
Supplementary Materials Roadmap

In Section A, we outline the architecture of our proofs in greater detail. In Section B, we precisely
define the models we work with and include other preliminaries like notation and useful technical
facts. In Section C, we prove our results on proper learning halfspaces in the presence of Massart
noise, in particular Theorem 1.1, restated here for convenience:
Theorem 1.1 (Informal, see Theorem C.18). For any 0  ⌘ < 1/2, let D be a distribution
over (X, Y) given by an ⌘-Massart halfspace, and suppose X is supported on vectors of bit-
complexity at most b. There is an algorithm which runs in time poly(d, b, 1/✏) and sample complexity
eO(poly(d, b)/✏3) and outputs a classifier w whose 0-1 error over D is at most ⌘ + ✏.

In Section D, we prove our results on knowledge distillation, in particular Theorem 1.2, restated here
for convenience:
Theorem 1.2 (Informal, see Theorem D.3). Let D, b be as in Theorem 1.1. There is an algorithm
which, given query access to a possibly improper hypothesis h and eO(poly(d, b)/✏4) samples, runs
in time poly(d, b, 1/✏) and outputs a proper classifier w whose 0-1 error over D exceeds that of h by
at most ✏. If the underlying halfspace has a margin �, there is an algorithm that achieves this but
only requires eO(d/�2✏4) samples and runs in near-linear time.

In Section E, we prove our statistical query lower bound for learning Massart halfsapces to error
OPT+ ✏, restated here for convenience.
Theorem 1.3 (Informal, see Theorem E.1). Any SQ algorithm for distribution-independently learning
halfspaces to error OPT+ o(1) under Massart noise, requires a super-polynomial number of queries.

In Section F, we prove our results on learning misspecified generalized linear models, in particular
Theorem 1.4, restated here for convenience:
Theorem 1.4 (Informal, see Theorem F.1). Let � : R! [�1, 1] be any odd, monotone, L-Lipschitz
function. For any ✏ > 0 and 0  ⇣ < 1/2, there is a polynomial-time algorithm which, given
poly(L, ✏�1

, (⇣ _ ✏)�1) samples from a ⇣-misspecified GLM with link function � and true direction
w⇤, outputs an improper classifier h whose 0-1 error over D satisfies

err
X
(h)  1� ED[�(|hw⇤

,xi|)]
2

+ ⇣ + ✏.

Lastly, in Section G, we describe the experiments we conducted on synthetic data and the UCI Adult
dataset. Finally, in Appendix H, we record miscellaneous deferred proofs, and in Appendix I we show
that FILTERTRON, like [DGT19], works in slightly greater generality than the Massart noise model.

A Overview of Techniques

The LeakyRelu loss. All of our algorithms use the LeakyRelu loss `� in a central way, similarly
to [DGT19]. See the definition in Section B.2. We briefly explain why this is natural, and in the
process explain some important connections to the literature on learning generalized linear models
[AHW96, KW98, KS09, KKSK11]. First, it is easy to see that the problem of learning a halfspace
where the labels are flipped with probability ⌘ (i.e. under RCN) is equivalent to learning a generalized
linear model E[Y | X] = (1 � 2⌘)sgn(hw⇤

,Xi). Auer et al. [AHW96] defined the notion of a
matching loss which constructs a loss function, assuming the link function is monotonically increasing,
that is convex and so has no bad local minima; if the link function is also Lipschitz then minimizing
this loss provably recovers the GLM. In particular, this works to learn halfspaces with margin under
RCN [AHW96, KS09, KKSK11, Kan18]. We see that LeakyRelu

⌘
is a matching loss from the

integral representation

`⌘(w,X) =
1

2

Z hw,Xi

0
((1� 2⌘)sgn(r)� Y)dr.

In fact, this integral representation is used implicitly in [DGT19] (i.e. Lemma F.5 below) and also in
our proof of Lemma C.4 below.

14

A.1 Separation Oracles and Proper-to-Improper Reduction

An idealized zero-sum game. Our proper learning algorithms are all based on the framework of
finding approximately optimal strategies in the following zero-sum game:

min
kwk1

max
c

E[c(X)`�(w,X)] (3)

where � is a fixed parameter chosen slightly larger than ⌘, and c(X) is any measurable function
such that c(X) � 0 and E[c(X)] = 1. It is helpful to think of c(X) as a generalized filter, and
we will often consider functions of the form cS(X) = 1[X2S]

Pr[X2S] , which implement conditioning on
X 2 S. Because the LeakyRelu is homogenous (`�(w, cX) = c ·`�(w,X) for c � 0), we sometimes
reinterpret c(X) as a rescaling of X.

In this game, we can think of the min player as the classifier, whose goal is to output a hyperplane w
with loss almost as small as the ground truth hyperplane w⇤. On the other hand, the max player is a
special kind of discriminator whose goal is to prove that w has inferior predictive power compared
to w⇤, by finding a reweighting of the data such that w performs very poorly in the LeakyRelu loss.
This is based on the fact that in the Massart model, for any reweighting c(X) of the data, w⇤ performs
well in the sense that E[c(X)`�(w⇤

,X)] < 0. This follows from Lemma C.2.

In fact, it turns out that this class of discriminators is so powerful that w having optimal zero-one loss
is equivalent to having value less than zero in the minimax game. We will show this in Section D.
Furthermore, the outer optimization problem is convex, so if we could find a good strategy for the
max player, we could then optimize w. Unfortunately, this is impossible because the max player’s
strategies in this game range over all possible reweightings of the distribution over X, so it is both
statistically and computationally intractable to compute the best response c given w. For example, if
c is supported on a set S with extremely low probability, we may never even see a datapoint with
c(X) > 0, so it will be impossible to estimate the value of the expectation.

The key to our approach is to fix alternative strategies for the max player which are computationally
and statistically efficient. Then we will analyze the resulting dynamics when the w player plays
against this adversary and updates their strategy in a natural way (e.g. gradient descent). Thus our
framework naturally yields simple and practical learning algorithms.

Comparison to previous approach and no-go results. We briefly explain the approach of
[DGT19] in the context of (3) and why their approach only yields an improper learner. In the
first step of the algorithm, they minimize the LeakyRelu loss over the entire space (i.e. taking
c(X) = 1). They show this generates a w with good zero-one loss on a subset of space S. They
fix this hypothesis on S, and then restrict to Rd \ S (i.e., take c(X) = 1[X/2S]

Pr[X/2S]) and restart their
algorithm. Because they fix c before minimizing over w, their first step is minimizing a fixed convex
surrogate loss. However, Theorem 3.1 of [DGT19] establishes that no proper learner based on
minimizing a fixed surrogate loss will succeed in the Massart setting. In contrast, our algorithms
choose c adversarially based on w. For this reason, we evade the lower bound of [DGT19] and
successfully solve the proper learning problem.

Proper learner for halfspaces with margin. Our proper learner for learning halfspaces with
margin is based upon the following upper bound on (3):

min
kwk1

max
r>0

E[`�(w,X) | |hw,Xi|  r], (4)

where r will be restricted so that Pr[|hw,Xi|  r] � ✏ for some small ✏ > 0. By (greatly) restricting
the possible strategies for the discriminator to “slabs” along the direction of w, we completely fix
the problem of computational and statistical intractability for the max-player. In particular, the
optimization problem over r > 0 is one-dimensional, and the expectation can be accurately estimated
from samples using rejection sampling.

