A Dual Form of Bregman Momentum

The dual form of Bregman momentum given in (10) can be obtained by first forming the dual Bregman divergence in terms of the dual variables $\boldsymbol{w}^{*}(t)$ and \boldsymbol{w}_{0}^{*} and then taking the time derivative:

$$
\begin{aligned}
\dot{D}_{F}\left(\boldsymbol{w}(t), \boldsymbol{w}_{0}\right) & =\dot{D}_{F^{*}}\left(\boldsymbol{w}_{0}^{*}, \boldsymbol{w}^{*}(t)\right)=\frac{\partial}{\partial t}\left(F^{*}\left(\boldsymbol{w}_{0}^{*}\right)-F^{*}\left(\boldsymbol{w}^{*}(t)\right)-f^{*}\left(\boldsymbol{w}^{*}(t)\right)^{\top}\left(\boldsymbol{w}_{0}^{*}-\boldsymbol{w}^{*}(t)\right)\right. \\
& =-\dot{F}^{*}\left(\boldsymbol{w}^{*}(t)\right)+f^{*}\left(\boldsymbol{w}^{*}(t)\right)^{\top} \dot{\boldsymbol{w}}^{*}(t)+\left(\boldsymbol{w}^{*}(t)-\boldsymbol{w}_{0}^{*}\right)^{\top} \boldsymbol{H}_{F^{*}}\left(\boldsymbol{w}^{*}(t)\right) \dot{\boldsymbol{w}}^{*}(t) \\
& =\left(\boldsymbol{w}^{*}(t)-\boldsymbol{w}_{0}^{*}\right)^{\top} \boldsymbol{H}_{F^{*}}\left(\boldsymbol{w}^{*}(t)\right) \dot{\boldsymbol{w}}^{*}(t),
\end{aligned}
$$

where we use the fact that $\dot{F}^{*}\left(\boldsymbol{w}^{*}(t)\right)=f^{*}\left(\boldsymbol{w}^{*}(t)\right)^{\top} \dot{\boldsymbol{w}}^{*}(t)$.

B Constrained Updates and Reparameterization

We first provide a proof for Proposition 1 Then, we prove Theorem 3.
Proposition 1. The CMD update with the additional constraint $\psi(\boldsymbol{w}(t))=\mathbf{0}$ for some function $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ s.t. $\{\boldsymbol{w} \in \mathcal{C} \mid \psi(\boldsymbol{w}(t))=\mathbf{0}\}$ is non-empty, amounts to the projected gradient update

$$
\dot{f}(\boldsymbol{w}(t))=-\boldsymbol{P}_{\psi}(\boldsymbol{w}(t)) \nabla L(\boldsymbol{w}(t)) \& \dot{f}^{*}\left(\boldsymbol{w}^{*}(t)\right)=-\boldsymbol{P}_{\psi}(\boldsymbol{w}(t))^{\top} \nabla L \circ f^{*}\left(\boldsymbol{w}^{*}(t)\right),
$$

where $\boldsymbol{P}_{\psi}:=\boldsymbol{I}_{d}-\boldsymbol{J}_{\psi}^{\top}\left(\boldsymbol{J}_{\psi} \boldsymbol{H}_{F}^{-1} \boldsymbol{J}_{\psi}^{\top}\right)^{-1} \boldsymbol{J}_{\psi} \boldsymbol{H}_{F}^{-1}$ is the projection matrix onto the tangent space of F at $\boldsymbol{w}(t)$ and $\boldsymbol{J}_{\psi}(\boldsymbol{w}(t))$. Equivalently, the update can be written as a projected natural gradient descent update

$$
\dot{\boldsymbol{w}}(t)=-\boldsymbol{P}_{\psi}^{\top}(\boldsymbol{w}(t)) \boldsymbol{H}_{F}^{-1}(\boldsymbol{w}(t)) \nabla L(\boldsymbol{w}(t)) \& \dot{\boldsymbol{w}}^{*}(t)=-\boldsymbol{P}_{\psi} \boldsymbol{H}_{F^{*}}^{-1}\left(\boldsymbol{w}^{*}(t)\right) \nabla L \circ f^{*}\left(\boldsymbol{w}^{*}(t)\right) . \text { 15 }
$$

Proof of Proposition [1 We use a Lagrange multiplier $\boldsymbol{\lambda}(t) \in \mathbb{R}^{m}$ in (6) to enforce the constraint $\psi(\boldsymbol{w}(t))=\mathbf{0}$ for all $t \geq 0$,

$$
\begin{equation*}
\min _{\boldsymbol{w}(t)}\left\{\dot{D}_{F}\left(\boldsymbol{w}(t), \boldsymbol{w}_{s}\right)+L(\boldsymbol{w}(t))+\boldsymbol{\lambda}(t)^{\top} \psi(\boldsymbol{w}(t))\right\} . \tag{23}
\end{equation*}
$$

