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Abstract

Deep Gaussian Processes learn probabilistic data representations for supervised
learning by cascading multiple Gaussian Processes. While this model family
promises flexible predictive distributions, exact inference is not tractable. Ap-
proximate inference techniques trade off the ability to closely resemble the pos-
terior distribution against speed of convergence and computational efficiency. We
propose a novel Gaussian variational family that allows for retaining covariances
between latent processes while achieving fast convergence by marginalising out
all global latent variables. After providing a proof of how this marginalisation
can be done for general covariances, we restrict them to the ones we empirically
found to be most important in order to also achieve computational efficiency. We
provide an efficient implementation of our new approach and apply it to several
benchmark datasets. It yields excellent results and strikes a better balance between
accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.

1 Introduction

Gaussian Processes (GPs) provide a non-parametric framework for learning distributions over un-
known functions from data [21]: As the posterior distribution can be computed in closed-form, they
return well-calibrated uncertainty estimates, making them particularly useful in safety critical ap-
plications [3, 22], Bayesian optimisation [10, 30], active learning [37] or under covariate shift [31].
However, the analytical tractability of GPs comes at the price of reduced flexibility: Standard kernel
functions make strong assumptions such as stationarity or smoothness. To make GPs more flexible, a
practitioner would have to come up with hand-crafted features or kernel functions. Both alternatives
require expert knowledge and are prone to overfitting.

Deep Gaussian Processes (DGPs) offer a compelling alternative since they learn non-linear feature
representations in a fully probabilistic manner via GP cascades [6]. The gained flexibility has the
drawback that inference can no longer be carried out in closed-form, but must be performed via
Monte Carlo sampling [9], or approximate inference techniques [5, 6, 24]. The most popular ap-
proximation, variational inference, searches for the best approximate posterior within a pre-defined
class of distributions: the variational family [4]. For GPs, variational approximations often build on
the inducing point framework where a small set of global latent variables acts as pseudo datapoints
summarising the training data [29, 32]. For DGPs, each latent GP is governed by its own set of
inducing variables, which, in general, need not be independent from those of other latent GPs. Here,
we offer a new class of variational families for DGPs taking the following two requirements into ac-
count: (i) all global latent variables, i.e., inducing outputs, can be marginalised out, (ii) correlations
between latent GP models can be captured. Satisfying (i) reduces the variance in the estimators and
is needed for fast convergence [16] while (ii) leads to better calibrated uncertainty estimates [33].
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Figure 1: Covariance matrices for
variational posteriors. We used a
DGP with 2 hidden layers (L1, L2) of
5 latent GPs each and a single GP in
the output layer (L3). The complexity
of the variational approximation is in-
creased by allowing for additional de-
pendencies within and across layers in a
Gaussian variational family (left: mean-
field [24], middle: stripes-and-arrow,
right: fully-coupled). Plotted are natural
logarithms of the absolute values of the
variational covariance matrices over the
inducing outputs.

By using a fully-parameterised Gaussian variational
posterior over the global latent variables, we automat-
ically fulfil (ii), and we show in Sec. 3.1, via a proof
by induction, that (i) can still be achieved. The proof
is constructive, resulting in a novel inference scheme
for variational families that allow for correlations within
and across layers. The proposed scheme is general and
can be used for arbitrarily structured covariances allow-
ing the user to easily adapt it to application-specific
covariances, depending on the desired DGP model ar-
chitecture and on the system requirements with respect
to speed, memory and accuracy. One particular case,
in which the variational family is chain-structured, has
also been considered in a recent work [34], in which the
compositional uncertainty in deep GP models is studied.

In Fig. 1 (right) we depict exemplary inferred covari-
ances between the latent GPs for a standard deep GP
architecture. In addition to the diagonal blocks, the co-
variance matrix has visible diagonal stripes in the off-
diagonal blocks and an arrow structure. These diago-
nal stripes point towards strong dependencies between
successive latent GPs, while the arrow structure reflects

dependencies between all hidden layers and the output layer. In Sec. 3.2, we further propose a
scalable approximation to this variational family, which only takes these stronger correlations into
account (Fig. 1, middle). We provide efficient implementations for both variational families, where
we particularly exploit the sparsity and structure of the covariance matrix of the variational poste-
rior. In Sec. 4, we show experimentally that the new algorithm works well in practice. Our approach
obtains a better balance between accurate predictions and calibrated uncertainty estimates than its
competitors, as we showcase by varying the distance of the test from the training points.

2 Background

In the following, we introduce the notation and provide the necessary background on DGP models.
GPs are their building blocks and the starting point of our review.

2.1 Primer on Gaussian Processes

In regression problems, the task is to learn a function f : RD → R that maps a set of N input
points xN = {xn}Nn=1 to a corresponding set of noisy outputs yN = {yn}Nn=1. Throughout this
work, we assume iid noise, p(yN |fN ) =

∏N
n=1 p(yn|fn), where fn = f(xn) and fN = {fn}Nn=1

are the function values at the input points. We place a zero mean GP prior on the function f ,
f ∼ GP(0, k), where k : RD × RD → R is the kernel function. This assumption leads to a
multivariate Gaussian prior over the function values, p(fN ) = N (fN |0,KNN ) with covariance
matrix KNN = {k(xn, xn′)}Nn,n′=1.

In preparation for the next section, we introduce a set of M � N so-called inducing points xM =
{xm}Mm=1 from the input space1 [29, 32]. From the definition of a GP, the corresponding inducing
outputs fM = {fm}Mm=1, where fm = f(xm), share a joint multivariate Gaussian distribution
with fN . We can therefore write the joint density as p(fN , fM ) = p(fN |fM )p(fM ), where we
factorised the joint prior into p(fM ) = N (fM |0,KMM ), the prior over the inducing outputs, and
the conditional p(fN |fM ) = N

(
fN

∣∣∣K̃NMfM , K̃NN

)
with

K̃NM = KNM (KMM )
−1
, K̃NN = KNN −KNM (KMM )

−1
KMN . (1)

Here the matrices K are defined similarly as KNN above, e.g. KNM = {k(xn, xm)}N,Mn,m=1.

1Note that in our notation variables with an index m,M (n,N) denote quantities related to inducing (train-
ing) points. This implies for example that xm=1 and xn=1 are in general not the same.
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2.2 Deep Gaussian Processes

A deep Gaussian Process (DGP) is a hierarchical composition of GP models. We consider a
model with L layers and Tl (stochastic) functions in layer l = 1, . . . , L, i.e., a total num-
ber of T =

∑L
l=1 Tl functions [6]. The input of layer l is the output of the previous layer,

f lN = [f l,1(f l−1N ), . . . , f l,Tl(f l−1N )], with starting values f0N = xN . We place independent GP
priors augmented with inducing points on all the functions, using the same kernel kl and the same
set of inducing points xlM within layer l. This leads to the following joint model density:

p(yN , fN , fM ) = p(yN |fLN )

L∏
l=1

p(f lN |f lM ; f l−1N )p(f lM ). (2)

Here p(f lM ) =
∏Tl

t=1N
(
f l,tM

∣∣∣0,Kl
MM

)
and p(f lN |f lM ; f l−1N ) =

∏Tl

t=1N
(
f l,tN

∣∣∣K̃l
NMf

l,t
M , K̃l

NN

)
,

where K̃l
NM and K̃l

NN are given by the equivalents of Eq. (1), respectively.2

Inference in this model (2) is intractable since we cannot marginalise over the latents f1N , . . . , f
L−1
N

as they act as inputs to the non-linear kernel function. We therefore choose to approximate the pos-
terior by employing variational inference: We search for an approximation q(fN , fM ) to the true
posterior p(fN , fM |yN ) by first choosing a variational family for the distribution q and then find-
ing an optimal q within that family that minimises the Kullback-Leibler (KL) divergence KL[q||p].
Equivalently, the so-called evidence lower bound (ELBO),

L =

∫
q(fN , fM ) log

p(yN , fN , fM )

q(fN , fM )
dfNdfM , (3)

can be maximised. In the following, we choose the variational family [24]

q(fN , fM ) = q(fM )

L∏
l=1

p(f lN |f lM ; f l−1N ). (4)

Note that fM = {f l,tM }
L,Tl

l,t=1 contains the inducing outputs of all layers, which might be covarying.
This observation will be the starting point for our structured approximation in Sec. 3.1.

In the remaining part of this section, we follow Ref. [24] and restrict the distribution over the induc-
ing outputs to be a-posteriori Gaussian and independent between different GPs (known as mean-field
assumption, see also Fig. 1, left), q(fM ) =

∏L
l=1

∏Tl

t=1 q(f
l,t
M ). Here q(f l,tM ) = N

(
f l,tM

∣∣∣µl,tM , Sl,tM)
and µl,tM , Sl,tM are free variational parameters. The inducing outputs fM act thereby as global latent
variables that capture the information of the training data. Plugging q(fM ) into Eqs. (2), (3), (4), we
can simplify the ELBO to

L=

N∑
n=1

Eq(fL
n )

[
log p(yn|fLn )

]
−
L,Tl∑
l,t=1

KL[q(f l,tM )||p(f l,tM )]. (5)

We first note that the ELBO decomposes over the data points, allowing for minibatch subsam-
pling [12]. However, the marginals of the output of the final layer, q(fLn ), cannot be obtained
analytically. While the mean-field assumption renders it easy to analytically marginalise out the
inducing outputs (see Appx. D.1), the outputs of the intermediate layers cannot be fully integrated
out, since they are kernel inputs of the respective next layer, leaving us with

q(fLn ) =

∫ L∏
l=1

q(f ln; f l−1n )df1n · · · dfL−1n , where q(f ln; f l−1n ) =

Tl∏
t=1

N
(
f l,tn

∣∣∣µ̃l,tn , Σ̃l,tn ) . (6)

The means and covariances are given by

µ̃l,tn = K̃l
nMµ

l,t
M , Σ̃l,tn = Kl

nn − K̃l
nM

(
Kl
MM − S

l,t
M

)
K̃l
Mn. (7)

2In order to avoid pathologies created by highly non-injective mappings in the DGP [7], we follow Ref. [24]
and add non-trainable linear mean terms given by the PCA mapping of the input data to the latent layers. Those
terms are omitted from the notation for better readability.
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We can straightforwardly obtain samples from q(fLn ) by recursively sampling through the layers
using Eq. (6). Those samples can be used to evaluate the ELBO [Eq. (5)] and to obtain unbiased
gradients for parameter optimisation by using the reparameterisation trick [16, 23]. This stochastic
estimator of the ELBO has low variance as we only need to sample over the local latent parameters
f1n, . . . , f

L−1
n , while we can marginalise out the global latent parameters, i.e. inducing outputs, fM .

3 Structured Deep Gaussian Processes

Next, we introduce a new class of variational families that allows to couple the inducing outputs fM
within and across layers. Surprisingly, analytical marginalisation over the inducing outputs fM is
still possible after reformulating the problem into a recursive one that can be solved by induction.
This enables an efficient inference scheme that refrains from sampling any global latent variables.
Our method generalises to arbitrary interactions which we exploit in the second part where we focus
on the most prominent ones to attain speed-ups.

3.1 Fully-Coupled DGPs

We present now a new variational family that offers both, efficient computations and expressivity:
Our approach is efficient, since all global latent variables can be marginalised out , and expressive,
since we allow for structure in the variational posterior. We do this by leaving the Gaussianity
assumption unchanged, while permitting dependencies between all inducing outputs (within layers
and also across layers). This corresponds to the (variational) ansatz q(fM ) = N (fM |µM , SM )
with dimensionality TM . By taking the dependencies between the latent processes into account, the
resulting variational posterior q(fN , fM ) [Eq. (4)] is better suited to closely approximate the true
posterior. We give a comparison of exemplary covariance matrices SM in Fig. 1.

Next, we investigate how the ELBO computations have to be adjusted when using the fully-coupled
variational family. Plugging q(fM ) into Eqs. (2), (3) and (4), yields

L=

N∑
n=1

Eq(fL
n )

[
log p(yn|fLn )

]
− KL[q(fM )||

L,Tl∏
l,t=1

p(f l,tM )], (8)

which we derive in detail in Appx. C. The major difference to the mean-field DGP lies in the
marginals q(fLn ) of the outputs of the last layer: Assuming (as in the mean-field DGP) that the
distribution over the inducing outputs fM factorises between the different GPs causes the marginal-
isation integral to factorise into L standard Gaussian integrals. This is not the case for the fully-
coupled DGP (see Appx. D.1 for more details), which makes the computations more challenging.
The implications of using a fully coupled q(fM ) are summarised in the following theorem.
Theorem 1. In a fully-coupled DGP as defined above, the marginals q(fLn ) can be written as

q(fLn ) =

∫ L∏
l=1

q(f ln|f1n, . . . , f l−1n )df1n · · · dfL−1n where q(f ln|f1n, . . . , f l−1n ) = N
(
f ln

∣∣∣µ̂ln, Σ̂ln) ,
(9)

for each data point xn. The means and covariances are given by

µ̂ln= µ̃ln + S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1n − µ̃1:l−1

n ), (10)

Σ̂ln= S̃lln − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n , (11)

where µ̃ln = K̃lnMµlM and S̃ll
′

n = δll′Klnn − K̃lnM
(
δll′KlMM − Sll

′

M

)
K̃l′Mn.