However, by doing this we are faced with two new problems: First, computing the optimal w is a
non-convex optimization problem, so it may be difficult to find its global minimum. Second, the value
of (4) is only an upper bound on (3), so we need a new analysis to show the optimal w actually has
good prediction accuracy. To solve the latter issue, we prove in Lemma C.4 that any w with value < 0
for the game (4) achieves prediction error at most �+O(✏) and, since we can take � = ⌘+O(✏), we

15

get a proper predictor matching the guarantees for the improper learner of [DGT19]. Also knowing
that it suffices to find a w with negative value for (4), we can resolve the issue of optimizing the
non-convex objective over w. If gradient descent fails to find a point w with negative LeakyRelu loss,
this means the max player has been very successful in finding convex losses where the current iterate
wt performs poorly compared to w⇤, which achieves negative loss. This cannot go on for too long,
because gradient descent is a provably low regret algorithm for online convex optimization [Zin03].

Proper learner for general halfspaces. The above argument based on low regret fails when the
margin is allowed to be exponentially small in the dimension. The reason is that the optimal value of
(4) can be too close to zero. In order to deal with this issue, we need an algorithm which can “zoom in”
on points very close to the halfspace, as in earlier algorithms [BFKV98, Coh97, DV08] for learning
halfspaces under RCN. This becomes somewhat technically involved, as concentration of measure
can fail when random variables of different size are summed. Ultimately, we show how to build upon
some of the techniques in [Coh97] to construct the needed rescaling c, giving us a separation oracle.
By doing this, we give a variant of the algorithm of [Coh97] that is robust to Massart noise.

Proper to improper reduction. Suppose that we are given black-box access to a hypothesis h

(possibly improper) achieving good prediction error in the Massart halfspace setting. In the context
of (3), this serves as valuable advice for the min player, because it enables efficient sampling from
the disagreement set {x : h(x) 6= sgn(hw,Xi)}. If h has significantly better performance than
w overall, this means that w has very poor performance on the disagreement set – otherwise, the
zero-one loss of h(X) and sgn(hw,Xi) would be close.

Using this idea, we can “boost” our proper learners to output a w whose performance almost
matches h, by running the same algorithms as before but having the max player always restrict to the
disagreement set before generating its generalized filter c. In light of the SQ lower bound we observe
for achieving optimal error (discussed later in the overview), this has an appealing consequence – it
means that in the Massart setting, the power of SQ algorithms with blackbox access to a good teacher
can be much more powerful than ordinary SQ algorithms. The fact that blackbox access suffices is
also surprising, since most popular approaches to knowledge distillation are not blackbox (see e.g.
[HVD14]).

A.2 Learning Misspecified GLMs

We now proceed to the more challenging problem of learning misspecified GLMs. In this case, when
⇣ > 0, it could be that achieving negative value in (3) is actually impossible; to deal with this, we do
not attempt to learn a proper classifier in the general misspecified setting except when ⇣ = 0. Similar
to [DGT19], our algorithm breaks the domain X into disjoint regions {X (i)} and assigns a constant
label s(i) 2 {±1} to each. This setting poses a host of new challenges, and the partitions induced by
our algorithm will need to be far richer in structure than those of [DGT19].

Key issue: target error varies across regions As a thought experiment, consider what it takes
for an improper hypothesis h to compete with sgn(hw⇤

, ·i). Let D be the distribution over (X, Y)
arising from a misspecified GLM (see Definition B.2). Now take an improper classifier h which
breaks X into regions {X (i)}. A natural way to ensure h competes with w⇤ over all of X is to ensure
that it competes with it over every region X (i). For any i, note that the zero-one error of sgn(hw⇤

, ·i)
with respect to D restricted to X (i) satisfies

err
X (i)

(w⇤)  1� ED[�(|hw⇤
,Xi|) | X 2 X (i)]

2
, �(X (i)).

Now we can see the issue that for learning Massart halfspaces, �(X (i)) is always ⌘. But for general
misspecified GLMs, �(X (i)) can vary wildly with i. For this reason, iteratively breaking off regions
like in [DGT19] could be catastrophic if, for instance, one of these regions R has �(R) significantly
less than �(X) and yet our error guarantee on R is only in terms of some global quantity like in
[DGT19]. Without the ability to go back and revise our predictions on R, we cannot hope to achieve
the target error claimed in Theorem 1.4.

Removing regions conservatively In light of this, we should only ever try to recurse on the com-
plement of a region R when we have certified that our classifier achieves zero-one error �(R) +O(✏)

16

over that region. Here is one extreme way to achieve this. Consider running SGD on the LeakyRelu
loss and finding some direction w and annulus R on which the zero-one error of sgn(hw, ·i) is
O(✏)-close to �(X) (henceforth we will refer to this as “running SGD plus filtering”). Firstly, it
is possible to show that errR(w)  �(X) + O(✏) (see Lemma F.4 and Lemma F.5). There are
two possibilities. First, it could be that �(R) � �(X)� ✏, in which case we can safely recurse on
the complement of R. Alternatively we could have �(R) < �(X) � ✏.4 But if this happens, we
can recurse by running SGD plus filtering on R. Moreover this recursion must terminate at depth
O(1/✏) because �(R0) � 0 for any region R0, so we can only reach the second case O(1/✏) times in
succession, at which point we have found a hypothesis and region on which the hypothesis is certified
to be competitive with w⇤. The only issue is that after O(1/✏) levels of recursion, this region might
only have mass exp(�⌦(1/✏)), and we would need to take too many samples to get any samples
from this region.

Our algorithm The workaround is to only ever run SGD plus filtering on regions with non-
negligible mass. At a high level, our algorithm maintains a constantly updating partition {X (i)} of
the space into a bounded number of regions, each equipped with a ±1 label, and only ever runs SGD
plus filtering on the largest region at the time. Every time SGD plus filtering is run, some region
of the partition X 0 might get refined into two pieces X̃ and X 0\X̃ , and their new labels might be
updated to differ. To ensure the number of regions in the partition remains bounded, the algorithm
will occasionally merge regions of the partition on which their respective labels have zero-one error
differing by at most some �. And if running SGD plus filtering ever puts us into the first case above
for some region R, we can safely remove R from future consideration.

The key difficulty is to prove that the above procedure does not go on forever, which we do via a
careful potential argument. We remark that the partitions this algorithm produces are inherently richer
in structure than those output by that of [DGT19]. Whereas their overall classifier can be thought of
as a decision tree, the one we output is a general threshold circuit (see Remark F.2), whose structure
records the history of splitting and merging regions over time.

A.3 Statistical Query Lower Bounds

To prove Theorem 1.3, we establish a surprisingly missed connection between learning under Massart
noise and Valiant’s notion of evolvability [Val09]. Feldman [Fel08] showed that a concept f is
evolvable with respect to Boolean loss if and only if it can be efficiently learned by a correlational SQ
(CSQ) algorithm, i.e. one that only gets access to the data in the following form. Rather than directly
getting samples, it is allowed to make noisy queries to statistics of the form E(X,Y)⇠D[Y ·G(X)]
for any G : X ! {±1}. See Section E.1 for the precise definitions. Note that unlike SQ algorithms,
CSQ algorithms do not get access to statistics like E(X)⇠Dx

[G(X)], and when Dx is unknown, this
can be a significant disadvantage [Fel11].