Setting the derivative w.r.t. $\boldsymbol{w}(t)$ to zero, we have

$$
\begin{equation*}
\dot{f}(\boldsymbol{w}(t))+\nabla_{\boldsymbol{w}} L(\boldsymbol{w}(t))+\boldsymbol{J}_{\psi}(\boldsymbol{w}(t))^{\top} \boldsymbol{\lambda}(t)=\mathbf{0} \tag{24}
\end{equation*}
$$

where $\boldsymbol{J}_{\psi}(\boldsymbol{w}(t))$ is the Jacobian of the function $\psi(\boldsymbol{w}(t))$. In order to solve for $\boldsymbol{\lambda}(t)$, first note that $\dot{\psi}(\boldsymbol{w}(t))=\boldsymbol{J}_{\psi}(\boldsymbol{w}(t)) \dot{\boldsymbol{w}}(t)=\mathbf{0}$. Using the equality $\dot{f}(\boldsymbol{w}(t))=\boldsymbol{H}_{F}(\boldsymbol{w}(t)) \dot{\boldsymbol{w}}(t)$ and multiplying both sides by $\boldsymbol{J}_{\psi}(\boldsymbol{w}(t)) \boldsymbol{H}_{F}^{-1}(\boldsymbol{w}(t))$ yields (ignoring t)

$$
\boldsymbol{J}_{\psi}(\boldsymbol{w}) \overline{\boldsymbol{w}}+\boldsymbol{J}_{\psi}(\boldsymbol{w}) \boldsymbol{H}_{F}^{-1}(\boldsymbol{w}) \nabla L(\boldsymbol{w})+\boldsymbol{J}_{\psi}(\boldsymbol{w}) \boldsymbol{H}_{F}^{-1}(\boldsymbol{w}) \boldsymbol{J}_{\psi}^{\top}(\boldsymbol{w}) \boldsymbol{\lambda}(t)=\mathbf{0}
$$

Assuming that the inverse exists, then

$$
\boldsymbol{\lambda}=-\left(\boldsymbol{J}_{\psi}(\boldsymbol{w}) \boldsymbol{H}_{F}^{-1}(\boldsymbol{w}) \boldsymbol{J}_{\psi}^{\top}(\boldsymbol{w})\right)^{-1} \boldsymbol{J}_{\psi}(\boldsymbol{w}) \boldsymbol{H}_{F}^{-1}(\boldsymbol{w}) \nabla L(\boldsymbol{w})
$$

Plugging in for $\boldsymbol{\lambda}(t)$ yields (15). Multiplying both sides by $\boldsymbol{H}_{F}(\boldsymbol{w})$ and using $\dot{f}(\boldsymbol{w})=\boldsymbol{H}_{F}(\boldsymbol{w}) \dot{\boldsymbol{w}}$ yields (14).

Theorem 3. The constrained CMD update (14) coincides with the reparameterized projected gradient update on the composite loss,

$$
\dot{g}(\boldsymbol{u}(t))=-\boldsymbol{P}_{\psi \circ q}(\boldsymbol{u}(t)) \nabla_{\boldsymbol{u}} L \circ q(\boldsymbol{u}(t))
$$

where $\boldsymbol{P}_{\psi \circ q}:=\boldsymbol{I}_{k}-\boldsymbol{J}_{\psi \circ q}^{\top}\left(\boldsymbol{J}_{\psi \circ q} \boldsymbol{H}_{G}^{-1} \boldsymbol{J}_{\psi \circ q}^{\top}\right)^{-1} \boldsymbol{J}_{\psi \circ q} \boldsymbol{H}_{G}^{-1}$ is the projection matrix onto the tangent space at $\boldsymbol{u}(t)$ and $\boldsymbol{J}_{\psi \circ q}(\boldsymbol{u}):=\boldsymbol{J}_{q}^{\top}(\boldsymbol{u}) \boldsymbol{J}_{\psi}(\boldsymbol{w})$.