In Eqs. (10) and (11) the notation Al,1:l
′

is used to index a submatrix of the variable A, e.g. Al,1:l
′

=(
Al,1 · · ·Al,l′

)
. Additionally, µlM ∈ RTlM denotes the subvector of µM that contains the means

of the inducing outputs in layer l, and Sll
′

M ∈ RTlM×Tl′M contains the covariances between the
inducing outputs of layers l and l′. For µ̃ln and S̃ll

′

n , we introduced the notation Kl =
(
ITl
⊗Kl

)
as
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shorthand for the Kronecker product between the identity matrix ITl
and the covariance matrix Kl,

and used δ for the Kronecker delta. We verify in Appx. B.2 that the formulas contain the mean-field
solution as a special case by plugging in the respective covariance matrix.

By Thm. 1, the inducing outputs fM can still be marginalised out, which enables low-variance
estimators of the ELBO. While the resulting formula for q(f ln|f1n, . . . , f l−1n ) has a similar form
as Gaussian conditionals, this is only true at first glance (cf. also Appx. B.1): The latents of the
preceding layers f1:l−1n enter the mean µ̂ln and the covariance matrix Σ̂ln also in an indirect way via
S̃n as they appear as inputs to the kernel matrices.

Sketch of the proof of Theorem 1. We start the proof with the general formula for q(fLn ),

q(fLn ) =

∫ [∫
q(fM )

L∏
l′=1

p(f l
′

n |f l
′

M )dfM

]
df1n · · · dfL−1n , (12)

which is already (implicitly) used in Ref. [24] and which we derive in Appx. D. In order to show the
equivalence between the inner integral in Eq. (12) and the integrand in Eq. (9) we proceed to find a
recursive formula for integrating out the inducing outputs layer after layer:∫

q(fM )

L∏
l′=1

p(f l
′

n |f l
′

M )dfM =

[
l−1∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f ln, f

l+1:L
M |f1:l−1n )

L∏
l′=l+1

p(f l
′

n |f l
′

M )df l
′

M .

(13)
The equation above holds for l = 1, . . . , L after the inducing outputs of layers 1, . . . , l have already
been marginalised out. This is stated more formally in Lem. 2 in Appx. A, in which we also provide
exact formulas for all terms. Importantly, all of them are multivariate Gaussians with known mean
and covariance. The lemma itself can be proved by induction and we will show the general idea of
the induction step here: For this, we assume the right hand side of Eq. (13) to hold for some layer l
and then prove that it also holds for l → l + 1. We start by taking the (known) distribution within
the integral and split it in two by conditioning on f ln:

q(f ln, f
l+1:L
M |f1:l−1n ) = q(f ln|f1:l−1n )q(f l+1:L

M |f1:ln ) (14)

Then we show that the distribution q(f ln|f1:l−1n ) can be written as part of the product in front of the
integral in Eq. (13) (thereby increasing the upper limit of the product to l). Next, we consider the
integration over f l+1

M , where we collect all relevant terms (thereby increasing the lower limit of the
product within the integral in Eq. (13) to l + 2):∫

q(f l+1:L
M |f1:ln )p(f l+1

n |f l+1
M )df l+1

M =

∫
q(f l+1

M |f1:ln )q(f l+2:L
M |f1:ln , f l+1

M )p(f l+1
n |f l+1

M )df l+1
M

=

∫
q(f l+1

M |f1:ln )q(f l+1
n , f l+2:L

M |f1:ln , f l+1
M )df l+1

M = q(f l+1
n , f l+2:L

M |f1:ln ). (15)

The terms in the first line are given by Eqs. (14) and (2). All subsequent terms are also multivariate
Gaussians that are obtained by standard operations like conditioning, joining two distributions, and
marginalisation. We can therefore give an analytical expression of the final term in Eq. (15), which
is exactly the term that is needed on the right hand side of Eq. (13) for l → l + 1. Confirming that
this term has the correct mean and covariance completes the induction step.

After proving Lem. 2, Eq. (13) can be used. For the case l = L the right hand side can be shown to
yield

∏L
l=1 q(f

l
n|f1n, . . . , f l−1n ). Hence, Eq. (9) follows by substituting the inner integral in Eq. (12)

by this term. The full proof can be found in Appx. A.

Furthermore, we give a heuristic argument for Thm. 1 in Appx. B.1 in which we show that by
ignoring the recursive structure of the prior, the marginalisation of the inducing outputs fM becomes
straightforward. While mathematically not rigorous, the derivation provides additional intuition.

Next, we use our novel variational approach to fit a fully coupled DGP model with L = 3 layers to
the concrete UCI dataset. We can clearly observe that this algorithmic work pays off: Fig. 1 shows
that there is more structure in the covariance matrix SM than the mean-field approximation allows.
This additional structure results in a better approximation of the true posterior as we validate on a
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Figure 2: Convergence behaviour: Analytical vs. MC marginalisation.
We plot the ELBO as a function of time in seconds when the marginalisa-
tion of the inducing outputs fM is performed analytically via our Thm. 1
(purple) and via MC sampling (green). We used a fully-coupled DGP with
our standard three layer architecture (see Sec. 3.2), on the concrete UCI
dataset trained with Adam [15].

range of benchmark datasets (see Tab. S5 in Appx. G) for which we observe larger ELBO values for
the fully-coupled DGP than for the mean-field DGP. Additionally, we show in Fig. 2 that our analyt-
ical marginalisation over the inducing outputs fM leads to faster convergence compared to Monte
Carlo (MC) sampling, since the corresponding ELBO estimates have lower variance. Independently
from our work, the sampling-based approach has also been proposed in Ref. [34].

However, in comparison with the mean-field DGP, the increase in the number of variational param-
eters also leads to an increase in runtime and made convergence with standard optimisers fragile
due to many local optima. We were able to circumvent the latter by the use of natural gradients [2],
which have been found to work well for (D)GP models before [10, 26, 25], but this increases the
runtime even further (see Sec. 4.2). It is therefore necessary to find a smaller variational family if
we want to use the method in large-scale applications.

An optimal variational family combines the best of both worlds, i.e., being as efficient as the mean-
field DGP while retaining the most important interactions introduced in the fully-coupled DGP. We
want to emphasise that there are many possible ways of restricting the covariance matrix SM that
potentially lead to benefits in different applications. For example, the recent work [34] studies the
compositional uncertainty in deep GPs using a particular restriction of the inverse covariance matrix.
The authors also provide specialised algorithms to marginalise out the inducing outputs in their
model. Here, we provide an analytic marginalisation scheme for arbitrarily structured covariance
matrices that will vastly simplify future development of application-specific covariances. Through
the general framework that we have developed, testing them is straightforward and can be done via
simply implementing a naive version of the covariance matrix in our code.3 In the following, we
propose one possible class of covariance matrices based on our empirical findings.

3.2 Stripes-and-Arrow Approximation

In this section, we describe a new variational family that trades off efficiency and expressivity by
sparsifying the covariance matrix SM . Inspecting Fig. 1 (right) again, we observe that besides the
M ×M blocks on the diagonal, the diagonal stripes [28] (covariances between the GPs in latent
layers at the same relative position), and an arrow structure (covariances from every intermediate
layer GP to the output GP) receive large values. We make similar observations also for different
datasets and different DGP architectures as shown in Fig. S8 in Appx. G. Note that the stripes pattern
can also be motivated theoretically as we expect the residual connections realised by the mean
functions (footnote 2) to lead to a coupling between successive latent GPs. We therefore propose as
one special form to keep only these terms and neglect all other dependencies by setting them to zero
in the covariance matrix, resulting in a structure consisting of an arrowhead and diagonal stripes (see
Fig. 1 middle).

Denoting the number of GPs per latent layer as τ , it is straightforward to show that the number of
non-zero elements in the covariance matrices of mean-field DGP, stripes-and-arrow DGP, and fully-
coupled DGP scale as O(τLM2), O(τL2M2), and O(τ2L2M2), respectively. In the example of
Fig. 1, we have used τ = 5, L = 3, and M = 128, yielding 1.8 × 105, 5.1 × 105, and 2.0 × 106

non-zero elements in the covariance matrices. Reducing the number of parameters already leads
to shorter training times since less gradients need to be computed. Furthermore, the property that
makes this form so compelling is that the covariance matrix S̃1:l−1,1:l−1

n [needed in Eqs. (10) and

3Python code (building on code for the mean-field DGP [25], GPflow [19] and TensorFlow [1]) imple-
menting our method is provided at https://github.com/boschresearch/Structured_DGP. A
pseudocode description of our algorithm is given in Appx. F.
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(11)] as well as the Cholesky decomposition4 of SM have the same sparsity pattern. Therefore only
the non-zero elements at pre-defined positions have to be calculated which is explained in Appx. E.
The complexity for the ELBO is O(NM2τL2 + Nτ3L3 + M3τL3). This is a moderate increase
compared to the mean-field DGP whose ELBO has complexity O(NM2τL), while it is a clear
improvement over the fully-coupled approach with complexityO(NM2τ2L2+Nτ3L3+M3τ3L3)
(see Appx. E for derivations). An empirical runtime comparison is provided in Sec. 4.2.

After having discussed the advantages of the proposed approximation a remark on a disadvantage
is in order: The efficient implementation of Ref. [26] for natural gradients cannot be used in this
setting, since the transformation from our parameterisation to a fully-parameterised multivariate
Gaussian is not invertible. However, this is only a slight disadvantage since the stripes-and-arrow
approximation has a drastically reduced number of parameters, compared to the fully-coupled ap-
proach, and we experimentally do not observe the same convergence problems when using standard
optimisers (see Appx. G, Fig. S5).

3.3 Joint sampling of global and local latent variables

In contrast to our work, Refs. [9, 36] drop the Gaussian assumption over the inducing outputs fM
and allow instead for potentially multi-modal approximate posteriors. While their approaches are
arguably more expressive than ours, their flexibility comes at a price: the distribution over the induc-
ing outputs fM is only given implicitly in form of Monte Carlo samples. Since the inducing outputs
fM act as global latent parameters, the noise attached to their sampling-based estimates affects all
samples from one mini-batch. This can often lead to higher variances which may translate to slower
convergence [16]. We compare to Ref. [9] in our experiments.

4 Experiments

In Sec. 4.1, we study the predictive performance of our stripes-and-arrow approximation. Since it is
difficult to assess accuracy and calibration on the same task, we ran a joint study of interpolation and
extrapolation tasks, where in the latter the test points are distant from the training points. We found
that the proposed approach balances accuracy and calibration, thereby outperforming its competitors
on the combined task. Examining the results for the extrapolation task more closely, we find that our
proposed method significantly outperforms the competing DGP approaches. In Sec. 4.2, we assess
the runtime of our methods and confirm that our approximation has only a negligible overhead
compared to mean-field and is more efficient than a fully-coupled DGP. Due to space constraints,
we moved many of the experimental details to Appx. G.

4.1 Benchmark Results

We compared the predictive performance of our efficient stripes-and-arrow approximation (STAR
DGP) with a mean-field approximation (MF DGP) [24], stochastic gradient Hamiltonian Monte
Carlo (SGHMC DGP) [9] and a sparse GP (SGP) [12]. As done in prior work, we report results on
eight UCI datasets and employ as evaluation criterion the average marginal test log-likelihood (tll).

We assessed the interpolation behaviour of the different approaches by randomly partitioning the
data into a training and a test set with a 90 : 10 split. To investigate the extrapolation behaviour,
we created test instances that are distant from the training samples: We first randomly projected the
inputs X onto a one-dimensional subspace z = Xw, where the weights w ∈ RD were drawn from
a standard Gaussian distribution. We subsequently ordered the samples w.r.t. z and divided them
accordingly into training and test set using a 50 : 50 split.

We first confirmed the reports from the literature [9, 24], that DGPs have on interpolation tasks
an improved performance compared to sparse GPs (Tab. 1). We also observed that in this setting
SGHMC outperforms the MF DGP and our method, which are on par.

Subsequently, we performed the same analysis on the extrapolation task. While our approach, STAR
DGP, seems to perform slightly better than MF DGP and also SGHMC DGP, the large standard
errors of all methods hamper a direct comparison (see Tab. S3 in Appx. G). This is mainly due to the

4In order to ensure that SM is positive definite, we will numerically exclusively work with its Cholesky
factor L, a unique lower triangular matrix such that SM = LL>.
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Table 1: Interpolation behaviour on UCI benchmark datasets. We report marginal tlls (the
larger, the better) for various methods, where L denotes the number of layers. Standard errors are
obtained by repeating the experiment 10 times. We marked all methods in bold that performed better
or as good as the standard sparse GP.