At a high level, the connection between learning under Massart noise and learning with CSQs (without
label noise) stems from the following simple observation. For any function G : X ! {±1}, concept
f , and distribution D arising from f with ⌘-Massart noise

E
(X,Y)⇠D

[Y ·G(X)] = E
(X,Y)⇠D

[f(X)G(X)(1� 2⌘(X))].

One can think of the factor 1�2⌘(X) as, up to a normalization factor Z, tilting the original distribution
Dx to some other distribution D0

x. If we consider the noise-free distribution D0 over (X, Y) where
X ⇠ D0

x and Y = f(X), then the statistic E(X,Y)⇠D[Y ·G(X)] is equal, up to a factor of Z, to the
statistic E(X,Y)⇠D0 [Y ·G(X)]. See Fact E.5.

This key fact can be used to show that distribution-independent CSQ algorithms that learn without
label noise yield distribution-independent algorithms that learn under Massart noise (see Theorem E.4).
It turns out a partial converse holds, and we use this in conjunction with known CSQ lower bounds
for learning halfspaces [Fel11] to establish Theorem 1.3.

4Crucially, we can distinguish which case we are in without knowing these quantities (see Lemma F.3).

17

B Technical Preliminaries

B.1 Generative Model

In this section we formally define the models we will work with. First recall the usual setting of
classification under Massart noise.

Definition B.1 (Classification Under Massart Noise). Fix noise rate 0  ⌘ < 1/2 and domain X .
Let Dx be an arbitrary distribution over X . Let D be a distribution over pairs (X, Y) 2 X ⇥ {±1}
given by the following generative model. Fix an unknown function f : X ! {±1}. Ahead of time,
an adversary chooses a quantity 0  ⌘(x)  ⌘ for every x. Then to sample (X, Y) from D, 1) X is
drawn from Dx, 2) Y = f(X) with probability 1� ⌘(X), and otherwise Y = �f(X). We will refer
to the distribution D as arising from concept f with ⌘-Massart noise.

In the special case where X is a Hilbert space and f(x) , sgn(hw⇤
,xi) for some unknown w⇤ 2 X ,

we will refer to the distribution D as arising from an ⌘-Massart halfspace.

We will consider the following extension of Massart halfspaces.

Definition B.2 (Misspecified Generalized Linear Models). Fix misspecification parameter 0  ⇣ <

1/2 and Hilbert space X . Let � : R ! [�1, 1] be any odd, monotone, L-Lipschitz function, not
necessarily known to the learner. Let Dx be any distribution over X supported on the unit ball.5

Let D be a distribution over pairs (X, Y) 2 X ⇥ {±1} given by the following generative model. Fix
an unknown w⇤ 2 X . Ahead of time, a ⇣-misspecification adversary chooses a function � : X ! R
for which

� 2⇣  �(x)sgn(hw⇤
,xi)  1� |�(hw⇤

,xi)|

for all x 2 X . Then to sample (X, Y) from D, 1) X is drawn from Dx, 2) Y is sampled from {±1}
so that E[Y | X] = �(hw⇤

,Xi) + �(X). We will refer to such a distribution D as arising from an
⇣-misspecified GLM with link function �.

Remark B.3. We emphasize that in the setting of ⇣-misspecified GLMs, the case of ⇣ = 0 is already
nontrivial as the adversary can decrease the noise level arbitrarily at any point; in particular, the
⌘-Massart adversary in the halfspace model can be equivalently viewed as a 0-misspecification
adversary for the link function �(z) = (1� 2⌘)sgn(z). While this is not Lipschitz, in the case that
the halfspace has a � margin we can make it O(1/�)-Lipschitz by making the function linear on
[��, �], turning it into a “ramp” activation. This shows that (Massart) halfspaces with margin are a
special case of (misspecified) generalized linear models [KS09].

Remark B.4. Misspecified GLMs can also capture a noisy version of agnostic learning. When � = 0,
we have that E[Y | X] = �(X), so in particular the label for any point x under a misspecified
GLM is independent of the ground truth vector w⇤. For an arbitrary distribution D over X ⇥ {±1},
consider a noisy version D0 given by sampling (X, Y) from D and outputting (X, Y) with probability
1/2 + ⇣ and (X,�Y) otherwise. Then �2⇣  E[Y | X]  2⇣, and D0 therefore arises from a
⇣-misspecified GLM with link function equal to the zero function.

A learning algorithm A is given i.i.d. samples from D, and its goal is to output a hypothesis
h : X ! {±1} for which PrD[h(X) 6= Y] is as small as possible, with high probability. We say that
A is proper if h is given by h(x) , hŵ,xi. If A runs in polynomial time, we say that A PAC learns
in the presence ⌘-Massart noise.

Margin. In some cases, we give stronger guarantees under the additional assumption of a margin.
This is a standard notion in classification which is used, for example, in the analysis of the perceptron
algorithm [MP17]; one common motivation for considering the margin assumption is to consider
the case of infinite-dimensional halfspaces (which otherwise would be information-theoretically
impossible). Suppose that X is normalized so that kXk  1 almost surely (under the distribution D)
and kw⇤k = 1. We say that the halfspace w⇤ has margin � if |hw⇤

,Xi| � � almost surely.

5It is standard in such settings to assume Dx has bounded support. We can reduce from this to the unit ball case
by normalizing points in the support and scaling L appropriately.

18

B.2 Notation

LeakyRelu Loss Given leakage parameter � � 0, define the function

LeakyRelu
�

(z) =
1

2
z +

✓
1

2
� �

◆
|z| =

⇢
(1� �)z if z � 0
�z if z < 0.

Given w,x, let `�(w,x) , ED[LeakyRelu
�
(�Y hw,Xi) | X = x] denote the LeakyRelu loss

incurred at point x by hypothesis w. Observe that the LeakyRelu
�

function is convex for all
�  1/2. Similar to [DGT19], we will work with the convex proxy for 0-1 error given by L�(w) ,
EDx [`�(w,X)].

We will frequently condition on the event X 2 X 0 for some subsets X 0 ✓ X . Let `X
0

�
and L

X 0

�
denote

the corresponding losses under this conditioning.

Zero-one error Given w and x 2 X , let errx(w) = ⌘(x) denote the probability, over the Massart-
corrupted response Y , that sgn(hw,xi) 6= Y . Given X 0 ✓ X , let errX 0(w) , PrD[sgn(hw,Xi) 6=
Y | X 2 X 0]. For any h(·) : X 0 ! {±1}, we will also overload notation by defining errX 0(h) ,
PrD[h(X) 6= Y | X 2 X 0]. Furthermore, if h(·) is a constant classifier which assigns the same
label s 2 {±1} to every element of X 0, then we refer to the misclassification error of h(·) by
errX 0(s) , PrD[Y 6= s | X 2 X 0]. When working with a set of samples from D, we will use cerr to
denote the empirical version of err.

Probability Mass of Sub-Regions Given regions X 00 ✓ X 0 ✓ X , it will also be convenient to let
µ(X 00 | X 0) denote PrDx [X 2 X 00 | X 2 X 0]; when X 0 = X , we will simply denote this by µ(X 00).
When working with a set of samples from D, we will use bµ to denote the empirical version of µ.