Proof of Theorem 3 Similar to the proof of Proposition 1 we use a Lagrange multiplier $\boldsymbol{\lambda}(t) \in \mathbb{R}^{m}$ to enforce the constraint $\psi \circ q(\boldsymbol{u}(t))=\mathbf{0}$ for all $t \geq 0$,

$$
\min _{\boldsymbol{u}(t)}\left\{\dot{D_{G}}\left(\boldsymbol{u}(t), \boldsymbol{u}_{s}\right)+L \circ q(\boldsymbol{u}(t))+\boldsymbol{\lambda}(t)^{\top} \psi \circ q(\boldsymbol{u}(t))\right\}
$$

Setting the derivative w.r.t. $\boldsymbol{u}(t)$ to zero, we have

$$
\dot{g}(\boldsymbol{w}(t))+\nabla_{\boldsymbol{u}} L \circ q(\boldsymbol{w}(t))+\boldsymbol{J}_{\psi \circ q}^{\top}(\boldsymbol{u}(t)) \boldsymbol{\lambda}(t)=\mathbf{0}
$$

where $\boldsymbol{J}_{\psi \circ q}(\boldsymbol{u}(t)):=\boldsymbol{J}_{q}^{\top}(\boldsymbol{u}) \nabla \psi(\boldsymbol{w}(t))$. In order to solve for $\boldsymbol{\lambda}(t)$, we use the fact that $\psi \circ q(\boldsymbol{u}(t))=\boldsymbol{J}_{\psi \circ q}(\boldsymbol{u}(t)) \dot{\boldsymbol{u}}(t)=\mathbf{0}$. Using the equality $\dot{g}(\boldsymbol{u}(t))=\boldsymbol{H}_{G}(\boldsymbol{u}(t)) \dot{\boldsymbol{u}}(t)$ and multiplying both sides by $\boldsymbol{J}_{\psi \circ q}(\boldsymbol{u}(t)) \boldsymbol{H}_{G}^{-1}(\boldsymbol{u}(t))$ yields (ignoring t)

$$
\boldsymbol{J}_{\psi \circ q}(\boldsymbol{u}) \dot{\boldsymbol{u}}+\boldsymbol{J}_{\psi \circ q}(\boldsymbol{w}) \boldsymbol{H}_{G}^{-1}(\boldsymbol{u}) \nabla L \circ q(\boldsymbol{u})+\boldsymbol{J}_{\psi \circ q}(\boldsymbol{w}) \boldsymbol{H}_{G}^{-1}(\boldsymbol{w}) \boldsymbol{J}_{\psi \circ q}^{\top}(\boldsymbol{u}) \boldsymbol{\lambda}(t)=\mathbf{0}
$$

The rest of the proof follows similarly by solving for $\boldsymbol{\lambda}(t)$ and rearranging the terms. Finally, applying the results of Theorem 2 concludes the proof.

C Discretized Updates

In this section, we discuss different strategies for discretizing the CMD updates and provide examples for each case.

The most straight-forward discretization of the unconstrained CMD update (1) is the forward Euler (i.e. explicit) discretization, given in (5). Note that this corresponds to a minimizer of the discretized form of (6) with a step size of h, except that the initial weight vector is \boldsymbol{w}_{s} instead of \boldsymbol{w}_{0}. That is,

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}}\{1 / h(D_{F}\left(\boldsymbol{w}, \boldsymbol{w}_{s}\right)-\underbrace{D_{F}\left(\boldsymbol{w}_{s}, \boldsymbol{w}_{s}\right)}_{=0})+L(\boldsymbol{w})\} .
$$

An alternative way of discretizing is to apply the approximation on the equivalent natural gradient form (11), which yields

$$
\boldsymbol{w}_{s+1}-\boldsymbol{w}_{s}=-h \boldsymbol{H}_{F}^{-1}\left(\boldsymbol{w}_{s}\right) \nabla L\left(\boldsymbol{w}_{s}\right)
$$

Despite being equivalent in continuous-time, the two approximations may correspond to different updates after discretization. As an example, for the EGU update motivated by $f(\boldsymbol{w})=\log \boldsymbol{w}$ link, the latter approximation yields

$$
\boldsymbol{w}_{s+1}=\boldsymbol{w}_{s} \odot\left(\mathbf{1}-h \nabla L\left(\boldsymbol{w}_{s}\right)\right)
$$

which amounts to approximating the exponential factor $\exp \left(-\eta \nabla L\left(\boldsymbol{w}_{s}\right)\right.$ in the EGU update by its Taylor expansion $\left(\mathbf{1}-h \nabla L\left(\boldsymbol{w}_{s}\right)\right)$.
The situation becomes more involved for discretizing the constrained updates. As the first approach, it is possible to directly discretize the projected CMD update 14

$$
f\left(\widetilde{\boldsymbol{w}}_{s+1}\right)-f\left(\boldsymbol{w}_{s}\right)=-h \boldsymbol{P}_{\psi}\left(\boldsymbol{w}_{s}\right) \nabla L\left(\boldsymbol{w}_{s}\right)
$$