Dataset SGP SGHMC DGP MF DGP STAR DGP
(N,D) L1 L1 L2 L3 L2 L3 L2 L3

boston (506,13) -2.58(0.10) -2.75(0.18) -2.51(0.07) -2.53(0.09) -2.43(0.05) -2.48(0.06) -2.47(0.08) -2.43(0.05)
energy (768, 8) -0.71(0.03) -1.16(0.44) -0.37(0.12) -0.34(0.11) -0.73(0.02) -0.75(0.02) -0.75(0.02) -0.75(0.02)
concrete (1030, 8) -3.09(0.02) -3.50(0.34) -2.89(0.06) -2.88(0.06) -3.06(0.03) -3.09(0.02) -3.04(0.02) -3.05(0.02)
wine red (1599,11) -0.88(0.01) -0.90(0.03) -0.81(0.03) -0.80(0.07) -0.89(0.01) -0.89(0.01) -0.88(0.01) -0.88(0.01)
kin8nm (8192, 8) 1.05(0.01) 1.14(0.01) 1.38(0.01) 1.25(0.14) 1.30(0.01) 1.31(0.01) 1.28(0.01) 1.29(0.01)
power (9568, 4) -2.78(0.01) -2.75(0.02) -2.68(0.02) -2.65(0.02) -2.77(0.01) -2.76(0.01) -2.77(0.01) -2.77(0.01)
naval (11934,16) 7.56(0.09) 7.77(0.04) 7.32(0.02) 6.89(0.43) 7.11(0.11) 7.05(0.09) 7.06(0.08) 6.25(0.31)
protein (45730, 9) -2.91(0.00) -2.76(0.00) -2.64(0.01) -2.58(0.01) -2.83(0.00) -2.79(0.00) -2.83(0.00) -2.80(0.00)

Dataset MF vs. STAR SGHMC vs. STAR

boston 0.55(0.04) 0.50(0.05)
energy 0.73(0.05) 0.60(0.04)
concrete 0.57(0.04) 0.60(0.03)
wine red 0.57(0.04) 0.63(0.02)
kin8nm 0.36(0.03) 0.44(0.05)
power 0.44(0.06) 0.64(0.03)
naval 0.67(0.06) 0.58(0.03)
protein 0.49(0.03) 0.50(0.03)

Table 2: Extrapolation behaviour: direct comparison of
DGP methods. Average frequency µ and its standard error
σ (computed over 10 repetitions) of the STAR DGP outper-
forming the MF DGP (left) and the SGHMC DGP (right) on
the marginal tll of individual repetitions of the extrapolation
task (see main text for details). Results are for DGPs with
three layers. We mark numbers in bold (italics) if STAR
outperforms its competitor (vice versa).

random 1D-projection of the extrapolation experiment: The direction of the projection has a large
impact on the difficulty of the prediction task. Since this direction changes over the repetitions, the
corresponding test log-likelihoods vary considerably, leading to large standard errors.

We resolved this issue by performing a direct comparison between STAR DGP and the other two
DGP variants: To do so, we computed the frequency of test samples for which STAR DGP ob-
tained a larger log-likelihood than MF/SGHMC DGP on each train-test split independently. Average
frequency µ and its standard error σ were subsequently computed over 10 repetitions and are re-
ported in Tab. 2. On 5/8 datasets STAR DGP significantly outperforms MF DGP and SGHMC DGP
(µ > 0.50 + σ), respectively, while the opposite only occurred on kin8nm. In Tab. S4 in Appx. G,
we show more comparisons, that also take the absolute differences in test log likelihoods into ac-
count and additionally consider the comparison of fully-coupled and MF DGP. Taken together, we
conclude that our structured approximations are in particular beneficial in the extrapolation scenario,
while their performance is similar to MF DGP in the interpolation scenario.

Next, we performed an in-depth comparison between the approaches that analytically marginalise
the inducing outputs: In Fig. 3 we show that the predicted variance σ2

∗ increased as we moved away
from the training data (left) while the mean squared errors also grew with larger σ2

∗ (right). The mean
squared error is an empirical unbiased estimator of the variance Var∗ = E[(y∗ − µ∗)2] where y∗ is
the test output and µ∗ the mean predictor. The predicted variance σ2

∗ is also an estimator of Var∗.
It is only unbiased if the method is calibrated. However, we observed for the mean-field approach
that, when moving away from the training data, the mean squared error was larger than the predicted
variances pointing towards underestimated uncertainties. While the mean squared error for SGP
matched well with the predictive variances, the predictions are rather inaccurate as demonstrated by
the large predicted variances. Our method reaches a good balance, having generally more accurate
mean predictions than SGP and at the same time more accurate variance predictions than MF DGP.

Finally, we investigated the behaviour of the SGHMC approaches in more detail. We first ran a
one-layer model that is equivalent to a sparse GP but with a different inference scheme: Instead of
marginalising out the inducing outputs, they are sampled. We observed that the distribution over
the inducing outputs is non-Gaussian (see Appx. G, Fig. S6), even though the optimal approximate
posterior distribution is provably Gaussian in this case [32]. A possible explanation for this are
convergence problems since the global latent variables are not marginalised out, which, in turn,
offers a potential explanation for the poor extrapolation behaviour of SGHMC that we observed in
our experiments across different architectures and datasets. Similar convergence problems have also
been observed by Ref. [25].
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Figure 3: Calibration Study. Left: While the pre-
dicted variances increase for all methods as a func-
tion of the distance to the training data, we find that
at any given distance, the uncertainty decreases from
SGP to STAR DGP to MF DGP. Right: We plot the
mean squared error as a function of the predicted vari-
ance. If the mean squared error is larger than the pre-
dicted variance, the latter underestimates the uncer-
tainty. Results are recorded on the kin8nm UCI dataset
and smoothed for plotting by using a median filter.

Figure 4: Runtime comparison. We compare the runtime of our
efficient STAR DGP versus the FC DGP and the MF DGP on the
protein UCI dataset. Shown is the runtime of one gradient step in
seconds on a logarithmic scale as a function of the number of induc-
ing points M . The dotted grey lines show the theoretical runtime
O(M2).

4.2 Runtime

We compared the impact of the variational family on the runtime as a function of the number of
inducing points M . For the fully-coupled (FC) variational model, we also recorded the runtime
when employing natural gradients [26]. The results can be seen in Fig. 4, where the order from
fastest to slowest method was proportional to the complexity of the variational family: mean-field,
stripes-and-arrow, fully-coupled DGP. For our standard setting, M = 128, our STAR approxima-
tion was only two times slower than the mean-field but three times faster than FC DGP (trained
with Adam [15]). This ratio stayed almost constant when the number of inducing outputs M was
changed, since the most important term in the computational costs scales asO(M2) for all methods.
Subsequently, we performed additional experiments in which we varied the architecture parameters
L and τ . Both confirm that the empirical runtime performance scales with the complexity of the
variational family (see Appx. G, Fig. S7) and matches our theoretical estimates in Sec. 3.2.

5 Summary

In this paper, we investigated a new class of variational families for deep Gaussian processes (GPs).
Our approach is (i) efficient as it allows to marginalise analytically over the global latent vari-
ables and (ii) expressive as it couples the inducing outputs across layers in the variational posterior.
Naively coupling all inducing outputs does not scale to large datasets, hence we suggest a sparse and
structured approximation that only takes the most important dependencies into account. In a joint
study of interpolation and extrapolation tasks as well as in a careful evaluation of the extrapolation
task on its own, our approach outperforms its competitors, since it balances accurate predictions
and calibrated uncertainty estimates. Further research is required to understand why our structured
approximations are especially helpful for the extrapolation task. One promising direction could be
to look at differences of inner layer outputs (as done in Ref. [34]) and link them to the final deep GP
outputs.

There has been a lot of follow-up work on deep GPs in which the probabilistic model is altered to
allow for multiple outputs [14], multiple input sources [8], latent features [25] or for interpreting the
latent states as differential flows [11]. Our approach can be easily adapted to any of these models
and is therefore a promising line of work to advance inference in deep GP models.

Our proposed structural approximation is only one way of coupling the latent GPs. Discovering new
variational families that allow for more speed-ups either by applying Kronecker factorisations as
done in the context of neural networks [18], placing a grid structure over the inducing inputs [13], or
by taking a conjugate gradient perspective on the objective [35] are interesting directions for future
research. Furthermore, we think that the dependence of the optimal structural approximation on
various factors (model architecture, data properties, etc.) is worthwhile to be studied in more detail.
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Broader Impact

In many applications, machine learning algorithms have been shown to achieve superior predictive
performance compared to hand-crafted or expert solutions [27]. However, these methods can be
applied in safety-critical applications only if they return predictive distributions allowing to quantify
the uncertainty of the prediction [17]. For instance, a medical diagnosis tool can be applied only
if each diagnosis is endowed with a confidence interval such that in case of ambiguity a physician
can be contacted. Our work yields accurate predictive distributions for deep non-parametric models
by allowing correlations between and across layers in the variational posterior. As we validate in
our experiments, this also holds true when the input distribution at test time differs from the input
distribution at training time. In our medical example, this might be the case if the hospital where the
data is recorded is different from the one where the diagnosis tool is deployed.

Acknowledgements and Disclosure of Funding

We thank Buote Xu for valuable comments and suggestions on an early draft of the paper. We fur-
thermore acknowledge the detailed and constructive feedback from the four anonymous reviewers,
particularly for suggesting a new experiment which lead to Fig. 2. We have no funding to disclose
for this work.

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for
large-scale machine learning. In USENIX Symposium on Operating Systems Design and Im-
plementation, 2016.

[2] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 1998.

[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
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Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. Gpflow: A gaussian process
library using tensorflow. Journal of Machine Learning Research, 2017.

[20] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade. Springer,
1998.

[21] Carl Rasmussen and Christopher Williams. Gaussian processes for machine learning. The
MIT Press, 2005.

[22] David Reeb, Andreas Doerr, Sebastian Gerwinn, and Barbara Rakitsch. Learning gaussian pro-
cesses by minimizing pac-bayesian generalization bounds. In Advances in Neural Information
Processing Systems, 2018.

[23] Danilo Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International Conference on Machine
Learning, 2014.

[24] Hugh Salimbeni and Marc Deisenroth. Doubly stochastic variational inference for deep gaus-
sian processes. In Advances in Neural Information Processing Systems, 2017.

[25] Hugh Salimbeni, Vincent Dutordoir, James Hensman, and Marc Peter Deisenroth. Deep gaus-
sian processes with importance-weighted variational inference. International Conference on
Machine Learning, 2019.

[26] Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients in practice:
non-conjugate variational inference in gaussian process models. In Artificial Intelligence and
Statistics, 2018.

[27] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 2016.

[28] Dennis Smolarski. Diagonally-striped matrices and approximate inverse preconditioners. Jour-
nal of Computational and Applied Mathematics, 2006.

[29] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems, 2006.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural information processing systems, 2012.

11



[31] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshminarayanan, Sebastian Nowozin,
D Sculley, Joshua Dillon, Jie Ren, and Zachary Nado. Can you trust your model’s uncertainty?
Evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Pro-
cessing Systems, 2019.

[32] Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In
Artificial Intelligence and Statistics, 2009.

[33] Richard Turner and Maneesh Sahani. Two problems with variational expectation maximisation
for time-series models. Bayesian Time Series Models, 2011.

[34] Ivan Ustyuzhaninov, Ieva Kazlauskaite, Markus Kaiser, Erik Bodin, Neill D. F. Campbell, and
Carl Henrik Ek. Compositional uncertainty in deep gaussian processes. In Conference on
Uncertainty in Artifical Intelligence, 2020.

[35] Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q. Weinberger, and Andrew Gor-
don Wilson. Exact gaussian processes on a million data points. In Advances in Neural Infor-
mation Processing Systems, 2019.

[36] Haibin Yu, Yizhou Chen, Zhongxiang Dai, Kian Hsiang Low, and Patrick Jaillet. Implicit
posterior variational inference for deep gaussian processes. In Advances in Neural Information
Processing Systems, 2019.

[37] Christoph Zimmer, Mona Meister, and Duy Nguyen-Tuong. Safe active learning for time-series
modeling with gaussian processes. In Advances in Neural Information Processing Systems,
2018.

12



Supplementary material for

Beyond the Mean-Field:
Structured Deep Gaussian Processes Improve the Predictive

Uncertainties
A Marginalisation of the inducing outputs (proof of Theorem 1)

The aim of this section is to provide a complete proof for Thm. 1. We will do this by starting from the formula for
q(f ln) that we work out in Appx. D,

q(fLn ) =

∫ [∫
q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM

]
df1n · · · dfL−1n . (16)

Comparing to Eq. (9), we see that it remains to be shown that indeed∫
q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM =

L∏
l=1

q(f ln|f1n, . . . , f l−1n ), (17)

where the distributions q on the right hand side have the properties described in Eqs. (9) - (11). The terms appearing
on the left hand side are given by q(fM ) = N (fM |µM , SM ), which is interchangeably also denoted as

q(f1:LM ) = N
(
f1:LM

∣∣∣µ1:L
M , S1:L,1:L

M

)
= q

f
1
M
...
fLM

 = N


f

1
M
...
fLM


∣∣∣∣∣∣∣
µ

1
M
...
µLM

 ,

S
11
M · · · S1L

M
...