Annuli, Slabs, and Affine Half-Spaces We will often work with regions restricted to annuli,
slabs, and affine halfspaces. Given direction w and threshold ⌧ , let A(w, ⌧), S(w, ⌧), H+(w, ⌧)
and H�(w, ⌧) denote the set of points {x 2 X : |hw,xi| � ⌧}, {x 2 X : |hw,xi| < ⌧},
{x 2 X : hw,xi � ⌧}, and {x 2 X : hw,xi  �⌧} respectively.

B.3 Miscellaneous Tools

Lemma B.5 ([B+15, H+16]). Given convex function L and initialization w(0) = 0, consider
projected SGD updates given by w(t+1) = ⇧(w(t) � ⌫ · v(t)), where ⇧ is projection to the unit ball,
v(t) is a stochastic gradient such that E[v(t) | w(t)] is a subgradient of L at w(t) and kv(t)k  1
almost surely. For any ✏, � > 0, for T = ⌦(log(1/�)/✏2) and learning rate ⌫ = 1/

p
T , the average

iterate w , 1
T

P
T

t=1 w
(t) satisfies L(w)  minw:kwk1 L(w) + ✏ with probability at least 1� �.

Fact B.6. If Z is a random variable that with probability p takes on value x and otherwise takes on
value y, then V[Z] = (y � x)2 · p(1� p).
Theorem B.7 (Hoeffding’s inequality, Theorem 2.2.2 of [Ver18]). Suppose that X1, . . . , Xn are
independent mean-zero random variables and |Xi|  K almost surely for all i. Then

Pr

"�����

nX

i=1

Xi

����� � t

#
 2 exp

✓
�t2
2nK2

◆
.

Theorem B.8 (Bernstein’s inequality, Theorem 2.8.4 of [Ver18]). Suppose that X1, . . . , Xn are
independent mean-zero random variables and |Xi|  K almost surely for all i. Then

Pr

"�����

nX

i=1

Xi

����� � t

#
 2 exp

✓
�t2/2P

n

i=1 V[Xi] +Kt/3

◆
.

Outlier Removal In the non-margin setting, and as in the previous works [BFKV98, Coh97,
DGT19], we will rely upon outlier removal as a basic subroutine. We state the result we use here.
Here A � B denotes the PSD ordering on matrices, i.e. A � B when B �A is positive semidefinite.

19

Theorem B.9 (Theorem 1 of [DV04]). Suppose D is a distribution over Rd supported on b-bit
integer vectors, and ✏, � > 0. There is an algorithm which requires Õ(d2b/✏) samples, runs in time
poly(d, b, 1/✏, 1/�), and with probability at least 1� �, outputs an ellipsoid E = {x : xT

Ax  1}
where A ⌫ 0 such that:

1. PrX⇠D[X 2 E] � 1� ✏.

2. For any w, supx2Ehw,xi2  � EX⇠D[hw,Xi2 | X 2 E].

where � = Õ(db/✏).

Since our algorithms rely on this result in the non-margin setting, they will have polynomial de-
pendence on the bit-complexity of the input; this is expected, because even in the setting of no
noise (linear programming) all known algorithms have runtime depending polynomially on the bit
complexity of the input and improving this is a long-standing open problem.

C Properly Learning Halfspaces Under Massart Noise

In light of the game-theoretic perspective explained in the technical overview (i.e. (3)), the main
problem we need to solve in order to (properly) learn halfspaces in the Massart model is to develop
efficient strategies for the filtering player. While in the overview we viewed the output of the filtering
player as being the actual filter distribution c(X), to take into account finite sample issues we will
need to combine this with the analysis of estimating the LeakyRelu gradient under this reweighted
measure.

In the first two subsections below, we show how to formalize the plan outlined in the technical
overview and show how they yield separating hyperplanes (sometimes with additional structure)
for the w player to learn from; we then describe how to instantiate the max player with either
gradient-descent or cutting-plane based optimization methods in order to solve the Massart halfspace
learning problem.

Our most practical algorithm, FILTERTRON, uses gradient descent and works in the margin setting.
In the non-margin setting, we instead use a cutting plane method and explain how our approach
relates to the work of Cohen [Coh97]. We also, for sample complexity reasons, consider a cutting
plane-based variant of FILTERTRON. This variant achieves a rate of ✏ = Õ(1/n1/3) in the ⌘ + ✏

guarantee, where n is the number of samples and we suppress the dependence on other parameters.
This significantly improves the Õ(1/n1/5) rate of [DGT19], but does not yet match the optimal
⇥(1/n1/2) rate achieved by inefficient algorithms [MN+06].

C.1 Separation Oracle for Halfspaces with Margin

In this section, we show how to extract a separation oracle for any w with zero-one loss larger than ⌘.
In fact, the separating hyperplane is guaranteed to have a margin between w and w⇤, which means it
can work as the descent direction in gradient descent.
Theorem C.1. Suppose that (X, Y) are jointly distributed according to an ⌘-Massart halfspace
model with true halfspace w

⇤ and margin �, and suppose that � 2 [⌘ + ✏, 1/2] for some ✏ > 0.
Suppose that w is a vector in the unit ball of Rd such that

err(w) � �+ 2✏.

Then Algorithm FINDDESCENTDIRECTION(w, ✏, �,�) runs in sample complexity m =
O(log(2/�)/✏3�2), time complexity O(md+m log(m)), and with probability at least 1� � outputs
a vector g such that kgk  1 and

hw⇤ �w,�gi � �✏/8.

Recall from the preliminaries that S(w, ⌧) = {x : |hw,xi| < ⌧} and that LX 0

�
(w) denotes the

LeakyRelu loss over the distribution conditioned on X 2 X 0. In the algorithm we refer to the gradient
of the LeakyRelu loss, which is convex but not differentiable everywhere – when the loss is not
differentiable, the algorithm is free to choose any subgradient. On the other hand, while g is a

20

Algorithm 3: FINDDESCENTDIRECTION(w, ✏, �,�)

1 Define empirical distribution D̂ from m = O(log(2/�)/✏3�2) samples, and let L̂� denote the
LeakyRelu loss with respect to D̂.

2 Let R = {r > 0 : PrD̂[X 2 S(w, r)] � ✏}.
3 Let r⇤ = argmax

r2R
L̂
S(w,r)
�

(w).
4 Return g = rL̂S(w,r

⇤)
�

(w).

subgradient of maxr2R L̂
S(w,r)
�

(w) we are careful to ensure g is also the subgradient of a particular
function L̂

S(w,r
⇤)

�
(w), which may not be true for arbitrary subgradients of the maximum.

Lemma C.2 (Lemma 2.3 of [DGT19]). Suppose that (X, Y) are jointly distributed according to an
⌘-Massart halfspace model with true halfspace w⇤ and margin �. Then for any � � ⌘,

L�(w
⇤)  ��(�� err(w⇤)).

Proof. We include the proof from [DGT19] for completeness. From the definition,

L�(w
⇤) = E

✓
1

2
sgn(�hw⇤

,XiY) +
1

2
� �

◆
|hw⇤

,Xi|
�

= E[(1[sgn(hw⇤
,Xi) 6= Y]� �) |hw⇤

,Xi|]
= E[(Pr[sgn(hw⇤

,Xi) 6= Y | X]� �) |hw⇤
,Xi|]

 �� E[�� Pr[sgn(hw⇤
,Xi) 6= Y | X]] = ��(�� err(w⇤))

where in the second equality we used the law of total expectation, and in the last inequality we
used that Pr[sgn(hw⇤

,Xi) 6= Y | X]  ⌘  � by assumption and |hw⇤
,Xi| � � by the margin

assumption.

