
A Architecture Details

We provide additional architectural details here beyond those provided in the paper.

In this work, all GNN models (IPA-GNN, NoExecute, NoControl, GGNN, and R-GAT) compute
their final hidden state as hfinal = hT (x),nexit . Here nexit is the index of the program’s exit statement,
and the number of neural network layers T (x) is computed as

T (x) =
∑

0≤i≤nexit

2LoopNesting(i) +
∑

i∈Loops(x)

2LoopNesting(i) (9)

LoopNesting(i) denotes the number of loops with loop-body including statement xi. And Loops(x)
denotes the set of while-loop statements in x. This provides enough layers to permit message passing
along each path through a program’s loop structures twice, but not enough layers for the IPA-GNN to
learn to follow the ground truth trace of most programs.

In all models, the output layer consists of the computation of logits, followed by a softmax cross-
entropy categorical loss term. The softmax-logits are computed according to

s = softmax (Dense(hfinal)) . (10)

The cross entropy loss is then computed as

L = −
K∑
i

1y=i log(si). (11)

This loss is then optimized using a differentiable optimizer during training.

B Data Generation

For the learning to execute full and partial programs tasks, we generate a dataset from a probabilistic
grammar over programs. Figure 6 provides the grammar. If, IfElse, and Repeat statements are
translated into their Python equivalents. Repeat statements are represented using a while-loop and
counter variable selected from v1. . .v9 uniformly at random, excluding those variables already in
use at the entrance to the Repeat statement.

Attention plots for randomly sampled examples from the full program execution task are shown in
Figure 7. We then mask a random statement in each example and run the partial program execution
IPA-GNN model over each program, showing the resulting attention plots in Figure 8. All four tasks
are solved correctly in the full program execution task task, and the first three are solved correctly in
the partial execution task, while the fourth partial execution task shown is solved incorrectly.

Program P := I B

Initialization I := v0 =M

Block B :=B S | S
Statement S := E | If(C,B) | IfElse(C,B1, B2) | Repeat(N,B)

| Continue | Break | Pass
Condition C := v0 mod 10 O N

Operation O := > | < | >= | <=
Expression E := v0 += N | v0 -= N | v0 *= N

Integer N := 0 | 1 | 2 | . . . | 9
Integer M := 0 | 1 | 2 | . . . | 999

Figure 6: Grammar describing the generated programs comprising the dataset in this paper.

13

n Source CFG IPA

0 v0 = 589
1 if v0 % 10 >= 8:
2 v0 *= 4
3 else:
4 if v0 % 10 < 0:
5 v0 *= 1
6 else:
7 if v0 % 10 >= 6:
8 if v0 % 10 < 3:
9 v0 += 9
10 <exit>

n Source CFG IPA

0 v0 = 36
1 if v0 % 10 >= 7:
2 v0 *= 3
3 if v0 % 10 > 3:
4 v0 *= 4
5 v5 = 3
6 while v5 > 0:
7 v5 -= 1
8 break
9 v0 *= 2
10 <exit>

n Source CFG IPA

0 v0 = 528
1 v0 *= 1
2 v0 += 9
3 v0 += 3
4 if v0 % 10 < 8:
5 if v0 % 10 < 3:
6 if v0 % 10 < 0:
7 v0 -= 7
8 v0 -= 9
9 <exit>

n Source CFG IPA

0 v0 = 117
1 if v0 % 10 <= 6:
2 v0 -= 9
3 v0 += 7
4 else:
5 v1 = 2
6 while v1 > 0:
7 v1 -= 1
8 v0 -= 6
9 v0 *= 1
10 <exit>

Figure 7: Intensity plots show the soft instruction pointer pt,n at each step of the IPA-GNN during
full program execution for four randomly sampled programs.

n Source CFG IPA

0 v0 = 589
1 if v0 % 10 >= 8:
2 v0 *= 4
3 else:
4 if v0 % 10 < 0:
5 v0 *= 1
6 else:
7 if v0 % 10 >= 6:
8 if v0 % 10 < 3:
9 [MASK]
10 <exit>

n Source CFG IPA

0 v0 = 36
1 if v0 % 10 >= 7:
2 [MASK]
3 if v0 % 10 > 3:
4 v0 *= 4
5 v5 = 3
6 while v5 > 0:
7 v5 -= 1
8 break
9 v0 *= 2
10 <exit>

n Source CFG IPA

0 v0 = 528
1 [MASK]
2 v0 += 9
3 v0 += 3
4 if v0 % 10 < 8:
5 if v0 % 10 < 3:
6 if v0 % 10 < 0:
7 v0 -= 7
8 v0 -= 9
9 <exit>

n Source CFG IPA

0 v0 = 117
1 if v0 % 10 <= 6:
2 v0 -= 9
3 v0 += 7
4 else:
5 v1 = 2
6 while v1 > 0:
7 v1 -= 1
8 [MASK]
9 v0 *= 1
10 <exit>

Figure 8: The same programs as in Figure 7, with a single statement masked in each. The intensity
plots show the soft instruction pointer pt,n at each step of the IPA-GNN during partial program
execution.

14