. . .
...

SL1M · · · SLLM


 , (18)

and
p(f ln|f lM ; f l−1n ) = N

(
f ln

∣∣∣K̃lnMf lM , K̃lnn) , (19)

where

K̃lnM = KlnM
(
KlMM

)−1
(20)

K̃lnn = Klnn −KlnM
(
KlMM

)−1KlMn. (21)

In order to show that Eq. (17) holds, we will introduce a rather technical lemma in the following and prove it later by
induction.
Lemma 2. Given the definitions in Eqs. (18) and (19), ∀l = 1, . . . , L we have∫

q(f1:LM )

L∏
l′=1

p(f l
′

n |f l
′

M )df l
′

M =

[
l−1∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f ln, f

l+1:L
M |f1:l−1n )

L∏
l′=l+1

p(f l
′

n |f l
′

M )df l
′

M , (22)

where q(f l
′

n |f1:l
′−1

n ) is as in Eq. (9) and

q(f ln, f
l+1:L
M |f1:l−1n ) = N

(f ln
f l+1:L
M

)∣∣∣∣∣∣
(
µ̂ln
lµ̂l+1:L
M

)
,

 Σ̂ln
lΣ̂l,l+1:L
nM(

lΣ̂l,l+1:L
nM

)>
lΣ̂l+1:L,l+1:L
M

 . (23)

Here µ̂ln and Σ̂ln are as in Eqs. (10) and (11), respectively, and we defined

lµ̂l+1:L
M = µl+1:L

M + Sl+1:L,1:l−1
M diag(K̃1:l−1

Mn )
(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1n − µ̃1:l−1

n )

lΣ̂l+1:L,l+1:L
M = Sl+1:L,l+1:L

M − Sl+1:L,1:l−1
M diag(K̃1:l−1

Mn )
(
S̃1:l−1,1:l−1
n

)−1
diag(K̃1:l−1

nM )S1:l−1,l+1:L
M

lΣ̂l,l+1:L
nM = K̃lnMS

l,l+1:L
M − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
diag(K̃1:l−1

nM )S1:l−1,l+1:L
M .

(24)

13



In the equations above we used diag(A1:l) to denote the formation of a block diagonal matrix, where the diagonal
blocks are given by A1, . . . , Al. Note that while we only need one index to label µ̂ln and Σ̂ln, we need several for
the objects defined in Eq. (24). Take e.g. lΣ̂l+1:L,l+1:L

M : The upper left index denotes for which l the formula is valid
(which will become important when we do the induction step l→ l+1). The upper right indices (try to) capture which
terms of SM are most important for the definition, they have nothing to do with the dimensionality of the objects. (In
fact, the matrix lΣ̂M contains L− l − 1× L− l − 1 blocks of various sizes TlM × Tl′M .) This makes it easier later
on when we do calculations with these objects.

Before we prove Lem. 2, we will first show how its results can be used to prove Thm. 1:

Proof of Theorem 1. As shown in Appx. D, we can write

q(fLn ) =

∫ [∫
q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM

]
df1n · · · dfL−1n . (25)

Obtaining a formula for the inner integral can be done using Lem. 2 with l = L, in which case Eq. (22) reads∫
q(f1M , . . . , f

L
M )

L∏
l′=1

p(f l
′

n |f l
′

M )df l
′

M =

[
L−1∏
l′=1

q(f l
′

n |f1n, . . . , f l
′−1
n )

]
q(fLn |f1n, . . . , fL−1n ) (26)

since there is nothing left to integrate over. According to Eqs. (9) and (23) the distribution q(fLn |f1n, . . . , fL−1n ) has
the form necessary to be written as part of the product and we therefore have∫

q(f1M , . . . , f
L
M )

L∏
l′=1

p(f l
′

n |f l
′

M )df l
′

M =

L∏
l′=1

q(f l
′

n |f1n, . . . , f l
′−1
n ). (27)

Plugging this into Eq. (25) yields

q(fLn ) =

∫ L∏
l′=1

q(f l
′

n |f1n, . . . , f l
′−1
n )df1n · · · dfL−1n , (28)

where the distributions q on the right hand side have the properties described in Eqs. (9) - (11).

In order to prove Lem. 2, we will regularly need two standard formulas from Gaussian calculus, namely conditioning
multivariate Gaussians,

N
((

x
y

)∣∣∣∣(ab
)
,

(
A C
C> B

))
= N (x|a,A)N

(
y
∣∣b+ C>A−1(x− a), B − C>A−1C

)
, (29)

and solving Gaussian integrals (”propagation”):∫
N (x|a+ Fy,A)N (y|b, B) dy = N

(
x
∣∣a+ Fb,A+ FBF>

)
. (30)

Proof of Lemma 2. As already said, we prove the lemma by induction:

Base case We need to show that Eq. (22) holds for l = 1, i.e., that∫
q(f1M , . . . , f

L
M )

L∏
l′=1

p(f l
′

n |f l
′

M )df l
′

M =

∫
q(f1n, f

2
M , . . . , f

L
M )

L∏
l′=2

p(f l
′

n |f l
′

M )df l
′

M , (31)

where q(f1n, f
2
M , . . . , f

L
M ) is given according to Eqs. (23) and (24).

In order to do so, we will perform the following steps:

14



i) Starting with the LHS of Eq. (31), we isolate all terms that depend on f1M :∫ [∫
q(f1M , . . . , f

L
M )p(f1n|f1M )df1M

] L∏
l′=2

p(f l
′

n |f l
′

M )df l
′

M . (32)

ii) In the previous equation, we only consider the inner integral and condition q on f1M :∫
q(f1M , . . . , f

L
M )p(f1n|f1M )df1M =

∫
q(f1M )q(f2M , . . . , f

L
M |f1M )p(f1n|f1M )df1M . (33)

iii) Next, we obtain the joint distribution of the two terms that are conditioned on f1M :∫
q(f1M )q(f2M , . . . , f

L
M |f1M )p(f1n|f1M )df1M =

∫
q(f1M )q(f1n, f

2
M , . . . , f

L
M |f1M )df1M . (34)

iv) Then we evaluate the integral:∫
q(f1M )q(f1n, f

2
M , . . . , f

L
M |f1M )df1M = q(f1n, f

2
M , . . . , f

L
M ). (35)

v) Finally, we check that the resulting distribution is given by Eqs. (23) and (24). This then proves the equality in
Eq. (31).

Step ii) is the first one where we actually need to calculate something, namely the conditioning of q(f1M , . . . , f
L
M ).

Using its definition in Eq. (18) and performing the conditioning according to Eq. (29) yields

q(f1M , . . . , f
L
M ) = q(f1M )q(f2M , . . . , f

L
M |f1M )

= N
(
f1M
∣∣µ1
M , S

11
M

)
N
(
f2:LM

∣∣∣µ2:L
M + S2:L,1

M

(
S11
M

)−1
(f1M − µ1

M ), S2:L,2:L
M − S2:L,1

M

(
S11
M

)−1
S1,2:L
M

)
.

(36)

For step iii) we use the formula we just obtained for q(f2M , . . . , f
L
M |f1M ) and additionally p(f1n|f1M ), which, according

to Eq. (19) is given by N
(
f1n

∣∣∣K̃1
nMf

1
M , K̃1

nn

)
, and then proceed to build their joint Gaussian distribution:

q(f1n, f
2
M , . . . , f

L
M |f1M ) = p(f1n|f1M )q(f2M , . . . , f

L
M |f1M )

= N

((
f1n
f2:LM

)∣∣∣∣∣
(

K̃1
nMf

1
M

µ2:L
M + S2:L,1

M

(
S11
M

)−1
(f1M − µ1

M )

)
,

(
K̃1
nn 0

0 S2:L,2:L
M − S2:L,1

M

(
S11
M

)−1
S1,2:L
M

))
.

(37)

In step iv) we perform the integration using the term above for the joint and q(f1M ) = N
(
f1M
∣∣µ1
M , S

11
M

)
from Eq. (36)

for the marginal. Applying Eq. (30) yields∫
q(f1n, f

2
M , . . . , f

L
M |f1M )q(f1M )df1M

= N

((
f1n
f2:LM

)∣∣∣∣∣
(

K̃1
nMµ

1
M

µ2:L
M + S2:L,1

M

(
S11
M

)−1
(µ1
M − µ1

M )

)
,

(
K̃1
nn 0

0 S2:L,2:L
M − S2:L,1

M

(
S11
M

)−1
S1,2:L
M

)
+

(
K̃1
nM

S2:L,1
M

(
S11
M

)−1)S11
M

(
K̃1
nM

S2:L,1
M

(
S11
M

)−1)>


= N

((
f1n
f2:LM

)∣∣∣∣∣
(
µ̃1
n

µ2:L
M

)
,

(
S̃11
n K̃1

nMS
1,2:L
M

S2:L,1
M K̃1

Mn S2:L,2:L
M

))
.

(38)
In order to arrive at the last line we simplified the terms and used the definitions of µ̃1

n and S̃11
n in Thm. 1.
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Step v) requires us to evaluate Eq. (23) for l = 1 resulting in

N

((
f1n
f2:LM

)∣∣∣∣∣
(
µ̂1
n

1µ̂2:L
M

)
,

(
Σ̂1
n

1Σ̂1,2:L
nM(

1Σ̂l,2:LnM

)>
1Σ̂2:L,2:L

M

))
, (39)

which is the term q(f1n, f
2
M , . . . , f

L
M ) on the RHS of Eq. (31). Plugging in the definitions from Eq. (24) we can easily

verify that this last term indeed agrees with Eq. (38). Therefore our statement in Lem. 2 holds for l = 1.

Inductive step We assume that Lemma 2 holds for some l = 1, . . . , L − 1 (induction hypothesis) and then need to
show that it also holds for l + 1. That is, assuming that∫

q(f1:LM )

L∏
l′=1

p(f l
′

n |f l
′

M )df l
′

M =

[
l−1∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f ln, f

l+1:L
M |f1:l−1n )

L∏
l′=l+1

p(f l
′

n |f l
′

M )df l
′

M , (40)

holds for some l with the terms on the RHS given by Eqs. (23), and (24) we need to show that we can also write the
previous equation as [

l∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f l+1

n , f l+2:L
M |f1:ln )

L∏
l′=l+2

p(f l
′

n |f l
′

M )df l
′

M , (41)

where this time the terms are given by Eqs. (23), and (24) but with l→ l + 1.

The way to show this is very similar to the way we showed the base case, the resulting formulas will only look more
complicated and we will need one additional step in the beginning:

o) Assuming that Eq. (40) holds for some l, we can start immediately with the RHS. The first step will be to
marginalise f ln from the distribution q within the integral and show that the resulting marginal q(f ln|f1:l−1n ) has
the right form to be written as part of the product in front of the integral:[

l−1∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f ln, f

l+1:L
M |f1:l−1n )

L∏
l′=l+1

p(f l
′

n |f l
′

M )df l
′

M (42)

=

[
l−1∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f ln|f1:l−1n )q(f l+1:L

M |f1:ln )

L∏
l′=l+1

p(f l
′

n |f l
′

M )df l
′

M (43)

=

[
l∏

l′=1

q(f l
′

n |f1:l
′−1

n )

]∫
q(f l+1:L

M |f1:ln )

L∏
l′=l+1

p(f l
′

n |f l
′

M )df l
′

M . (44)

Having done this, we will have to do the exact same steps as in the base case, which we will repeat below with
updated indices.

i) Continuing from Eq. (44), we isolate all terms that depend on f l+1
M :[

l∏
l′=1

q(f l
′

n |f1:l
′−1

n )

]∫ [∫
q(f l+1:L

M |f1:ln )p(f l+1
n |f l+1

M )df l+1
M

] L∏
l′=l+2

p(f l
′

n |f l
′

M )df l
′

M . (45)

ii) Comparing this to Eq. (41), we see that it remains to be shown that the inner integral equals q(f l+1
n , f l+2:L

M |f1:ln )

[given by Eqs. (23) and (24)]. Therefore we only consider the inner integral and therein condition q on f l+1
M :∫

q(f l+1:L
M |f1:ln )p(f l+1

n |f l+1
M )df l+1

M =

∫
q(f l+1

M |f1:ln )q(f l+2:L
M |f1:ln , f l+1

M )p(f l+1
n |f l+1

M )df l+1
M . (46)

iii) Next, we obtain the joint distribution of the two terms that are conditioned on f l+1
M :∫

q(f l+1
M |f1:ln )q(f l+2:L

M |f1:ln , f l+1
M )p(f l+1

n |f l+1
M )df l+1

M =

∫
q(f l+1

M |f1:ln )q(f l+1
n , f l+2:L

M |f1:ln , f l+1
M )df l+1

M .