Based on Lemma C.2, it will follow from Bernstein’s inequality that for any particular r, L̂S(w,r)
�

(w⇤)
will be negative with high probability as long as we take ⌦(1/✏�2(�� err(w⇤))2) samples. To prove
the algorithm works, we show that given this many samples, the bound actually holds uniformly over
all r 2 R. This requires a chaining argument; we leave the proof to Appendix H. Note that � in this
Lemma plays the role of �(�� err(w⇤)) in the previous Lemma.
Lemma C.3. Let � > 0, ✏ > 0 be arbitrary. Suppose that for all r � 0 such that PrD[X 2
S(w, r)] � ✏/2,

L
S(w,r)
�

(w⇤)  ��

for some � > 0, with respect to distribution D. Suppose D̂ is the empirical distribution formed from
n i.i.d. samples from D. Then with probability at least 1� �, for any r 2 R (where R = {r > 0 :
PrD̂[X 2 S(w, r)] � ✏} as in Algorithm FINDDESCENTDIRECTION),

sup
r2R

L̂
S(w,r)
�

(w⇤)  ��/4

as long as n = ⌦
⇣

log(2/�)
✏�2

⌘
.

The last thing we will need to establish is a lower bound on supr2R L̂
S(w,r)
�

(w). First we establish
such a bound for the population version L

S(w,r)
�

(w).

Lemma C.4. Suppose that (X, Y) ⇠ D with X valued in Rd and Y valued in {±1}. Suppose that
w is a vector in the unit ball of Rd such that

err(w) � �+ 2✏

for some �, ✏ � 0. Then there exists r � 0 such that PrD[X 2 S(w, r)] � 2✏ and L
S(w,r)
�

(w) � 0.

21

Proof. Proof by contradiction — suppose there is no such r. Define r0 = min{r : Pr[X 2
S(w, r)] � 2✏}, which exists because the CDF is always right-continuous. Then for all r � r0, we
have

0 > L
S(w,r)
�

(w) Pr[X 2 S(w, r)] = E[`�(w, r) · 1[|hw,Xi|  r]]

= E[(1[sgn(hw,Xi) 6= Y]� �)|hw,Xi| · 1[|hw,Xi|  r]]

=

Z
r

0
E[(Pr[sgn(hw,Xi) 6= Y | X]� �) · 1[|hw,Xi| 2 (s, r]]]ds

where in the second equality we used the same rewrite of the LeakyRelu function as in the proof
of Lemma C.2, the third equality uses x =

R1
0 1[y < x]dy for x > 0 as well as the law of total

expectation. Therefore, for every r � r0 there exists s(r) < r such that

0 > E[(Pr[sgn(hw,Xi) 6= Y | X]� �) · 1[|hw,Xi| 2 (s(r), r]]].

Rearranging and dividing by Pr[|hw,Xi| 2 (s(r), r]] > 0 gives

� > Pr[sgn(hw,Xi) 6= Y | |hw,Xi| 2 (s(r), r]]. (5)

Define R
0 = {r � 0 : � > Pr[sgn(hw,Xi) 6= Y | |hw,Xi| > r]} and define r

0 = inf R0. We
claim that r0 < r0; otherwise, applying (5) with r = r

0 shows that s(r0) 2 R
0 but s(r0) < r

0, which
contradicts the definition of r0. Let r1 2 (r0, r0) so r1 2 R

⇤. Then

Pr[sgn(hw,Xi) 6= Y] = Pr[sgn(hw,Xi) 6= Y | |hw,Xi|  r1] Pr[|hw,Xi|  r1]

+ Pr[sgn(hw,Xi) 6= Y | |hw,Xi| > r1] Pr[|hw,Xi| > r1]

< 2✏+ �.

by the fact r1 2 (r0, r0) and the definition of r
0 and r0. This contradicts the assumption that

Pr[sgn(hw,Xi) 6= Y] � �+ 2✏.

Given these Lemmas, we can proceed to the proof of the Theorem.

Proof of Theorem C.1. By convexity,

L̂
S(w,r

⇤)
�

(w) + hrL̂S(w,r
⇤)

�
(w),w⇤ �wi  L̂

S(w,r
⇤)

�
(w⇤)

so rearranging and using the definition of g gives

L̂
S(w,r

⇤)
�

(w)� L̂
S(w,r

⇤)
�

(w⇤)  h�g,w⇤ �wi. (6)

It remains to lower bound the left hand side. By Lemma C.2 we know that for all r such that
Pr[X 2 S(w, r

⇤)] > 0, we have LS(w,r
⇤)

�
(w⇤)  ��(�� ⌘)  ��✏ hence by Lemma C.3 we have

inf
r2R

�L̂S(w,r)
�

(w⇤) � �✏/4 (7)

with probability at least 1� �/2 provides that the number of samples is m = ⌦(log(2/�)/✏3�2).

From Lemma C.4 we know that there exists r such that PrD[X 2 S(w, r)] � 2✏ and LS(w,r)
�

(w) � 0.
From two applications of Bernstein’s inequality (as in the proof of Lemma C.3, see Appendix H),
it follows that as long as m = ⌦(log(2/�)/✏3�2) then with probability at least 1 � �/2 we have
PrD[X 2 S(w, r)] � ✏ and L

S(w,r)
�

(w) � ��✏/8. Under this event we have that r 2 R and so by
the definition of r⇤,

L̂
S(w,r

⇤)
�

(w) � L
S(w,r)
�

(w) � ��✏/8. (8)

Combining (6),(7), and (8) proves the result. The fact that g is bounded norm follows from the
assumptions that kXk  1 and |wk  1; the runtime guarantee follows since all steps can be
efficiently implemented if we first sort the samples by their inner product with w.

22

C.2 Separation Oracle for General Halfspaces

In this section, we show how to extract a separation oracle for any w with zero-one loss larger than ⌘
without any dependence on the margin parameter; instead, our guarantee has polynomial dependence
on the bit-complexity of the input. We first give a high-level overview of the separation oracle and
how it fits into the minimax scheme 3.

The generalized filter we use does the following: (1) it rescales X by 1
|hw,Xi| (to emphasize points

near the current hyperplane) and (2) applies outlier removal [BFKV98, DV04] to the rescaled X to
produce the final filter. Given c, the max player uses the gradient of the LeakyRelu loss as a cutting
plane to eliminate bad strategies w and produce its next iterate.
Remark C.5. The generalized filter used in this section is also implicitly used in the algorithm of
[Coh97] in the construction of a separation oracle in the RCN setting. Remarkably, the separating
hyperplane output by the algorithm of [Coh97] is also very similar to the gradient of the LeakyRelu
loss, except that it has an additional rescaling factor between the terms with positive and negative
signs for hw,XiY , which apparently causes difficulties for analyzing the algorithm in the Massart
setting [Coh97]. Our analysis shows that there is no issue if we delete this factor.

