAR-10 dataset and quantize
the model with 14-bit. Compared to the NASS-found network, MOBNET optimized by AutoPrivacy
improves the inference latency by 69.5%, the communication overhead by 79%, and the inference
accuracy by 8%. The search of AutoPrivacy takes only 8 hours, but the search time of NASS is > 60
hours. This is because each time NASS has to train a neural network from scratch, then quantize
it, and finally retrain it, once it selects a topology for the HPPNN. The design space is too large
for its deep reinforcement learning agent. In contrast, we argue that the emerging compact network
architectures like MOBNET can maximize the inference accuracy with less parameters. We can use
a pre-decided network architecture, quantize it with the same bitwidth, and rely on AutoPrivacy to
automatically choose HE parameters for each linear layer of the fixed architecture. Compared to the
network architecture and quantization bitwidth, choosing appropriate HE parameters for linear layers
of the fixed network more effectively reduces the inference latency.

6 Conclusion
In this paper, we propose, AutoPrivacy, an automated layer-wise HE parameter selector to optimize
for fast and accurate HPPNN inferences on encrypted data. AutoPrivacy uses a deep reinforcement
learning agent to automatically find a set of HE parameters for each linear layer in a HPPNN without
sacrificing the 128-bit security level. Compared to prior HPPNNs, AutoPrivacy-optimized HPPNNs
reduce the inference latency by 53% ∼ 70% with a negligible accuracy loss.
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Broader Impact
In this paper, we propose an automated HE parameter selector for non-experts, i.e., average users, to
automatically optimize their privacy-preserving neural network, so that average users can work with
fast and accurate privacy-preserving neural network inferences on encrypted data. Average users,
who have to rely on big data companies but do not trust them, can benefit from this research, since
they can upload only their encrypted data to untrusted servers. No one may be put at disadvantage
from this research. If our proposed technique fails, everything will go back to the state-of-the-art, i.e.,
untrusted servers may leak sensitive data of average users.
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