However, note that the new parameter $\widetilde{\boldsymbol{w}}_{w+1}$ may fall outside the constraint set $\mathcal{C}_{\psi}:=\{\boldsymbol{w} \in$ $\mathcal{C} \mid \psi(\boldsymbol{w}))=\mathbf{0}\}$. As a result, a Bregman projection [Shalev-Shwartz et al. 2012] into \mathcal{C}_{ψ} may need to be applied after the update, that is

$$
\begin{equation*}
\boldsymbol{w}_{s+1}=\underset{\boldsymbol{w} \in \mathcal{C}_{\psi}}{\operatorname{argmin}} D_{F}\left(\boldsymbol{w}, \widetilde{\boldsymbol{w}}_{s+1}\right) \tag{25}
\end{equation*}
$$

As an example, for the normalized EG updates with the additional constraint that $\boldsymbol{w}^{\top} \mathbf{1}=1$, we have $\boldsymbol{P}_{\psi}(\boldsymbol{w})=\boldsymbol{I}_{d}-\mathbf{1} \boldsymbol{w}^{\top}$ and the approximation yields

$$
\log \left(\widetilde{\boldsymbol{w}}_{s+1}\right)-\log \left(\boldsymbol{w}_{s}\right)=-h\left(\nabla L\left(\boldsymbol{w}_{s}\right)-\mathbf{1} \mathbb{E}_{\boldsymbol{w}_{s}}\left[\nabla L\left(\boldsymbol{w}_{s}\right)\right]\right)
$$

where $\mathbb{E}_{\boldsymbol{w}_{s}}\left[\nabla L\left(\boldsymbol{w}_{s}\right)\right]=\boldsymbol{w}_{s}^{\top} \nabla L\left(\boldsymbol{w}_{s}\right)$. Clearly, $\widetilde{\boldsymbol{w}}_{s+1}$ may not necessarily satisfy $\widetilde{\boldsymbol{w}}_{s+1}^{\top} \mathbf{1}=1$. Therefore, we apply

$$
\boldsymbol{w}_{s+1}=\frac{\widetilde{\boldsymbol{w}}_{s+1}}{\left\|\widetilde{\boldsymbol{w}}_{s+1}\right\|_{1}}
$$

which corresponds to the Bregman projection onto the unit simplex using the relative entropy divergence [Kivinen and Warmuth, 1997].
An alternative approach for discretizing the constrained update would be to first discretize the functional objective with the Lagrange multiplier (23) and then (approximately) solve for the update. That is,

$$
\boldsymbol{w}_{s+1}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\{1 / h(D_{F}\left(\boldsymbol{w}, \boldsymbol{w}_{s}\right)-\underbrace{D_{F}\left(\boldsymbol{w}_{s}, \boldsymbol{w}_{s}\right)}_{=0})+L(\boldsymbol{w})+\boldsymbol{\lambda}^{\top} \psi(\boldsymbol{w})\} .
$$

Note that in this case, the update satisfies the constraint $\psi\left(\boldsymbol{w}_{s+1}\right)=\mathbf{0}$ because of directly using the Lagrange multiplier. For the normalized EG update, this corresponds to the original normalized EG update in [Littlestone and Warmuth, 1994],

$$
\boldsymbol{w}_{s+1}=\frac{\boldsymbol{w}_{s} \odot \exp \left(-h \nabla L\left(\boldsymbol{w}_{s}\right)\right)}{\left\|\boldsymbol{w}_{s} \odot \exp \left(-h \nabla L\left(\boldsymbol{w}_{s}\right)\right)\right\|_{1}}
$$

Finally, it is also possible to discretized the projected natural gradient update 15). Again, a Bregman projection into \mathcal{C}_{ψ} may need to be required after the update, that is,

$$
\widetilde{\boldsymbol{w}}_{s+1}-\boldsymbol{w}_{s}=-h \boldsymbol{P}_{\psi}\left(\boldsymbol{w}_{s}\right)^{\top} \boldsymbol{H}_{F}^{-1}\left(\boldsymbol{w}_{s}\right) \nabla L(\boldsymbol{w}(t)),
$$

followed by 25). For the normalized EG update, the first step corresponds to

$$
\boldsymbol{w}_{s+1}=\boldsymbol{w}_{s} \odot\left(\mathbf{1}-h\left(\nabla L\left(\boldsymbol{w}_{s}\right)-\mathbf{1} \mathbb{E}_{\boldsymbol{w}_{s}}\left[\nabla L\left(\boldsymbol{w}_{s}\right)\right]\right)\right)
$$

which recovers to the approximated $E G$ update of Kivinen and Warmuth 1997]. Note that $\boldsymbol{w}_{s+1}^{\top} \mathbf{1}=1$ and therefore, no projection step is required in this case.