In our algorithm we assume that hw,Xi 6= 0 almost surely; this assumption is w.l.o.g. if we slightly
perturb either w or X, as argued in [Coh97]. Thus it remains to exhibit the separation oracle O(·).
The following theorem provides the formal guarantees for the algorithm GENERALHALFSPACEORA-
CLE(w, ✏, �,�).
Theorem C.6. Suppose that (X, Y) are jointly distributed according to an ⌘-Massart halfspace
model with true halfspace w⇤, and suppose that � 2 [⌘ + ✏, 1/2] for some ✏ > 0. Suppose that w is
a vector in the unit ball of Rd such that

err(w) � �+ ✏.

Then Algorithm GENERALHALFSPACEORACLE(w, ✏, �,�) runs in sample complexity n = Õ
�
db

✏3

�
,

time complexity poly(d, b, 1
✏
,
1
�
), and with probability at least 1 � � outputs a vector g such that

h�g,w⇤ �wi > 0. More generally, h�g,w0 �wi > 0 with probability at least 1� � for any fixed
w0 such that either w0 = 0 or sgn(hw0

,Xi) = sgn(hw⇤
,Xi) almost surely.

Proof. First, we note that the joint law of the rescaled distribution D still follows the ⌘-Massart
halfspace model. This is because sgn(hw⇤

,xi) = sgn(hw,
x

|hw,xi| i) for any x, i.e. rescaling does not
affect the law of Y | X.

By convexity,

L̂�(w
⇤) � L̂�(w) + hrL̂(w),w⇤ �wi = L̂�(w) + hg,w⇤ �wi

so by rearranging, we see that h�g,w⇤�wi � L̂�(w)�L̂�(w⇤), so it suffices to show the difference
of the losses is nonnegative. We prove this by showing that L̂�(w) > 0 and L̂�(w⇤)  0 with high
probability.

First, we condition on the success case in Theorem B.9, which occurs with probability at least 1��/2.
Next, we prove that L̂�(w) � 0 with probability at least 1� �/4. Let L̄� denote the LeakyRelu loss
over D. Note that by the same rewrite of the LeakyRelu loss as in Lemma C.2, we have

L̄
E
�
(w) � (err(w)� ✏/2� �) � ✏/2.

The first inequality follows from |hw,Xi| = 1 under D and that the outlier removal step (The-
orem B.9) removes no more than ✏/2 fraction of D̂. The last inequality follows by assumption
err(w) � �+ ✏. Then by Hoeffding’s inequality (Theorem B.7), it follows that L̂�(w) � ✏/4 with
probability 1� �/4 as long as n = ⌦

⇣
log(2/�)

✏2

⌘
.

Finally, we prove L̂�(w)  0 with probability 1� �/4. Define DE to be D conditioned on X 2 E .
By the same reasoning as Lemma C.3, we have

L
E
�
(w⇤) = E(X,Y)⇠D̄[(Pr[sgn(hw⇤

,Xi 6= Y]� �)|hw⇤
,Xi|]  �✏EX⇠D̄[|hw⇤

,Xi|].

23

Observe that from the guarantee of Theorem B.9,

EX⇠D̄E [|hw
⇤
,Xi|2]  EX⇠D̄E [|hw

⇤
,Xi|] sup

x2E
|hw⇤

,xi|  EX⇠D̄[|hw⇤
,Xi|]

q
�ED̄E |hw⇤,Xi|2

so EX⇠D̄E [|hw
⇤
,Xi|2]  �EX⇠D̄[|hw⇤

,Xi|]2. It follows that

L
E
�
(w⇤)  (�✏/

p
�)
r

Ē
DE

[|hw⇤,Xi|2].

Define � =
p
ED̄E [|hw⇤,Xi|2]. By Bernstein’s inequality (Theorem B.8), if we condition on at least

m samples falling into E then

Pr[L̂E
�
(w⇤) � � ✏�

2
p
�
]  2 exp

✓
� cm

2(✏�)2/�

m�2 +m✏�2

◆
= 2 exp

�
�c0m✏2/�

�

where c, c
0
> 0 are absolute constants. Therefore if m = ⌦

⇣
�

✏2
log(2/�)

⌘
, we have with probability

1� �/16 that L̂E
�
(w⇤)  � ✏�

2
p
�

. Using Hoeffding’s inequality to ensure m is sufficiently large, the

same conclusion holds with probability at least 1� �/4 assuming n = ⌦
⇣
�

✏2
log(2/�)

⌘
.

Using the union bound and combining the estimates, we see that h�g,w⇤�wi � L̂�(w)�L̂�(w⇤) >

✏/4 with probability at least 1 � �, as long as n = ⌦
⇣
�

✏2
log(2/�)

⌘
; recalling that � = Õ(db/✏)

gives the result. The same argument applies to w0 = 0 since L̂�(0) = 0, and also to any fixed w0

such that sgn(hw0
,Xi) = sgn(hw⇤

,Xi).

Algorithm 4: GENERALHALFSPACEORACLE(w, ✏, �,�)

1 Define D to be the joint distribution of
⇣

X
|hw,Xi| , Y

⌘
when (X, Y) ⇠ D.

2 Define E by applying Theorem B.9 with distribution DX, taking ✏0 = ✏/2 and �0 = �/2.
3 Form empirical distribution D̂ from O

⇣
�
2

✏2
log(2/�)

⌘
samples of D, and let L̂� be the

LeakyRelu loss over this empirical distribution.
4 Return g = rL̂E

�
(w)

C.3 Gradient Descent Learner

We first develop the gradient-based learner for the margin setting. The learner is not doing gradient
descent on a fixed convex function; in fact, it is essentially running gradient descent on the nonconvex
loss maxr2R L�(w) where R depends on w (and is defined in FINDDESCENTDIRECTION). Nev-
ertheless, we can prove our algorithm works using the low regret guarantee for projected gradient
descent. Recall that projected gradient descent over closed convex set K with step size sequence
�1, . . . ,�T and vectors g1, . . . ,gT is defined by the iteration

xt+1 = ⇧K(xt � �tgt)

where ⇧K(y) = argmin
x2K kx� yk is the Euclidean projection onto K, and x1 is an arbitrary point

in K. In the case K is the unit ball, ⇧K(y) =
y

max(1,kyk) .

Theorem C.7 (Theorem 3.1 of [H+16], [Zin03]). Suppose that K is a closed convex set such that
maxx,y2K kx� yk  D. Suppose that the sequence of vectors g1, . . . ,gT satisfy kgtk  G. Then
projected online gradient descent with step size �t = D

G
p
t

outputs a sequence x1, . . . ,xT 2 K
satisfying

TX

t=1

hgt,xt � x⇤i  3

2
GD

p
T

for any x⇤ 2 K.

24

Algorithm 5: FILTERTRON(✏, ⌘, �,�, T)

1 Let w1 be an arbitrary vector in the unit ball.
2 Build an empirical distribution Ĥ from m = ⌦(log(T/�)/✏2) samples (to use as a test set).
3 for t = 1 to T do
4 if êrr(wt) < ⌘ + ✏/2 then
5 Return wt.
6 else
7 Let �t = 1p

t
.

8 Let gt = FINDDESCENTDIRECTION(wt, ✏/6, �/2T,�).
9 Let wt+1 = wt��tgt

max(1,kwt��tgtk) .