(47)
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iv) Then we evaluate the integral:∫
q(f l+1

M |f1:ln )q(f l+1
n , f l+2:L

M |f1:ln , f l+1
M )df l+1

M = q(f l+1
n , f l+2:L

M |f1:ln ). (48)

v) Finally, we check that the resulting distribution is given by Eqs. (23) and (24). This then proves the equality of
Eqs. (40) and (41).

Let us begin with step o): According to Eq. (23), we have

q(f ln, f
l+1:L
M |f1:l−1n ) = N

(f ln
f l+1:L
M

)∣∣∣∣∣∣
(
µ̂ln
lµ̂l+1:L
M

)
,

 Σ̂ln
lΣ̂l,l+1:L
nM(

lΣ̂l,l+1:L
nM

)>
lΣ̂l+1:L,l+1:L
M

 , (49)

which we condition on f ln using Eq. (29) (i.e., going from Eq. (42) to Eq. (43)):

q(f ln, f
l+1:L
M |f1:l−1n ) = q(f ln|f1:l−1n )q(f l+1:L

M |f1:ln ) = N
(
f ln

∣∣∣µ̂ln, Σ̂ln)×
N
(
f l+1:L
M

∣∣∣∣lµ̂l+1:L
M +

(
lΣ̂l+1:L,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln), lΣ̂l+1:L,l+1:L

M −
(
lΣ̂l+1:L,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1:L
nM

)
.

(50)

We therefore see that q(f ln|f1:l−1n ) = N
(
f ln

∣∣∣µ̂ln, Σ̂ln), which is the right form for it to be included in the product in
front of the integral in Eq. (43). This lets us arrive at Eq. (44), hence finishing step o).

In step i) nothing really happens, we just note that, according to Eq. (19),

p(f l+1
n |f l+1

M ) = N
(
f l+1
n

∣∣∣K̃l+1
nMf

l
M , K̃l+1

nn

)
. (51)

Using q(f l+1:L
M |f1:ln ) from Eq. (50), we perform step ii) according to Eq. (29), resulting in

q(f l+1:L
M |f1:ln ) = q(f l+1

M |f1:ln )q(f l+2:L
M |f1:ln , f l+1

M ), (52)

where

q(f l+1
M |f1:ln ) = N

(
f l+1
M

∣∣∣∣lµ̂l+1
M +

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln), lΣ̂l+1,l+1

M −
(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)
(53)

and

q(f l+2:L
M |f1:ln , f l+1

M )

= N
(
f l+2:L
M

∣∣∣∣ lµ̂l+2:L
M +

(
lΣ̂l+2:L,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln) +

(
lΣ̂l+2:L,l+1
M −

(
lΣ̂l+2:L,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)
×(

lΣ̂l+1,l+1
M −

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)−1(
f l+1
M − lµ̂l+1

M −
(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln)

)
,

lΣ̂l+2:L,l+2:L
M −

(
lΣ̂l+2:L,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM −

(
lΣ̂l+2:L,l+1
M −

(
lΣ̂l+2:L,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)
×(

lΣ̂l+1,l+1
M −

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)−1(
lΣ̂l+1,l+2:L
M −

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM

) )
.

(54)

For step iii) we have to build the joint Gaussian distribution

q(f l+2:L
M |f1:ln , f l+1

M )p(f l+1
n |f l+1

M ) = q(f l+1
n , f l+2:L

M |f1:ln , f l+1
M ) (55)

using Eqs. (51) and (54). Since this formula would be even longer than the one in Eq. (54), we refrain from explicitly
writing it here. While the corresponding formula for the base case [Eq. (37)] is much simpler the resulting form of
Eq. (55) would be similar.
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Next, the integration in step iv) can be performed using Eqs. (30), (53), and (55). The calculations are again very
similar to the ones in the corresponding step for the base case [Eq. (38)] so we only state the final result here:

q(f l+1
n , f l+2:L

M |f1:ln ) =

∫
q(f l+1

M |f1:ln )q(f l+1
n , f l+2:L

M |f1:ln , f l+1
M )df l+1

M

= N

(f l+1
n

f l+2:L
M

)∣∣∣∣∣∣
(
m̂l+1
n

m̂l+2:L
M

)
,

 Ŝl+1
n Ŝl+1,l+2:L

nM(
Ŝl+1,l+2:L
nM

)>
Ŝl+2:L,l+2:L
M

 ,

(56)

where

m̂l+1
n = K̃l+1

nM

(
lµ̂l+1
M +

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln)

)
(57)

m̂l+2:L
M = lµ̂l+2:L

M +
(
lΣ̂l+2:L,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln) (58)

Ŝl+1
n = Kl+1

nn +Kl+1
nM

(
lΣ̂l+1,l+1
M −

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+1
nM

)
Kl+1
Mn (59)

Ŝl+1,l+2:L
nM = K̃l+1

nM

(
lΣ̂l+1,l+2:L
M −

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM

)
(60)

Ŝl+2:L,l+2:L
M = lΣ̂l+2:L,l+2:L

M −
(
lΣ̂l+2:L,l
nM

)> (
Σ̂ln

)−1
lΣ̂l,l+2:L
nM . (61)

What remains to be shown in step v) is that this result does in fact agree with the expected result from Lem. 2, i.e.,

q(f l+1
n , f l+2:L

M |f1:ln ) = N

(f l+1
n

f l+2:L
M

)∣∣∣∣∣∣
(

µ̂l+1
n

l+1µ̂l+2:L
M

)
,

 Σ̂l+1
n

l+1Σ̂l+1,l+2:L
nM(

l+1Σ̂l+1,l+2:L
nM

)>
l+1Σ̂l+2:L,l+2:L

M

 , (62)

where the terms are defined in Eqs. (10), (11), and (24). That means we have to prove that m̂l+1
n = µ̂l+1

n and similarly
for the other terms in Eqs. (58) - (61). Note that this is the point where we need the left indices in order to distinguish
e.g. the term lµ̂l+2:L

M appearing in Eq. (58) from l+1µ̂l+2:L
M appearing in the mean of Eq. (62).

We will exemplarily prove that m̂l+1
n = µ̂l+1

n : Starting from Eq. (57) we have

m̂l+1
n = K̃l+1

nM

(
lµ̂l+1
M +

(
lΣ̂l+1,l
nM

)> (
Σ̂ln

)−1
(f ln − µ̂ln)

)
= µ̃l+1

n + S̃l+1,1:l−1
n

(
S̃1:l−1,1:l−1
n

)−1 (
f1:l−1n − µ̃1:l−1

n

)
+

(
S̃l+1,l
n − S̃l+1,1:l−1

n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n

)
×(

Σ̂ln

)−1(
f ln − µ̃ln − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1 (
f1:l−1n − µ̃1:l−1

n

))
,

(63)
where we used the definitions in Eqs. (10) and (24) for the terms ·̂. Note that these definitions are part of the induction
hypothesis. It will soon become clear why we did not substitute Σ̂ln. We furthermore used the definitions of the µ̃n
and S̃n terms in Thm. 1 to absorb the K̃ terms. In the following we are going to write Eq. (63) in a vectorized form
and additionally substitute

A = S̃1:l−1,1:l−1
n , B = S̃1:l−1,l

n , C = S̃l,1:l−1n , D̃ = Σ̂ln, (64)
The reason for these steps will become clear after two more equations:

m̂l+1
n = µ̃l+1

n +

S̃l+1,1:l−1
n A−1 −

(
S̃l+1,l
n − S̃l+1,1:l−1

n A−1B
)
D̃−1CA−1(

S̃l+1,l
n − S̃l+1,1:l−1

n A−1B
)
D̃−1

>(f1:l−1n − µ̃1:l−1
n

f ln − µ̃ln

)
(65)

Going one step further, we recognize this as a vector matrix multiplication,

m̂l+1
n = µ̃l+1

n +

(
S̃l+1,1:l−1
n

S̃l+1,l
n

)>(
A−1 +A−1BD̃−1CA−1 −A−1BD̃−1

−D̃−1CA−1 D̃−1

)(
f1:l−1n − µ̃1:l−1

n

f ln − µ̃ln

)
, (66)
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where we additionally exploited that A and D̃ are symmetric and that B> = C. In order to get any further from here
we need the block matrix inversion lemma, which states that(

A B
C D

)−1
=

(
A−1 +A−1BD̃−1CA−1 −A−1BD̃−1

−D̃−1CA−1 D̃−1

)
, (67)

where D̃ = D−CA−1B. Comparing Eqs. (66) and (67) explains why we insisted on vectorising the last few formulas

and also our definitions in Eq. (64). Finally, since Σ̂ln = S̃lln − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n [Eq. (11)], we also

identify S̃lln = D. We can therefore rewrite Eq. (66) by reversing the block matrix inversion and resubstituting the
terms in Eq. (64):

m̂l+1
n = µ̃l+1

n +

(
S̃l+1,1:l−1
n

S̃l+1,l
n

)>(
S̃1:l−1,1:l−1
n S̃1:l−1,l

n

S̃l,1:l−1n S̃lln

)−1(
f1:l−1n − µ̃1:l−1

n

f ln − µ̃ln

)

= µ̃l+1
n + S̃l+1,1:l

n

(
S̃1:l,1:l
n

)−1 (
f1:ln − µ̃1:l

n

)
.

(68)

In the last step we simply rewrote the vectors and the matrix according to the way we defined the submatrix notation.
Comparing the final result to Eq. (10), we realize that this is indeed µ̂l+1

n , i.e., the mean term where we substituted
l → l + 1. In exactly the same way, i.e., by reversing the matrix inversion, we can show that the other parameters of
the distribution in Eq. (56) indeed coincide with the respective parameters of the distribution in Eq. (62). Since this
was the last part that remained to be shown, we finished the proof of Lem. 2.

B Intuition for the proof of Theorem 1

In this section, we provide some intuition that might be helpful in understanding parts of the proof of Thm. 1. In the
first part, we present a different, heuristic way of obtaining the same results, making use of a mathematically wrong
(or at least not mathematically rigorous) step. This helped us come up with the exact form of the theorem that we
proved above. The second part gives some intuition on how the formulas appearing in Thm. 1, especially Eqs. (10)
and (11), can be interpreted. More precisely, we show how these reduce to the mean-field equations when we plug in
the mean-field covariance matrix.

B.1 Heuristic argument for Theorem 1

The aim of this section is to provide a heuristic argument for Thm. 1 as opposed to the complete proof given in
Appx. A. For convenience we recap the starting point of that section: We need to show that∫

q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM =

L∏
l=1

q(f ln|f1n, . . . , f l−1n ), (69)

where the distributions q on the right hand side are defined in Eqs. (9) - (11). The terms appearing on the left hand
side are given by q(fM ) = N (fM |µM , SM ), which is interchangeably also denoted as

q(f1:LM ) = N
(
f1:LM

∣∣∣µ1:L
M , S1:L,1:L

M

)
= q

f
1
M
...
fLM

 = N


f

1
M
...
fLM


∣∣∣∣∣∣∣
µ

1
M
...
µLM

 ,

S
11
M · · · S1L

M
...

. . .
...

SL1M · · · SLLM


 , (70)

and
p(f ln|f lM ; f l−1n ) = N

(
f ln

∣∣∣K̃lnMf lM , K̃lnn) , (71)

where

K̃lnM = KlnM
(
KlMM

)−1
(72)

K̃lnn = Klnn −KlnM
(
KlMM

)−1KlMn. (73)
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Let us consider
∏L
l=1 p(f

l
n|f lM ; f l−1n ) on the left hand side of Eq. (69) as a joint multivariate distribution,

p(fn|fM ) = N


f

1
n
...
fLn


∣∣∣∣∣∣∣
K̃

1
nM 0 0

0
. . . 0

0 0 K̃LnM


f

1
M
...
fLM

 ,

K̃
1
nn 0 0

0
. . . 0

0 0 K̃Lnn


 . (74)

Note that this is the point where this “proof” becomes heuristic: The object on the right hand side of Eq. (74) is not
really a probability distribution, as the variables over which the distribution is defined (the f ln) appear as parameters of
the distribution itself (as inputs of the covariance matrices, e.g. K̃l+1

nn ). In the following we will pretend that rules for
(multivariate Gaussian) distributions still apply to this object, making the rest of this proof mathematically wrong. We
hope that it can still provide some intuition. Using the standard formula for solving Gaussian integrals (”propagation”),∫

N (x|a+ Fy,A)N (y|b, B) dy = N
(
x
∣∣a+ Fb,A+ FBF>

)
, (75)

we can then easily plug in Eq. (74) in the left hand side of Eq. (69), yielding

q(fn) =

∫
q(fM )p(fn|fM )dfM = N


f

1
n
...
fLn


∣∣∣∣∣∣∣
µ̃

1
n
...
µ̃Ln

 ,

S̃
11
n · · · S̃1L

n
...

