Supplementary Material for
Certified Defense to Image Transformations via
Randomized Smoothing

A Proof of Theorem 3.2

We now proceed to proof Theorem We achieve this by first proofing an auxiliary Theorem and
Lemma, and then instantiating as a special case Theorem [3.2] of these slightly more general results.

Theorem A.l1. Let x € R", f : R™ — Y be a classifier, 5 : R® — R™ a composable trans-
formation for 8 ~ N(0,X) with a symmetric, positive-definite covariance matrix ¥ € R™*™,

If

Ps(fotg(z) =ca) =pa >pa>D5 >pB = nax Ps(f ovs(x) =cB),

then g o 1., (x) = ca for all y satisfying

VATS T < 4@ () 27 () =i

Proof. The assumption is
P((fo1p) (@) =ca)=pa=pa=ps =pp="P((fovs)(x)=cp).
By the definition of g we need to show that

P((fotpiy) (@) = ca) = P((f o ¥pry) (x) = cB).

We define the set A := {z | 77X 71z < \/7yTE~1y®(p4)}. We claim that for 3 ~ N(0,X), we
have o

P(BeA) =pa (14)
P(fotpiy(z) =ca) 2P(B+v € A). (15)

First, we show that Eq. holds.

P(y'S™'8 < V4TS 19®(pa))
P(YTST'N(0,%) < /ATE19®(pa))
P(yTVETIN(0,1) < VATS17®(pa))

=P(N(0,7"2719) < V4TS 19®(pa))
P(VATEI9N(0,1) < /4TE~1y®(pa))
P
i

Thus Eq. (14) holds. Next we show that Eq. holds. For a random variable v ~ N (p,, 2,) we
write p, (z) for the evaluation of the Gaussian cdf at point z.
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P(f o Upy(2) = ca) — P(B+7 € A)
= [ 10w =calppsn )z~ [ ppss (21
R4 A

-/ o) = calpais () + /

A

[ 0 02(z) = cal pos (2)dz — /A Ppir(2)da
- / [ 0 a(x) = cal posn(2)dz + / [F 0 a(z) = cal poss (2)d2
R\ A A
- ( 1500 = calpass(@)i + [ [0 unte) # cA]pMz)dz)
A A
- / [ 0 t2(2) = el pp (2)dz — / [ 0 a(z) # cal poss (2)dz
R\ A A

gl ( / o 0@ = ealps(2)d - Jrounta) # m(z)dz)

=t </Rd[fo¢z(:r) = ca|ps(z)dz — /Apg(z)dz)

Eq.
qz@ 0.
Thus also Eq. (T3) holds.

Next, we claim that for B := {z | 7% 712 > /4TS~ 14®~1(1 — p5)} holds that
P(f o ¥s(z) = c5) < P(8 € B) (16)
P(fovpsy(z) =cp) <P(B+7€B) a7
The proofs for Eq. (T6) and Eq. (I7) are analogous to the proofs for Eq. (T4) and Eq. (I3).

Now we derive the conditions that lead to P(5 +~ € A) > P(8 +~ € B):
P(B+ € 4) =P( TS (B49) < VATS 70 (pa))
( “USIN(0,1) +9) € VAT 14! )
(vT\/FN(O 1) ++757 1y < \/VTT@ pa )
:P( TSN (0,1) + 778 1y < V/ATE-14d L (p ))
(
(

N(0,1) + /T8 1y < &~ (ILA>)
(0,1) <

P e
=®(® ' (pa) — VATE 1)
Similarly, we have

P8+ € B) :P(N(o,l) z@*lu_ﬁ)_m)

= ®(V7TE"1y — @71 - pp))

Thus, we get
P(B+ycA) >P(B+yeD)
& 3@ (pa) - VATET) > (\/wa @‘1(1—@))
& o lpa) - VATE Ty > VATE Iy - Y1 - 7p)
& 0 (pa)+ 9 (1 -p5) >2\/T271
e 3@ pa) -2 'EB) > VATE
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Next ,we show the lemma used in the proof.
Lemma 1. There exists t > 0 such that pgy(z) < pg(z) - t for all z € A. And further pgy(z) >
pp(z) - tforall z € RE\ A

Proof.