Theorem C.8. Suppose that (X, Y) is an ⌘-Massart halfspace model with margin �. With probability
at least 1� �, Algorithm FILTERTRON returns w such that

err(w)  ⌘ + ✏

when T = 145
�2✏2

and � = ⌘+ ✏/6. The algorithm runs in total sample complexity n = O

⇣
log(2/��✏)
�4✏5

⌘

and runtime O(nd+ n log n).

Proof. First we note that the algorithm as written always returns the same wt as a modified algorithm
which: (1) first produces iterates w1, . . . ,wT without looking at the test set, i.e. ignores the if-
statement on line 4 and (2) then returns the first wt which achieves error at most ⌘ + ✏ on the test set
Ĥ. So we analyze this variant of the algorithm, which makes it clear that the wt will be independent
of the test set Ĥ. Requiring that m = ⌦(log(T/�)/✏2), we then see by Bernstein’s inequality
(Theorem B.8) and the union bound that if wt has test error at most ⌘ + ✏/2, then err(wt)  ⌘ + ✏

with probability at least 1� �/2.

It remains to handle the failure case where the algorithm does not return any wt. In this case, applying
Theorem C.1 and the union bound, it holds with probability at least 1� �/2 that

hw⇤ �wt,�gti � �✏/8.

In this case, applying the regret inequality from Theorem C.7 shows that

�✏T/8 
TX

t=1

hw⇤ �wt,�gti 
3

2

p
T

which gives a contradiction plugging in T = 145
�2✏2

. Therefore, the algorithm fails only when one of
the events above does not occur, which by the union bound happens with probability at most �.

Remark C.9. It is possible to prove that Algorithm FILTERTRON succeeds with constant step size
and similar guarantees using additional facts about the LeakyRelu loss. We omit the details.
Remark C.10. Algorithm FILTERTRON is compatible with the kernel trick and straightforward to

“kernelize”, because the algorithm depends only on inner products between training datapoints. See
[KS09] for kernelization of a similarly structured algorithm.

The FILTERTRON algorithm can easily be modified to work in general normed spaces, by replacing
online gradient descent with online mirror descent, i.e. modifying the update step for wt+1 in line
9 of the algorithm. This generalization is often useful when working with sparsity — for example,
[KM17] used the analogous generalization of the GLMTRON [KKSK11] to efficiently learn sparse
graphical models. In the case of learning (Massart) halfspaces, there has been a lot of interest in the
sparse setting for the purpose of performing 1-bit compressed sensing: see [ABHZ16] and references
within.

We state the result below; for details about mirror descent see the textbooks [B+15, H+16].

25

Definition C.11. Let k · k be an arbitrary norm on Rd, and let k · k⇤ denote its dual norm. We say
that w⇤ has a �-margin with respect to the norm k · k and random vector X if kw⇤k  1, kXk⇤  1
almost surely, and |hw⇤

,Xi| � � almost surely.
Theorem C.12. Suppose that (X, Y) is an ⌘-Massart halfspace model with margin � with respect to
(general) norm k · k. Suppose that � is 1-strongly convex with respect to k · k over convex set K and
supx,y2K(�(x)��(y))  D

2. Then there exists an algorithm (FILTERTRON modified to use mirror
descent steps with regularizer �) which, with probability at least 1� �, returns w such that err(w) 
⌘ + ✏ with total sample complexity O(D

2 log(2/��✏)
�4✏5

) and runtime poly(1/�, 1/✏, d,D, log(1/�)).

Proof. Under these assumptions, we can check that the gradients output by the separation oracle
satisfy kgk⇤ = O(kXk⇤) = O(1), so mirror descent [B+15, H+16] guarantees a regret bound of the
form O(D

p
T). Then the result follows in the same way as the proof of Theorem C.8.

For a concrete application, suppose we want to learn a Massart conjunction of k variables over an
arbitrary distribution on the hypercube {0, 1}d, up to error ⌘ + ✏. This corresponds an halfspace
w⇤ with � = O(1/k) with respect to the `1 norm. Choosing entropy as the regularizer specializes
mirror descent to a simple multiplicative weights update [H+16], and the resulting algorithm has
sample complexity O(k

4 log(d) log(2/��✏)
✏5

); in particular, it only has a logarithmic dependence on the
dimension d. In contrast, had we simply applied Theorem C.8, we would pick up an unecessary
polynomial dependence on the dimension.

C.4 Cutting-Plane Learners

Margin Case. In the analysis of Algorithm FILTERTRON, we let the algorithm use fresh samples
in every iteration of the loop. This makes the analysis clean, however it is not ideal as far as the
sample complexity is concerned. One option to improve it is to combine the analysis FILTERTRON
with the separation oracle, using the same samples at every iteration, and bound the resulting sample
complexity. A more modular approach, which we pursue here, is to replace gradient descent with
a different optimization routine. This approach will also illustrate that the real sample complexity
bottleneck (e.g. the rate in ✏) is the cost of running the separation oracle a single time. The algorithm
we will use is due to Vaidya [Vai89], because its rate is optimal for convex optimization in fixed
dimension, but any optimization method achieving this rate will work, see for example [JLSW20].
Theorem C.13 ([Vai89], Section 2.3 of [B+15]). Suppose that K is an (unknown) convex body in
Rd which contains a Euclidean ball of radius r > 0 and contained in a Euclidean ball centered at
the origin of radius R > 0. There exists an algorithm which, given access to a separation oracle
for K, finds a point x 2 K, runs in time poly(log(R/r), d), and makes O(d log(Rd/r)) calls to the
separation oracle.

For this purpose we need a lower bound on r, which is straightforward to prove using the triangle
inequality.
Lemma C.14. Suppose that kw⇤k = 1 and |hw⇤

,Xi| � �. Then for any u with kuk  c�/4,
|hw⇤ + u,Xi| � (1� c)�.

Taking c = O(✏�) in the above Lemma and using that the cutting plane generated by Theorem C.1
always has a margin ⌦(✏�), we can guarantee that the resulting halfspace always separates w and the
ball of radius c around w⇤. Therefore if we replace the gradient steps in Algorithm FILTERTRON
by the update of Vaidya’s algorithm (setting R = 1 + c), we can prove the following Theorem. In
place of the regret inequality, we use that if the algorithm does not achieve small test error in the first
T � 1 steps, then in step T it must find a point in the ball of radius c around w⇤ and this is an optimal
predictor.
Theorem C.15. Suppose that (X, Y) is an ⌘-Massart halfspace model with margin �. There exists
an algorithm (FILTERTRON modified to use Vaidya’s algorithm) such that with probability at least
1� �, it returns w such that

err(w)  ⌘ + ✏

when T = O(d log(d/�✏)) and � = ⌘ + ✏/6. The algorithm runs in total sample complexity
n = O

⇣
d log(2/��)

�2✏3

⌘
and runtime poly(n, d).

26

Remark C.16. We may always assume d = Õ(1/�2) by preprocessing with the Johnson-
Lindenstrauss Lemma [AV99]. Focusing on the dependence on ✏, the above guarantee of Õ(1/✏3)
significantly improves the Õ(1/✏5) dependence of [DGT19]; in comparison the minimax optimal rate
is ⇥(1/✏2) [MN+06]. (The lower bound holds even for RCN in one dimension and with margin 1, by
considering testing between w = ±1 when X = 1 almost surely and ⌘ = 1/2� ✏.) The remaining
gap is unavoidable with this separation oracle, as we need to restrict to slabs of probability mass ✏,
and this necessarily comes at the loss of the factor of O(1/✏). Interestingly, our algorithm for general
d-dimensional halfspaces (Theorem C.18) also has a Õ(1/✏3) rate, even though it uses a totally
different separation oracle. It remains open whether this gap can be closed for efficient algorithms.