. . .
...

S̃L1n · · · S̃LLn


 , (76)

where
µ̃ln = K̃lnMµlM , (77)

S̃ll
′

n = δll′Klnn − K̃lnM
(
δll′KlMM − Sll

′

M

)
K̃l

′

Mn. (78)

Note that the latter two definitions also appear in Thm. 1. The expression in Eq. (76) has still the same problem as the
expression in Eq. (74) in that it is not a valid distribution (since µ̃ln and S̃ll

′

n depend on f l−1n ).

Pretending further, that rules for distributions still apply, we can use the standard formula for conditioning multivariate
Gaussians,

N
((

x
y

)∣∣∣∣(ab
)
,

(
A C
C> B

))
= N (x|a,A)N

(
y
∣∣b+ C>A−1(x− a), B − C>A−1C

)
, (79)

to repeatedly condition Eq. (76), resulting in

q(fn) =

L∏
l=1

q(f ln|f1n, . . . , f l−1n ) where q(f ln|f1n, . . . , f l−1n ) = N
(
f ln

∣∣∣µ̂ln, Σ̂ln) , (80)

and

µ̂ln= µ̃ln + S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1n − µ̃1:l−1

n ), (81)

Σ̂ln= S̃lln − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n . (82)

In Eqs. (81) and (82) the notation Al,1:l
′

is used to index a submatrix of the variable A, e.g. Al,1:l
′

=
(
Al,1 · · ·Al,l′

)
.

The final result, Eqs. (80) - (82), is once again a valid distribution and exactly matches the outcome of the mathemat-
ically rigorous proof of Thm. 1 in Appx. A. The latter, while being much more complicated, is necessary since the
intermediate expressions [Eqs. (74) and (76)] rely on mathematically wrong (or at least dubious) steps.

B.2 Mean-field as a structured approximation

Here, we verify that when we plug in the mean-field covariance matrix into the formulas appearing in Thm. 1, we
recover the mean-field formulas appearing in Sec. 2.2, i.e., that in this case Eq. (9) reduces to Eq. (6). For convenience
we repeat the relevant formulas, starting with the mean-field formula for the marginals of the last layer [Eq. (6)]:

q(fLn ) =

∫ L∏
l=1

q(f ln; f l−1n )df1n · · · dfL−1n , where q(f ln; f l−1n ) =

Tl∏
t=1

N
(
f l,tn

∣∣∣µ̃l,tn , Σ̃l,tn ) , (83)
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where the means and covariances of the Gaussians in this equation are given by:

µ̃l,tn = K̃l
nMµ

l,t
M , Σ̃l,tn = Kl

nn − K̃l
nM

(
Kl
MM − S

l,t
M

)
K̃l
Mn. (84)

The formulas for the fully-coupled variant, starting with the marginals of the last layer [Eq. (9)], read,

q(fLn ) =

∫ L∏
l=1

q(f ln|f1n, . . . , f l−1n )df1n · · · dfL−1n where q(f ln|f1n, . . . , f l−1n ) = N
(
f ln

∣∣∣µ̂ln, Σ̂ln) , (85)

where the means and covariances of the Gaussians in this equation are given by:

µ̂ln= µ̃ln + S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1n − µ̃1:l−1

n ), (86)

Σ̂ln= S̃lln − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n , (87)

where

µ̃ln = K̃lnMµlM , (88)

S̃ll
′

n = δll′Klnn − K̃lnM
(
δll′KlMM − Sll

′

M

)
K̃l

′

Mn. (89)

Here we introduced Kl =
(
ITl
⊗Kl

)
as shorthand for the Kronecker product between the identity matrix ITl

and the
covariance matrix Kl, and used δ for the Kronecker delta.

Having all relevant formulas in one place, we can proceed to show that if we plug in the mean field covariance
matrix, SM = diag({SllM}Ll=1), where SllM = diag({Sl,tM}

Tl
t=1) (see also Fig. 1, left), in Eq. (85), we recover Eq. (83):

Removing the correlations between the layers by setting SM = diag({SllM}Ll=1), also implies that S̃ll
′

n = 0 if l 6= l′

[Eq. (89)]. Therefore Eqs. (86) and (87) reduce to µ̂ln = µ̃ln and Σ̂ln = S̃lln , respectively. The resulting variational
posterior factorises between the layers with q(f ln; f l−1n ) = N

(
f ln

∣∣∣µ̃ln, S̃lln). Comparing with Eq. (83), we can already

see that the means are equal [since µ̃ln = (µ̃l,1n , . . . , µ̃
l,Tl
n ), cf. Eqs. (84) and (88)]. Removing the correlations within

one layer by setting SllM = diag({Sl,tM}
Tl
t=1) renders the covariance matrix S̃lln block-diagonal. The diagonal blocks are

obtained by evaluating Eq. (89) with SllM = diag({Sl,tM}
Tl
t=1). It is easy to see that these diagonal blocks are equal to

Σ̃l,tn in Eq. (84) and we fully recover the mean-field solution [Eq. (83)].

C ELBO

Here we show how to derive the ELBO of the FC DGP, i.e., Eq. (8), which is given by

L =

N∑
n=1

Eq(fL
n )

[
log p(yn|fLn )

]
− KL[q(fM )||

L∏
l=1

p(f lM )]. (90)

While this is already done in the supplemental material of Ref. [24], we will do the derivation once again since our
notation is different. For convenience we repeat the relevant formulas from the main text, i.e., the general formula for
the ELBO [Eq. (3)], the joint DGP prior [Eq. (2)], and the variational family for the DGP [Eq. (4)], which are given by

L =

∫
q(fN , fM ) log

p(yN , fN , fM )

q(fN , fM )
dfNdfM , (91)

p(yN , fN , fM ) = p(yN |fLN )

L∏
l=1

p(f lN |f lM ; f l−1N )p(f lM ), (92)

q(fN , fM ) = q(fM )

L∏
l=1

p(f lN |f lM ; f l−1N ), (93)
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respectively. By only using the general form of the distributions, and exploiting that we assumed iid noise, i.e.,
p(yN |fLN ) =

∏N
n=1 p(yn|fLn ), we can get from Eq. (91) to Eq. (90):

L =

∫
q(fN , fM ) log

p(yN , fN , fM )

q(fN , fM )
dfNdfM =

∫
q(fN , fM ) log

p(yN |fLN )
∏L
l=1 p(f

l
M )

q(fM )
dfNdfM (94)

=

∫
q(fN , fM ) log p(yN |fLN )dfNdfM +

∫
q(fN , fM ) log

∏L
l=1 p(f

l
M )

q(fM )
dfNdfM , (95)

=

∫
q(fN , fM ) log

N∏
n=1

p(yn|fLn )dfNdfM +

∫
q(fM ) log

∏L
l=1 p(f

l
M )

q(fM )
dfM , (96)

=

N∑
n=1

∫
q(fLn ) log p(yn|fLn )dfLn − KL[q(fM )||

L∏
l=1

p(f lM )]. (97)

In the last step we introduced q(fLn ) as simply summarising all remaining terms in the first integral, hence,

q(fLn ) =

∫
q(fN , fM )dfM

∏
n′ 6=n

dfLn′

L−1∏
l=1

df lN . (98)

D Marginalisation of (most) latent layer outputs

Here we show how to get from the general form of q(fLn ) given in Eq. (98) to the starting point of our induction proof
[Eq. (12)], where all the latent outputs f ln′ are integrated out for all layers l and for all samples n′ 6= n:

q(fLn ) =

∫ [∫
q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM

]
df1n · · · dfL−1n . (99)

While this is already shown in Remark 2 in Ref. [24] (note that the indices there are not correct), we will provide a
bit more detail here and we can also nicely point out where the difference in the formulas for q(fLn ) arises from. For
convenience the relevant formulas are repeated below:

q(fN , fM ) = q(fM )

L∏
l=1

p(f lN |f lM ; f l−1N ), p(f lN |f lM ; f l−1N ) = N
(
f lN

∣∣∣K̃lNMf lM , K̃lNN) , (100)

where K̃lNM = KlNM
(
KlMM

)−1
and K̃lNN = KlNN −KlNM

(
KlMM

)−1KlMN .

We will start by explicitly writing out Eq. (98) and changing the order of integration:

q(fLn ) =

∫
q(fM )

∫ L∏
l=1

p(f lN |f lM ; f l−1N )
∏
n′ 6=n

dfLn

L−1∏
l=1

df lN

 dfM . (101)

In the following we will only be concerned with the inner integral of the previous equation, which can also be written
as ∫ ∫ p(fLN |fLM ; fL−1N )

∏
n′ 6=n

dfLn′

 L−1∏
l=1

p(f lN |f lM ; f l−1N )df lN . (102)

Here, the inner integral can be solved by exploiting the nice marginalisation property of multivariate Gaussians,∫
p(fLN |fLM ; fL−1N )

∏
n′ 6=n

dfLn′ =

∫
N
(
fLN

∣∣∣K̃LNM (fL−1N )fLM , K̃LNN (fL−1N )
) ∏
n′ 6=n

dfLn′ (103)

= N
(
fLn

∣∣∣K̃LnM (fL−1N )fLM , K̃Lnn(fL−1N )
)
, (104)
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where we explicitly marked the dependence of the K̃L terms on the outputs fL−1N . While the K̃lnM and K̃lnn could in
principle still depend on all the outputs of the previous layer, we see from their definitions after Eq. (100) that they in
fact only depend on the marginals fL−1n and that therefore

N
(
fLn

∣∣∣K̃LnM (fL−1N )fLM , K̃Lnn(fL−1N )
)

= N
(
fLn

∣∣∣K̃LnM (fL−1n )fLM , K̃Lnn(fL−1n )
)

= p(fLn |fLM ; fL−1n ). (105)

Putting the last two equations together results in∫
p(fLN |fLM ; fL−1N )

∏
n′ 6=n

dfLn′ = p(fLn |fLM ; fL−1n ). (106)

We can continue with integrating out the f lN in Eq. (102) in the same fashion (noting at every layer that we can not
marginalise out f ln as those are inputs to kernels), arriving at∫ L∏

l=1

p(f lN |f lM ; f l−1N )
∏
n′ 6=n

dfLn

L−1∏
l=1

df lN =

∫ L∏
l=1

p(f ln|f lM ; f l−1n )df1n · · · dfL−1n . (107)

Plugging this back into Eq. (101) and changing the order of integration once again, yields

q(fLn ) =

∫ [∫
q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM

]
df1n · · · dfL−1n , (108)

which is exactly Eq. (99), the result that we set out to show.

D.1 Difference between mean-field and fully-coupled

From the previous equation it is also possible to see why a proof as in Appx. A was not necessary for the MF DGP.
This is due to the form of the variational posterior over the inducing outputs, given by

q(fM ) =

{
N (fM |µM , SM ) for the FC DGP,∏L
l=1

∏Tl

t=1N
(
f l,tM

∣∣∣µl,tM , Sl,tM) for the MF DGP.
(109)

Using q(fM ) from the MF DGP, which can also be written as q(fM ) =
∏L
l=1 q(f

l
M ), the inner integral in Eq. (108)

can be rewritten as the product of l integrals,∫
q(fM )

L∏
l=1

p(f ln|f lM ; f l−1n )dfM =

L∏
l=1

∫
q(f lM )p(f ln|f lM ; f l−1n )df lM , (110)

each being a standard integral in Gaussian calculus and the resulting formulas are given in Eqs. (6) and (9). In contrast,
a fully coupled multivariate Gaussian can not be written as such a product, which is why the rather straightforward
solution presented above is not possible in our case and the proof in Appx. A is needed.

E Linear algebra to speed up the code

In this section we provide some guidance through the linear algebra that is exploited in our code to speed up or vectorise
calculations. We will focus only on the most expensive terms, i.e., the off-diagonal covariance term S̃l,1:l−1n and how

to deal with
(
S̃1:l−1,1:l−1
n

)−1
, which are both needed to calculate µ̂ln and Σ̂ln in Eqs. (111) and (112), respectively.

First, we show how to deal with the FC DGP and afterwards how the sparsity of SM for the STAR DGP can be used.
The linear algebra that can be exploited for all the other terms, e.g. the KL-divergence, will be provided along with the
code. Our implementation is in GPflow [19] which provides all the functionalities that are necessary to deal with GPs
in Tensorflow [1].
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Before we start we will repeat some formulas for convenience:

µ̂ln = µ̃ln + S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
(f1:l−1n − µ̃1:l−1

n ), (111)

Σ̂ln = S̃lln − S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
S̃1:l−1,l
n , (112)

S̃ll
′

n =
(
K̃lMn

)>
Sll

′

M K̃l
′

Mn, if l 6= l′. (113)

Additionally, here is a more explicit definition of our notation of the covariance matrix SM :

SM =

S
11
M · · · S1L

M
...

. . .
...