Pp++(2) 1 Ty—1 1,Ty—1
= exp(—3(z—7)'Y 7 (z—7)+ 32" X2
ps(2) - ? )

= exp (f%zTEflz + 275"ty — %*yTZ*Ly + %zTEflz)

= exp (zTEflfy - %’yTZ*l*y)

What is the lowest ¢ if it exists such that % <t?

Pp+~(2) <t
ps(2) -
& exp (zTE_17 — %VTZ_lfy) <t
& 2Ty 1y — %'yTE_l'y <logt
& 2Ty =ly <logt+ %'VTE_l'y

Because z € A, we know that
2Tyly < ’yTE—lfy@*l(m).
Does there exist a ¢ such that both upper bound coincide? Yes, namely
t =exp ( fyTE—l'y@_l(@) — %’yTZ_l’y) .
The case pg1~(2) > pg(z) - t is analogous. O

Lemma 2. Ifwe evaluate on a proxy classifier [’ instead of f, behaving with probability (1 — p) the
same as f and with probability p differently than f and if

Ps.s (f' o vp(x) = ca) > ply > pp > Jnax Py p(f' 0 ws(r) = cp),
then g o 1., (x) = cy for all -y satisfying

Iz < 5@ (s = p) = & (BB + p))-

Proof. By applying the union bound we can relate the output probability p of f for a class ¢ with the
output probability of f’ and p’:
P =Psp(f ots(z) =)
=Pg.p ((f o ¥s(z) = ¢) V (f error))
< Ps(fotpg(w) = c) + Py (f error)

=p+p
Thus we can obtain new bounds p4 > ZQ —pandpg < pTB + p from ]é and @ measured on f.
Plugging these bounds in Theorem [3.2]yields the result. O

We now show Theorem (restarted below): Setting ¥ = 021 in Theorem directly recovers
Theorem@ up to the last sentence, which in turn is a direct consequence of Lemma@

Theorem (Theorem@restated). Letx € R™, f : R™ — Y be a classifier and g : R™ — R™ be
a composable transformation as above. If

Ps(fotp(x) =ca) 2 pa 2P = max Pg(fovs(x)=ca),

cBF#ca
then g o - (x) = ca for all vy satisfying |||z < (@ (pa) — 21 (PB)) =: 7. Further, if g is
evaluated on a proxy classifier f' that behaves like f with probability 1 — p and else returns an
arbitrary answer, then r, := $(® 1 (pa — p) — 2~ (p5 + p)).
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B Inverse and Refinement

B.1 Details for Step 2

In this section, we elaborate on the details of Step 2 in Section[6] We consider the intersection of c;/
with the (4, j)-interpolation region, [x;, z,] X [y1, Yu] := civ j» N [i,4 + 2] X [4,j + 2]. This yields,

24i—[z1,@u] 245 —[y1,yu] o 24i—[mzd] [yyu]—J
2 2 + Pij+2 2 2

p;’,j/ € I([xla xu}? [ylv yu]) =Dij
Lz =i [y, yu]—J .

[z1,Tu] =1 245 — [Y1,5u]
+Pito 5 5 F Dit2 25— =5
Next, we solve for the pixel value p; ; to get the constraint ¢; ;:
(. 2-+i—[zr,2u] [Yy,yu]—Jd [£1,80] =1 245 — [Y1,Yu]
%5 = (pi’,j’ ~Pij+2 2 2 Ptz 2

-1

o mnma] = [ynyu] =3 ) 24—z ma] 245 — (YY)
Pit2,j+2— >3 2 2 2

Because we don’t have any constraints for the pixel values p; 1 j, p; j+2 and p;y2 j12, we replace
their values by the [0, 1] constraint and obtain:

R / _ 2+i7[$l7wu] [ylﬂyu]fj _ [whwu]*i 2+j*[yl7yu]
Q5 = \Pir 4 2 2 2 2

-1
[-'L'l ;"L'u] —1 [yl 7yu] —Jj 2+i— [-'L'l ;"L'u] 24j— [yl 7yu]
- 2 2 ) [0, 1]) < 2 2 )
Instead of using standard interval analysis to compute the constraints for p; ;, we use the following

more efficient transformer: We replace [z;, x,,] and [y, y,,] with the coordinate (z,y) € [z, ] X
[y1, yu) furthest away from (4, j), which is in our case (2, ¥,,) to obtain

— (. 24—y Yu—j | Ty—i2+i—y Ty —i Yu—j 24i—wy 24j—yu )
Qi,j—(pi’,j’_( 2 ) R R )[0’1]>< 2 2 “)

= [y — (Bl g Bttty nsiigl) g (B ttae) ™

B.2 Algorithm

Here, we present the algorithm used to compute the inverse of a transformation. For the
construction of the set C, we iterate only over the index set P. The set P is constructed
do include all points in G that could yield non empty intersections c; ;, thus this is just to
speed up the evaluation and equivalent otherwise to the algorithm described in the main part.

Data: Image ' € R™*™, transform 7', parameter range B, coordinates i, j

Result: Range for the pixel value p; ;.

[i—2,i+2]
N ([jfz,m})

([5)) « Ta()

(i d0]
i\ | ' erange(li;],...,4,,1,2)
P<—{<j’) j’erange(tju7...,w;,w,2>}

C i {ewg =T5" (1) N N|ewny #0.(7.5) € P}

pij < [0,1]N N gi—2,j—2(cir i) Ugsj—a(cirjo) Ugi—a j(ci i) Ugij(cir ;)

Cit 47 eC

Algorithm 1: Procedure to calculate the range for the pixel values of the inverse image.

B.3 Experimental Evaluation

To investigate the impact of refinement on the downstream error estimate we used 20 MNIST images,
rotated each with 3 random angles and then proceeded to calculate the inverse. In the calculation, we
considered the range I'y = 10. We see that a low number of refinements have a large impact on the
error but the returns become quickly diminishing. The impact on the run time of a single additional
refinement step is negligible.
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o 1 2 3 4 5 10 2 5 100
# refinement steps

Figure 4: Interpolation and rounding error E as well as run time for different numbers of refinement
steps.

(a) Rotated (b) Inverse (c) 10x refined inverse (d) Original

Figure 5: Computation of the inverse, analogous to Fig. @ for images from ImageNet [30].

C Inverse for Rich Images

INDIVSPT performs poorly on large images, such as those from ImageNet as the inverse computation
outlined in Section[6] produces a too large over-approximation of x leading to E estimates of around
40, while manageable value would be < 2.

Fig. [5|shows the computed inverse for such images. We observe a pattern of artifacts in the inverse,
where the pixel value can not be narrowed down sufficiently resulting in the large estimate of F.
The result of the refined inverse is perfectly recognizable to a human observer (or a neural network),
highlighting the promise of the algorithm for future applications.

D Experiment Details

D.1 Details for Section[7.3]

To evaluate BASESPT we use the following classifiers. Note that Table[3]in App. [E-]contains results
for further datasets:

MNIST [33] We trained a convolutional network consisting of CONV2D(k, n), with k x k filter size,
n filter channels and stride 1, batch norm BN [34], maximum pooling MAXPOOL(K) on
k x k grid, DROPOUT(p) [35] with probability p and linear layers LIN(a, b) from R® to R®.
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CONV2D(5, 32
CoNv2D(5,32), RELU, MAXPOOL(2), DROPOUT(0.2)

( ,RELU, BN

(
CoNV2D(3,64), RELU, BN

(

(

e — — —

CoNV2D(3,64), RELU, BN, MAXPOOL(2), DROPOUT(0.2)
CoNV2D(3,128), RELU, BN

CoNV2D(1,128), RELU, BN, FLATTEN

LiN(128,100), RELU

LiN(100, 10)

We used data normalization for MNIST and trained for 180 epochs with SGD, starting from
learning rate 0.01, decreasing it by a factor of 10 every 60 epochs. No other pre-processing
was used.

FashionMNIST [36] We trained a ResNet-18 with data normalization. We trained for 180 epochs
with SGD with an initial learning rate of 0.01, lowering it by a factor of 10 every 60 epochs.

CIFAR [32] & GTSRB [37] We trained a ResNet-18 with data normalization. We trained for 90
epochs with SGD with an initial learning rate of 0.1, lowering it by a factor of 10 every 30
epochs. We resized GTSRB images to 32 x 32 x 3.

ImageNet [30] We used the pre-trained ResNet50 from torchvision: https://pytorch.org/
docs/stable/torchvision/models.html.

D.2 Details for Section[7.4]

In Section [7.4] we use the same architectures (with the exception of MNIST, for which we use a
ResNet-18) as discussed in App.[D.I] however, we trained them to be robust to image transformations
(rotation, translation) as well as /< noise.

To train networks that perform well when randomized smoothing is applied, we utilize the training
procedure SMOOTHADVpgp as outlined in Salman et al. [§]. For each batch of samples we apply a
randomized data augmentation, vignetting for rotation, and Gaussian blur. After this prepossessing
we then apply SMOOTHADVpgp with one noise sample using o and 1 PGD pass (with step size 1; as
in Salman et al. [8]) and then evaluate or train on the batch.

The intuition behind the Gaussian blur is that many artifacts, such as the interpolation error are have
high frequencies. The blur acts as a low-pass filter and discards high frequency noise. This does not
strongly impact the classification accuracy, but drastically reduces the error estimate and therefore the
amount of noise that needs to be added for robust classification. The filter is parameterized by o}, and
the filter size s,. Formally the filter is a convolution with a filter matrix £ € R®*®>, Each entry in F'
is filled with values of a two dimensional Gaussian distribution centered at the center of the matrix
and evaluated at the center of the entry. Afterwards the matrix is normalized such that 3, ., F; j = 1.
In the error estimation and inference we use the same prepossessing as during training.

MNIST For MNIST we use a ResNet-18 (that takes a single color channel in the input layer),
which we trained with o = 0.3, PGD step size 0.2, batch size 1024, and initial learning rate 0.01 over
180 epochs, lowering the learning rate every 60 epochs. For data augmentation we used rotations
in [—30, 30], [—180, 180] degrees and translations of £50% for each model respectively. For the
Gaussian blur we use o, = 2.0 with filter size s, = 5.

CIFAR-10 & German Traffic Sign Recognition Benchmark (GTSRB) For both datasets we
use a ResNet-18 trained on 32 x 32 images. We use the same pipeline as for ImageNet, but with
o = 0.12, PGD step size 0.25, batch size 128, and lowered the learning rate every 70 epochs over
500 total epochs. For both datasets we used data augmentation with £30 degree rotations. For the
Gaussian blur we use g3, = 1.0 and s, = 5.
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(Restricted) ImageNet We trained with a batch size of 400 for 90 epochs using stochastic gradient
decent with a learning rate starting at 0.1, which is decreased by a factor 10 every 30 epochs.

We trained either with random rotation (uniformly in [—30, 30] degrees; with bilinear interpolation).
Further, we used o0 = 0.5 and PGD step size 1.0, as well as 0, = 2.0 and s, = 5.

All training on ImageNet with 4 GeForce RTX 2080 Tis and a 16-core node of aw Intel(R) Xeon(R)
Gold 6242 CPU @ 2.80GHz takes roughly 1 hour per epoch and Restricted ImageNet 10 minutes per

epoch.

D.3 Details for Section[7.3]

We used the same networks as outlined in App.[D.2]

E Additional Experiments

E.1 Additional Results for Section [7.3]

Table 3: Extended version of Table Evaluation of BASESPT on 1000 images. The attacker used

worst-of-100. We use n, = 1000,0, = I'y.