SL1M · · · SLLM

 , Sll
′

M =


(
Sll

′

M

)
11

· · ·
(
Sll

′

M

)
1Tl′

...
. . .

...(
Sll

′

M

)
Tl1

· · ·
(
Sll

′

M

)
TlTl′

 , (114)

where SM , Sll
′

M , and
(
Sll

′

M

)
tt′

are matrices of size MT ×MT (where T =
∑L
l=1 Tl), MTl ×MTl′ , and M ×M ,

which store the covariances of the inducing outputs between all inducing points, only those between layer l and l′,
and only those between the t-th task in layer l and the t′-th task in layer l′, respectively. In order to ensure that SM is
a valid covariance matrix (positive definite) we will numerically only work with its Cholesky decomposition LS (s.t.
SM = LSL

>
S ), which is a lower triangular matrix. Wherever possible we will want to avoid actually computing SM

and instead calculate all quantities from LS directly.

E.1 Fully coupled DGP

Off-diagonal covariance terms The terms

S̃l,1:l−1n =
(
S̃l1n S̃l2n · · · S̃l,l−1n

)
, (115)

which are of size Tl ×
∑l−1
l′=1 Tl′ , have to be calculated for l = 1, . . . , L and for n = 1, . . . , N . As the number of

layers L is in practice rather small, we will calculate all the individual matrices S̃ll
′

n in a loop and concatenate them
at the end, while we want to avoid a loop over N . Using Eq. (113) and that K̃lMn = ITl

⊗ K̃l
Mn, we see that (for an

example with Tl, Tl′ = 2)

S̃ll
′

n =


(
K̃l
Mn

)>
(Sll

′

M )11K̃
l′

Mn

(
K̃l
Mn

)>
(Sll

′

M )12K̃
l′

Mn(
K̃l
Mn

)>
(Sll

′

M )21K̃
l′

Mn

(
K̃l
Mn

)>
(Sll

′

M )22K̃
l′

Mn

 . (116)

Writing S̃ll
′

n in this way has two advantages: Firstly, actually performing the multiplication K̃lnMSll
′

M K̃l
′

Mn is extremely
inefficient as the K̃lMn are block diagonal, which we resolved in this formulation. Secondly, we note that exactly the

same operation, i.e., multiplying from left and right by
(
K̃l
Mn

)>
and K̃l′

Mn, respectively, has to be performed on all
TlTl′ blocks of size M ×M . This can be exploited since tensorflow has an inbuilt batch mode for most of its matrix
operations. In the following we will first show how the relevant block Sll

′

M can be efficiently obtained and afterwards
show how to deal with the batch matrix multiplication for all n = 1, . . . , N .

Let us consider an example with three layers (L = 3), the resulting covariance matrix and its Cholesky decomposition:

SM =

S11
M S12

M S13
M

S21
M S22

M S23
M

S31
M S32

M S33
M

 = LSL
>
S =

L11
S 0 0

L21
S L22

S 0
L31
S L32

S L33
S



(
L11
S

)> (
L21
S

)> (
L31
S

)>
0

(
L22
S

)> (
L32
S

)>
0 0

(
L33
S

)>
 . (117)

From this we can read off formulas for the blocks of SM , e.g., S32
M =

(
L31
S L32

S

) (
L21
S L22

S

)>
, which in general

can be written as
Sll

′

M = Ll,1:l
′

S

(
Ll

′,1:l′

S

)>
, (118)
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where we exploited that we only need Sll
′

M for l′ < l (the formula above is not valid for l′ ≥ l). In this way we avoided
calculating unnecessary matrix multiplications involving zero blocks.

Avoiding the loop over N requires a bit more linear algebra: For this we note that e.g. the element
(
S̃lln

)
11

can be seen

as the n-th diagonal element of the N ×N matrix
(
K̃l
MN

)>
(Sll

′

M )11K̃
l′

MN . Fully calculating this matrix is obviously

very inefficient as we only need its diagonal elements. For this we use that, generally, for q × p matrices A, C> and
q × q matrices B

diag
(
C>BA

)
= column sum(C> �BA), (119)

where � denotes the elementwise matrix product. The formula can easily be proved by explicitly writing the matrix
products as sums and comparing terms on both sides. Using this on all the blocks of S̃ll

′

n in Eq. (116) in a batched
form and reordering the obtained terms afterwards requires some reshaping, which is explained in the code.

The most expensive calculations for this term are obtaining Sll
′

M [Eq. (118)], which is O(M3TlTl′
∑l′

l′′=1 Tl′′)

and the multiplication of e.g. (Sll
′

M )11K̃
l′

MN which has to be done for all TlTl′ blocks of Sll
′

M and is therefore
O(NM2TlTl′). Both of these operations have to be performed for all l′ = 1, . . . , l − 1 in Eq. (115) and also for
all layers l = 1, . . . , L. The total computational cost of this term is therefore O(M3

∑L
l=1 Tl

∑l−1
l′=1 Tl′

∑l′

l′′=1 Tl′′ +

NM2
∑L
l=1 Tl

∑l−1
l′=1 Tl′).

Dealing with the inverse covariance terms First of all, we will never actually calculate
(
S̃1:l−1,1:l−1
n

)−1
. We will

only use (and update) the lower triangular Cholesky decomposition L1:l−1,1:l−1
Sn defined by

L1:l−1,1:l−1
Sn

(
L1:l−1,1:l−1
Sn

)>
= S̃1:l−1,1:l−1

n . (120)

This can be done since the inverse term only ever appears in the product S̃l,1:l−1n

(
S̃1:l−1,1:l−1
n

)−1
, whose transpose

can be efficiently obtained via the solution of two triangular systems (which is implemented as cholesky solve in
tensorflow). For this we obviously need the Cholesky decomposition first. We will point out how this can be efficiently
calculated in the following, taking the calculations for the second layer as an example:

After having calculated µ̂2
n and Σ̂2

n [Eqs. (111) and (112), respectively] we necessarily still have the quantities L̃11
Sn

(passed on from the first layer calculations), S̃12
n , and S̃22

n in memory. Note that we therefore can completely build the
block matrix S̃1:2,1:2

n as

S̃1:2,1:2
n =

L̃11
Sn

(
L̃11
Sn

)>
S̃12
n(

S̃12
n

)>
S̃22
n ,

 (121)

from which we could in principle calculate the Cholesky factor directly. A more efficient way is to assume a general
block matrix form for the Cholesky factor,

L̃1:2,1:2
Sn =

(
A 0
B C

)
, (122)

and then by using Eq. (120) and comparing the terms to Eq. (121) finding formulas for the unknown terms and solve
them. These formulas are given by

AA> = L̃11
Sn

(
L̃11
Sn

)>
, (123)

AB> = S̃12
n , (124)

BB> + CC> = S̃22
n . (125)

From Eq. (123) we recognize A = L̃11
Sn. Next, we can use this and Eq. (124) to find B> as the solution of the

(triangular) system L̃11
SnB

> = S̃12
n . The last step is then to obtain C from the Cholesky decomposition of the matrix

S̃22
n −BB>, where we used Eq. (125). Note that while we still have to do a Cholesky decomposition, the matrix that
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has to be decomposed is (especially for large l) considerably smaller than the full matrix S̃1:2,1:2
n and the computation

therefore much faster. For general l we simply have to substitute L̃11
Sn → L̃1:l−1,1:l−1

Sn , S̃12
n → S̃1:l−1,l

n , and S̃22
n → S̃lln ,

the rest stays the same. Plugging the obtained results for A, B, and C in Eq. (122) yields the required ”updated”
Cholesky factor that needs to be passed on for the calculations in the next layer.

Solving the three equations (123) - (125) for layer l requires O(N(T 2
l

∑l−1
l′=1 Tl′ + Tl(

∑l−1
l′=1 Tl′)

2 + T 3
l )) com-

putation time. Doing so for all layers (note that we do not have to do this for the last layer) is therefore
O(N

∑L−1
l=1 (T 2

l

∑l−1
l′=1 Tl′ + Tl(

∑l−1
l′=1 Tl′)

2 + T 3
l ))

Computational costs Since these were the most expensive terms for the FC DGP, the overall computational cost for
evaluating the ELBO is therefore

O

N L∑
l=1

M2Tl

l−1∑
l′=1

Tl′ + T 2
l

l−1∑
l′=1

Tl′ + Tl(

l−1∑
l′=1

Tl′)
2 + T 3

l +
M3

N
Tl

l−1∑
l′=1

Tl′
l′∑

l′′=1

Tl′′

 . (126)

In order to get a better grasp at this we will take an example architecture with L layers and the same number Tl = τ
of GPs per layer except for the last layer in which there is only one GP (TL = 1). In such a case the computational
cost simplifies to

O(NM2τ2L2 +Nτ3L3 +M3τ3L3), (127)
where we only kept the highest order terms.

E.2 Stripes-and-Arrow DGP

In the following we will briefly sketch the computational savings that can be achieved for the two terms discussed in
the previous section, when the restricted covariance of the STAR DGP is used. Note that in this case the architecture
necessarily needs to be the one decribed in the example given in the previous paragraph. The (potential) non-zero
M ×M blocks of the covariance matrix can be described by

(
Sll

′

M

)
tt′

, where t = t′ (this captures the terms also

present in the MF DGP plus the diagonal stripes) or l = L or l′ = L (this captures the two sides of the arrowhead). It
is easy to see that this form directly translates to the Cholesky decomposition which we will exploit in the next section:
The lower diagonal LS has (potential) non-zero M ×M blocks

(
Lll

′

S

)
tt′

, only if l ≥ l′ (lower diagonal) and if t = t′

(diagonal and stripes) or l = L (arrowhead).

Computing the covariance matrix from its Cholesky decomposition We will start by describing how the relevant
terms of SM can be obtained from our chosen sparse representation of LS , where we summarise the non-zero terms in
three arrays, diagLS , stripesLS , and arrowLS . The array diagLS contains the τ(L− 1) + 1 lower diagonal M ×M blocks
on the diagonal of LS , where we access the t-th block in the l-th layer, i.e.,

(
LllS
)
tt

, by diagLl,tS . The array stripesLS

contains the τ
∑L−2
k=1 k = τ

2 (L− 2)(L− 1) blocks of size M ×M , which form the diagonal stripes of LS , where we

access
(
Lll

′

S

)
tt

(where L > l > l′) by stripesLl,l
′,t

S . The remaining τ(L − 1) blocks of size M ×M of the arrowhead

are contained in arrowLS , where we access
(
LLlS
)
1t

as arrowLl,tS . See also Fig. 1 for a depiction of the covariance matrix.

The different terms of SM can then be obtained as listed below:

i) Diagonal terms
(
SllM
)
tt

with l < L:

(
SllM
)
tt

= diagLl,tS

(
diagLl,tS

)>
+

l−1∑
l′=1

stripesLl,l
′,t

S

(
stripesLl,l

′,t
S

)>
(128)

ii) Diagonal term
(
SLLM

)
11

:

(
SLLM

)
11

= diagLL,1S

(
diagLL,1S

)>
+

L−1∑
l=1

τ∑
t=1

arrowLl,tS

(
arrowLl,tS

)>
(129)
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iii) Stripe terms
(
Sll

′

M

)
tt

with L > l > l′ (l < l′ obtained via transposing):

(
Sll

′

M

)
tt

= stripesLl,l
′,t

S

(
diagLl

′,t
S

)>
+

l′−1∑
l′′=1

stripeLl,l
′′,t

S

(
stripesLl

′,l′′,t
S

)>
(130)

iv) Arrow terms
(
SLlM
)
1t

:

(
SLlM
)
1t

= arrowLl,tS

(
diagLl,tS

)>
+

l−1∑
l′=1

arrowLl
′,t
S

(
stripesLl,l

′,t
S

)>
(131)

The vectorisation of these equations can be seen in the code. The stripe terms are the most expensive to compute since
an individual term has computational costO(M3l′) which has to be done for l = 2, . . . , L−1 and for l′ = 1, . . . , l−1
and for all t = 1, . . . , τ . Therefore calculating all stripe terms is O(M3L3τ) (where we only kept the highest order
term).

Off-diagonal covariance terms As before with the FC DGP, the off-diagonal covariance terms S̃ll
′

n will also be the
most expensive to compute. From the general formula in Eq. (113) it is easy to see that

(
S̃ll

′

n

)
tt′

is only non-zero, if

the corresponding
(
Sll

′

M

)
tt′

are non-zero. We showed in the previous paragraph how those can be calculated, so the
only step that remains to be done is the equivalent of Eq. (116), where again Eq. (119) can be used.

Doing this for an individual M ×M block can be done in O(NM2) time. Since we have to do this for all O(τL2)
blocks, the total computational cost for the off-diagonal covariance terms is O(NM2τL2).

Dealing with the inverse covariance terms For calculating (or updating) the Cholesky decomposition of
S̃1:l−1,1:l−1
n we could in principle use similar ideas as we used above for calculating SM (since both have the same

sparsity pattern). But as we saw in the previous section, this term only incurs computational costs of O(Nτ3L3) even
for the FC DGP, which is for our settings always the least expensive term. We therefore simply reuse the algorithm
described in the previous section to deal with this term and live with the resulting computational costs.