Acc. adv. Acc.
Dataset T T4 b b g t[s]
MNIST RY 30° 099 073 099 097
FMNIST RY 30° 091 0.13 087 7.98
CIFAR-10 R' 30° 091 026 085 095
GTSRB R' 30° 091 030 0.88 8.00
ImageNet R’ 30° 076 056 076 543
MNIST AT 4 099 0.03 053 086
FMNIST A! 4 091 0.10 050 6.12
CIFAR-10 Al 4 091 044 079 095
GTSRB AT 4 091 030 063 5.17
ImageNet A7 20 076 065 075 6.70

Table [3]is an extended version of Table [T]and provides results for additional datasets.

Table 4: We first use BASESPT to obtain the certification radius r., on 30 images and subsequently
sample from the parameter space indicated by I'+ = 7., and checked whether the certificate holds
for them. We use 30 samples and n, = 2000 samples for the smoothed classifier. The last column

shows the number of images for which we found violations.

Dataset T' T+ medianr, 7, violated
MNIST RT  30° 28.34 0
FMNIST R! 30° 13.45 1
CIFAR-10 R! 30° 19.16 14
GTSRB RT  30° 20.93 0
ImageNet R’ 10° 27.13 1
MNIST Al 4 1.12 0
FMNIST AT 4 1.78 1
CIFAR-10 AT 4 476 14
GTSRB Al 4 2.58 0
ImageNet A’ 20 16.43 0
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Table 5: Same setup as in Table |4} but with circular vignetting.

Dataset 7' Ty medianr, r, violated r, violated, no interpolation
MNIST RT  30° 28.34 0 0
FMNIST ~ R' 30° 17.07 0 0
CIFAR-10 R' 30° 11.49 10 0
GTSRB RT  30° 25.28 0 0

E.2 “Certification Radius” of BASESPT

As BASESPT uses Theorem [3.2]to justify the heuristic, this also makes it tempting to use the bound
7 provided by it. However, as the assumptions of Theorem [3.2]are violated it does not formally
present a certification radius. Here we investigate if and how much it holds nevertheless. To do
this we construct a smoothed classifier g from an undefended base classifier b and calculated the
certification radius . Subsequently, we sampled 100 new rotated images in the parameter space
induced by I'+. = 7., and evaluated on them. The results are shown in Table 4, While generally
robust, the radius does not constitute a certificate, as we can clearly find violations.

In the context of rotation R we add circular vignetting (as we do for DISTSPT and INDIVSPT)
to make the behavior closer to a composing transformation. For this experiment, we retrained the
same networks, but applied the vignette during training. Results are shown in Table [5| where we can
see that this already decreases the number of violations for CIFAR-10 and FMNIST. In a final step
we assume knowledge of the attacker parameter y and replace o Rff (for the same images) with

Ré 4 in the evaluation of the classifier, in which case Theorem should hold and indeed we don’t

observe any more violations.

E.3 Additional Results for Section

Beyond Bilinear Interpolation BASESPT and DISTSPT can directly be applied to image trans-
formations using other interpolation schemes without any adaption. INDIVSPT, however, requires
the adaption of the inverse algorithm. While this is generally possible, we consider it beyond the
scope of this work.

Table [6] shows the estimated e (via sampling for N = 1000). These values are generally higher than
the ones observed for bilinear interpolation, making classification more challenging. For E 1.5 times
larger than em,y we initiated classifier (with 100 images each) and evaluate them in App. [E.3] These
results indicate that we can obtain similar guarantees as for bilinear although might need to apply
higher computation resources (ns). For (R)ImageNet taking £ to 1.5 the maximal error this error
becomes too large to handle. Realistically one could use an E between 1.84 and 2.76 depending on
the desired qp.

Table 6: The observed e values. Showing the maximum €,,x and the 99-th percentile egg.

Dataset €max €99

MNIST 0.44 0.29
CIFAR-10 0.88 0.74
ImageNet 1.84 1.52

Table 7: Results for DISTSPT on bicubic interpolation. o, =T

Acc. T~ percentile
Dataset 7"  E T4 b g 250 50 750 T[s] n, ns
MNIST RY 066 30° 099 099 30.000 30.00" 30.00f 830 200 2000

CIFAR-10 R' 111 30° 072 054 1.87 1837 30.00f 2467 50 10000
RImageNet R' 1.84 30° 072 068 14.34 30.00" 30.00f 16925 50 4000
RImageNet R! 276 30° 0.72 0.00 - - - 151.88 50 4000
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E.4 Audio Volume Change

To show that our method can be used beyond image transformation we showcase an adaption to audio
volume changes. The volume of an audio signal can be changed by multiplying the signal with a
constant. In order to change the signal x by 3 (measured in decibel [3] = dB) we multiply « by
10%/20_ Thus the transformation is 15 (x) := 10%/20 . &, which composes:

Yp oy (x) = 1000720 . g = Vg1 ().

In practice such signals are stored in final precision, e.g. 16-bit, thus potentially introducing rounding
errors, with an ¢2-norm bound by E. If this is ignored BASESPT can be applied to obtain guarantees.
Otherwise, DISTSPT and INDIVSPT can be used to obtain sound bounds.

To evaluate this we use the speech commands dataset [38], consisting of 30 different commands,
spoken by people, which are to be classified. The length of the recordings are one second each. We
use a classification pipeline that converts audio wave forms into MFCC spectra [39] and then treats
these as images and applies normal image classification. We use a ResNet-50, that was trained with
Gaussian noise, but not SMOOTHADVpgp. We apply the noise before the waveform is converted to
the MFCC spectrum.

For DISTSPT we estimate E to be 0.005 with the parameters ag = 0.05,0, = 3 and I' = 3. On
100 samples, the base classifier f was correct 94 times, and the smoothed classifier g 51 times for 7.,
of 0.75, 1.96 and 3.12 for the 25", 50, 75" percentile respectively, corresponding to £1.09, 4-1.25
and £1.43 dB. At n, = 100 and n,. = 400 the average certification time was 138.006s.

To investigate INDIVSPT we use 0, = 0.85,I" = 1.05. For 92 out of 100 perturbed audio signals to
compute €. We obtained €, < 0.0055 and for 68 an € < 0.005, which together with our results
for DISTSPT suggests the applicability of the method. For each signal we used 100 samples for 3.
For cases with €y, > 0.0055 we in fact observed €, >> 0.0055, as here many parts of the signal
were amplified beyond the precision of the 16-bit representation and clipped to +1. This makes the
information unrecoverable and sound error bound estimates large.

Table 8: Maximum observed errors and without Table 9: Correct classifications and

gaussian blur (G) and without vignetting (V). by the model and verifications by
DeepG [11], with and without vi-
Dataset Both -V -G -V-G gnetting (V), out of 100 images.
CIFAR-I0 031 608 266 1517 Model  Comeer [N [V
ImageNet 091 70.66 9.25 75.69 MNIST 98 86 87
CIFAR-10 74 65 32
CIFAR-10+V 78 63 23

F Further Comparison and Ablation

To show that the vignette and Gaussian blur are essential to our algorithm we perform a small ablation
study. Table [§]shows the maximal error observed when sampling as in DISTSPT. We use the same
setup as in Section but with 10000 samples for ImageNet.

Both, vignetting and Gaussian blur reduce the error bound significantly for DISTSPT and INDIVSPT.
On CIFAR-10 and ImageNet vignetting is very impactful because the corners of images are rarely
black in contrast to MNIST. Li et al. [[13]] uses vignetting for the same reason. Without either of the
methods bounding the error would not be feasible.

For INDIVSPT vignetting is crucial, even for MNIST, as we can make no assumptions for parts that
are rotated into the image. Thus we need to set these pixels to the full [0, 1] interval (see Fig. .
Without Gaussian blur the certification rate drops to 0.11.

Further, we extend this comparison to related work: We extended Balunovic et al. [[11]] (Table 1 in
their paper) to include vignetting. The results are shown in Table[9] We also retrained their CIFAR-10
model with vignetting (CIFAR-10+V) for completeness. While vignetting on MNIST slightly helps
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(+1 image verified) on CIFAR-10 it leads to a significant drop. Including Gaussian blur into [11]
would require non-trivial adaption of the method. However, we implemented this for interval analysis
(on which their method is built) and found no impact on results.
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