Computational costs The total computational costs for calculating the ELBO for the STAR DGP are therefore

O(NM2τL2 +Nτ3L3 +M3τL3). (132)

F Pseudocode

We summarise the algorithm for calculating the ELBO (8) in Algs. 1, 2, and 3 and 4. Alg. 1 shows how the ELBO
can be calculated, where we average over multiple samples to reduce noise obtained by sampling through the layers.
Alg. 2 zooms into a single layer of the DGP and differentiates the mean-field approach and ours: All coupled DGP
approaches compute additional blocks of the covariance matrix S̃n (marked in orange in Alg. 3 for the fully-coupled
DGP and in Alg. 4 for the stripes-and-arrow approximation). These blocks lead to a dependency of the output of the
current layer f ln on its predecessors f1:l−1n (marked in orange).
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Algorithm 1 ELBO for coupled DGP
given minibatch xNb

, yNb
of size Nb, and

number of Monte Carlo repetitions R
L = 0
for n = 1 . . . Nb do

list = [xn] . accumulates K̃lnM , µ̃ln, S̃1:l,1:l
n , f ln

for r = 1 . . . R do
for l = 1 . . . L do

µ̂ln, Σ̂
l
n, list = sample layer(l, list) . Alg. 2

L += N
NbS

var log likelihood(yn, µ̂
L
n , Σ̂

L
n)

L −= KL term()
return L . ELBO from Eq. (8)

Algorithm 2 sample layer(l, list): Return µ̂ln, Σ̂
l
n and sample f ln, update relevant quantities for later layers.

. list contains K̃1:l−1
nM , µ̃1:l−1

n , S̃1:l−1,1:l−1
n , f1:l−1n

µ̃ln = get mu tilde() . Definition in Thm. 1
S̃l,1:ln = get S tilde(l, K̃1:l

nM ) . Alg. 3
µ̂ln = µ̃ln + correct mu(list, S̃l,1:l−1n ) . Eq. (10)
Σ̂ln = S̃lln − correct Sigma(list, S̃l,1:l−1n ) . Eq. (11)
f ln = sample multivariate gauss(µ̂ln, Σ̂

l
n)

list = append(list, K̃lnM , µ̃ln, S̃l,1:l−1n , S̃lln , f ln)
return µ̂ln, Σ̂ln, list . Return to Alg. 1

Algorithm 3 get S tilde(l, K̃1:l
nM ): Calculate S̃l,1:l−1n and S̃l,ln according to their definitions in Thm. 1 for the

fully-coupled DGP.

(Sll
′

M )tt′ denotes the M × M block in SM that contains the covariances of the inducing outputs of the t-th GP
in the l-th layer and the t′-th GP in the l′-th layer. Analogously for (S̃ll

′

n )tt′ .
for l′ = 1 . . . l do

for t, t′ = 1 . . . Tl, 1 . . . Tl′ do
if l = l′ and t = t′ then

(S̃l,ln )tt = Kl
nn + K̃l

nM

(
(SllM )tt −Kl

MM

)
K̃l
Mn

else
(S̃l,l

′

n )tt′ = K̃l
nM (Sll

′

M )tt′K̃
l′

Mn

return S̃l,1:ln . Return to Alg. 2

Algorithm 4 get S tilde(l, K̃1:l
nM ): Calculate S̃l,1:l−1n and S̃l,ln for the stripes-and-arrow DGP.

for l′ = 1 . . . l do
for t, t′ = 1 . . . Tl, 1 . . . Tl′ do

if l = l′ and t = t′ then
(S̃l,ln )tt = Kl

nn + K̃l
nM

(
(SllM )tt −Kl

MM

)
K̃l
Mn

else if l = L or t = t′ then
(S̃l,l

′

n )tt′ = K̃l
nM (Sll

′

M )tt′K̃
l′

Mn

return S̃l,1:ln . Return to Alg. 2

28



Table S3: Extrapolation behaviour on UCI benchmark datasets. We report marginal test log-likelihoods (the
larger, the better) for various methods and various number of layers L in the extrapolation setting. We marked all
methods in bold that performed better or as good as SGP in the interpolation and extrapolation scenario, i.e., we
simultaneously also looked at Tab. 1 in Sec. 4. We additionally underlined those that are significantly better (non-
overlapping confidence intervals) in at least one of the scenarios. Standard errors are obtained by repeating the exper-
iment 10 times.

Dataset SGP SGHMC DGP MF DGP STAR DGP
(N,D) L1 L1 L2 L3 L2 L3 L2 L3

boston (506,13) -3.49(0.23) -3.57(0.16) -3.64(0.11) -3.64(0.08) -3.36(0.17) -3.41(0.19) -3.38(0.18) -3.38(0.18)
energy (768, 8) -2.90(0.63) -3.22(0.69) -3.53(0.89) -3.26(0.75) -3.02(0.64) -3.45(0.86) -3.08(0.78) -2.95(0.74)
concrete (1030, 8) -3.91(0.11) -3.90(0.06) -4.37(0.19) -4.71(0.33) -3.76(0.10) -3.71(0.09) -3.79(0.08) -3.68(0.08)
wine red (1599,11) -1.01(0.02) -1.15(0.02) -1.22(0.03) -1.08(0.05) -1.02(0.02) -1.01(0.02) -1.01(0.02) -1.01(0.02)
kin8nm (8192, 8) 0.66(0.04) 0.72(0.03) 1.06(0.03) 0.94(0.11) 0.96(0.03) 0.98(0.04) 0.98(0.02) 0.94(0.03)
power (9568, 4) -3.44(0.29) -4.27(0.41) -4.19(0.38) -4.09(0.35) -3.81(0.30) -3.82(0.31) -3.95(0.33) -3.82(0.27)
naval (11934,16) 3.20(0.32) 2.83(0.09) 3.16(0.14) 3.18(0.12) 2.33(0.43) 2.26(0.37) 2.20(0.22) 2.95(0.27)
protein (45730, 9) -3.20(0.04) -3.20(0.03) -3.17(0.02) -3.10(0.02) -3.31(0.04) -3.23(0.06) -3.23(0.04) -3.19(0.05)

G Additional experimental details

In the following, we describe the experimental details necessary to reproduce the results:

• Data Normalization Normalization of inputs and outputs to zero mean and unit variance based on the training
data.

• Inducing Inputs M = 128 inducing inputs initialized with k-means.
• DGP architecture L = 3 hidden layers with τ = 5 latent GPs each and principal components of the training

data as mean function.
• Likelihood Gaussian likelihood with initial variance σ2

0 = 0.01.
• Kernel RBF kernel with automatic relevance determination (initial lengthscale l0 = 1, initial variance σ2

0 =
1).

• Optimizer Adam Optimizer [15] (number of iterations nIter = 20, 000, mini-batch sizembs = 512, number
of Monte Carlo for each data points R = 5) with exponentially decaying learning rate (learning rate lr =
0.005, steps s = 1000, rate r = 0.98).

• Early Stopping In our initial experiments, we experienced overfitting for the variational methods. To prevent
this from happening, we used 10% of the training data as a validation set. We performed early-stopping if
the performance on the validation set decreased in five successive strips [20]. We did neither use a hold-out
dataset for the GP methods, as they have a much smaller number of hyperparameters, nor for the Hamiltonian
Monte Carlo approaches, as the correlation between adjacent samples complicates defining a good early-
stopping criterion.

• Comparability Besides the early stopping criterion, we used the same model architectures, hyperparameter
initialisations and optimisation settings across all methods and all datasets.

• Runtime Assessment The runtime of the different approximations was assessed for a single gradient update
averaged over 2,000 updates on a 6 core i7-8700 CPU.

• Natural gradients For some experiments we also employed natural gradients, meaning we trained the model
with a mixture of a natural gradient optimiser on all variational parameters and the Adam optimiser on all
other parameters, similarly as in Refs. [26, 10]. We additionally used exponentially decaying learning rates
(learning rate Adam (natural gradients) lr = 0.001 (0.005), steps s = 1000, rate r = 0.99).
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Table S4: Extrapolation behaviour: direct comparison of DGP methods (part 2). This table complements Tab. 2.
In the fourth and in the last column, the same quantities as in Tab. 2 are shown (see there for a description), where
NG marks a method trained with natural gradients and FC stands for fully-coupled. The other columns (2,3, and 5),
marked with (dif), show means and standard errors (over 10 repetitions) of the difference in marginal test log likelihood
averaged over all test points in a single train test split. In each column, we mark numbers in bold if the second method
outperforms the first, and in italics if it is the other way around. For the (dif) columns that is the case if the numbers
significantly differ from zero. Note that the methods trained with natural gradients perform worse in the extrapolation
task than those trained with Adam (as can be seen in the last column), a phenomenon that will have to be looked at
more closely in the future.

Dataset MF vs. STAR (dif) SGHMC vs. STAR (dif) MF NG vs. FC NG MF NG vs. FC NG (dif) MF NG vs. MF

boston 0.036(0.029) 0.27(0.15) 0.58(0.04) 0.303(0.108) 0.63(0.04)
energy 0.500(0.202) 0.31(0.16) 0.70(0.05) 0.343(0.231) 0.77(0.05)
concrete 0.036(0.060) 1.03(0.33) 0.56(0.02) 0.145(0.070) 0.61(0.02)
wine red 0.004(0.003) 0.07(0.05) 0.57(0.03) 0.018(0.003) 0.57(0.03)
kin8nm -0.040(0.024) -0.00(0.11) 0.59(0.02) 0.028(0.016) 0.44(0.03)
power 0.005(0.096) 0.27(0.11) 0.68(0.03) 0.355(0.157) 0.52(0.05)
naval 0.693(0.527) -0.22(0.23) 0.24(0.07) -0.178(0.112) 0.65(0.07)
protein 0.033(0.014) -0.10(0.03) 0.50(0.01) -0.016(0.009) 0.47(0.02)

Figure S5: ELBO comparison. We show boxplots of the ELBOs that correspond to the interpolation setting reported
in Tab. 1 for all datasets and for 10 random splits, comparing the three layer versions of MF DGP and our STAR
DGP. The performance increase of STAR DGP compared to MF DGP is the largest when the dataset is small (boston,
energy, concrete), while we observed a performance decrease on the dataset naval. For the latter, we also observed
convergence difficulties in two runs, where the ELBOs are not plotted in the figure (indicated by the arrow).

Table S5: ELBO comparison for fully-coupled DGP We report ELBOs (the larger, the better) for the mean-field
(MF) and the fully-coupled (FC) method. We used our standard architecture with M = 128, τ = 5, and L = 3 for
both methods and trained them using natural gradients. Standard errors are obtained by repeating the experiment 10
times. We warm-started the optimisation of the fully-coupled method from the converged mean-field solution, using
rather small learning rates (learning rate Adam (natural gradients) lr = 0.001 (0.002), steps s = 1000, rate r = 0.95,
cf. page 29) for a maximum of 7000 iterations. We marked the significant better performing (non overlapping standard
errors) for each dataset in bold. Our structured approximation yields larger ELBOs for all datasets.

Dataset boston energy concrete wine red kin8nm power naval protein
(N,D) (506,13) (768, 8) (1030, 8) (1599,11) (8192, 8) (9568, 4) (11934,16) (45730, 9)

MF -510(30) 510(8) -910(50) -1648(8) -2000(100) -390(90) 33000(600) -44040(140)
FC -246(5) 600(20) -500(10) -1575(4) -1290(70) -10(50) 34600(500) -42610(120)
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Figure S6: Convergence of SGHMC. Left: Distribution over MC samples from a randomly chosen inducing output
of a DGP with a single layer, equivalent to a SGP. The red line indicates a Normal distribution fitted to the data. Right:
For each inducing output, we computed a p-value if its MC samples are normally distributed. The blue line shows the
Bonferroni corrected significance threshold α = 10−5.

Figure S7: Extended runtime comparison. We compare the runtime of our efficient stripes-and-arrow approxima-
tion (STAR DGP) versus the fully coupled (FC DGP) and the mean-field approach (MF DGP) on the protein UCI
dataset. Shown is the runtime of one gradient step in seconds on a logarithmic scale as a function of the number
of inducing points M , the number of layers L and the number τ of latent GPs per intermediate layer (from left to
right). The dotted grey lines show the theoretical scaling of the runtime of the STAR DGP for the most important term
O(NM2τL2).
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Figure S8: Additional covariance and precision matrices. Covariance/precision matrices after optimisation for
three different UCI data sets. The first column depicts covariance matrices for our standard architecture, L = 3, τ = 5,
while the second column depicts covariance matrices for L = 4, τ = 3. The third column depicts the precision
matrices corresponding to the second column, i.e., the inverse matrices. Plotted are natural logarithms of the absolute
values of the variational covariance/precision matrices over the inducing outputs.
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