General case. In the case of halfspaces without margin, we only have access to a separation oracle
so we cannot use gradient-based methods. Since our algorithm already depends on the bit complexity
of the input, we give an algorithm with a polynomial runtime guarantee in terms of the bit complexity
(i.e. we do not have to assume access to exact real arithmetic). The ellipsoid algorithm [GLS12]
is guaranteed to output a ŵ 2 Sd�1 with misclassification error err(ŵ)  ⌘ + ✏ using poly(d, b)
oracle queries and in time poly(d, b, 1

✏
,
1
�
) with probability 1� � provided two conditions hold:

1. First, the volume of the set of vectors w0 2 Sd�1 achieving optimal prediction error (i.e.
sgn(hw0

,Xi) = sgn(hw⇤
,Xi) almost surely) is greater than 2�poly(b,d)

2. Second, for any w with misclassification error err(w) � ⌘ there exists a separation oracle
O(w) that outputs a hyperplane g 2 Rd satisfying h�g,w0 �wi � 0 for any w0 achieving
optimal prediction error. Furthermore O(·) is computable in poly(d, b, 1

✏
) time.

We use the following result to show that the set of vectors achieving optimal prediction error has
non-negligible volume. The precise polynomial dependence can be found in [GLS12]; this is the
full-dimensional case of the more general results used to show that linear programs are solvable in
polynomial time.
Lemma C.17 (Proposition 2.4 of [Coh97]). Let D be any distribution supported on b-bit integer
vectors in Rd. There exists a compact, convex subset F of the unit ball in Rd such that:

1. F is the intersection of a convex cone, generated by d vectors h1, . . . ,hd, with the closed
unit ball.

2. vol(F) � 2�poly(b,d).

3. For any w 2 F \ {0}, sgn(hw,Xi) = sgn(hw⇤
,Xi) D-almost surely.

Theorem C.18. Suppose that (X, Y) is an ⌘-Massart halfspace model and X is supported on
vectors of bit-complexity at most b. There exists an algorithm (the ellipsoid method combined with
GENERALHALFSPACEORACLE) which runs in time poly(d, b, 1/✏, 1/�) and sample complexity
Õ

⇣
poly(d,b)

✏3

⌘
which outputs w such that

err(w)  ⌘ + ✏

with probability at least 1� �.

Proof. Given the above stated guarantee for the ellipsoid method, Lemma C.17, and Theorem C.6,
all we need to check is the sample complexity of the algorithm. To guarantee that a single call to
GENERALHALFSPACEORACLE produces a separation oracle separating F from the current iterate
w, we apply Theorem C.6 with w0 equal to each of 0,h1, . . . ,hd and apply the union bound. Since
all of these vectors will be on the correct side of the separating hyperplane, the convex set F wil be
as well. Applying the union bound over all of the iterations of the algorithm gives the result.

D Reduction from Proper to Improper Learning

In this section, we develop blackbox reductions from proper to improper learning under Massart
noise. This means that we show, given query access to any classifier h which achieves 0-1 errer upper
bounded by L, how to generate a proper classifier x 7! sgn(hw,xi) which achieves equally good 0-1
loss in polynomial time and using a polynomial number of samples from the model. The significance

27

of this is that it allows us to use a much more powerful class to initially learn the classifier, which
may be easier to make robust to the Massart noise corruption, and still extract at the end a simple and
interpretable halfspace predictor. Schemes along these lines, which use a more powerful learner to
train a weaker one, are referred to as knowledge distillation or model compression procedures (see
e.g. [HVD14]), and sometimes involve the use of “soft targets” (i.e. mildly non-blackbox access to
the teacher). Our results show that the in the Massart setting, there is in fact a simple way to perform
blackbox knowledge distillation which is extremely effective.

The key observation we make is that such a reduction is actually implied by the existence of an ⌘ + ✏

Massart proper learner based upon implementation of a gradient or separating hyperplane oracle, as
developed in Section C. The reason is that if we view an improper hypothesis as a “teacher” and a
halfspace sgn(hw,Xi) parameterized by w in the unit ball as a “student”, as long as the student is
inferior to the teacher we can make progress by focusing on the region where the teacher and student
disagree. On this region, the student has accuracy lower than 50%, so by appealing to the previously
developed separation oracle for the proper learner, we can move w towards w⇤ (in the case of the
gradient-based learner) or otherwise zoom in on w

⇤ (for the cutting-plane based learner).

In other words, in context of the w versus S game introduced in the previous section, blackbox access
to an improper learner massively increases the strength of the S player. We make the preceeding
arguments formal in the remainder of this section.

D.1 Boosting Separation Oracles using a Good Teacher

Given blackbox access to a “teacher” hypothesis h with good 01 loss, in order to produce
an equally good proper learner we simply run one of our proper learning algorithms re-
placing the original separation oracle O(w) with the following “boosted” separation oracle
BOOSTSEPARATIONORACLE(h,w,O). Remarkably, even if ⌘ = 0.49 and the original separa-
tion oracle can only separate w⇤ from w with 01 loss greater than 49%, if we have black-box query
access to hypothesis h achieving error rate 1%, the resulting boosted oracle can suddenly distinguish
between w⇤ and all w achieving error greater than 1%.

Algorithm 6: BOOSTSEPARATIONORACLE(h,w,O)

1 Let R = {x : h(x) 6= sgn(hw,Xi)}.
2 Define DR to be D conditional on X 2 R. Note that given sampling access to D, distribution

DR is efficiently sampleable using rejection sampling.
3 Return the output of O(w) on distribution DR.

Lemma D.1. Suppose that the joint distribution (X, Y) follows the ⌘-Massart halfspace model,
h : Rd ! {±1} and w 2 Rd a vector such that

err(h)� err(w) � ✏
for ✏ > 0. Suppose O is an oracle which with probability 1 � �/2, access to m samples from
any Massart distribution D0, and input w0 such that PrD0 [sgn(hw0

,Xi) = Y] < 1/2 outputs
a separating hyperplane g0 with kg0k  1 such that hw⇤ � w0

,�g0i � � for � � 0. Then
BOOSTSEPARATIONORACLE(h,w,O) returns with probability at least 1�� a vector g with kgk  1
such that

hw⇤ �w,�gi � �

and has sample complexity O

⇣
m+log(2/�)

✏

⌘
.

Proof. Observe that
✏  err(h)� err(w)  Pr[X 2 R]

since h and sgn(hw,Xi) agree perfectly outside of R. Furthermore, restricted to R it must be the
case that Pr[sgn(hw,Xi) = Y | X 2 R] < 1/2, otherwise it would be the case that err(h) > err(w)
which contradicts the assumption. Therefore, as long as sampling from D produces at least m samples
landing in R the result follows from the guarantee for O; by Bernstein’s inequality (Theorem B.8),
O(m+log(2/�)

✏
) samples will suffice with probability at least 1� �/2, so taking the union bound gives

the result.

28

D.2 Proper to Improper Reductions

By combining BOOSTSEPARATIONORACLE with any of our proper learners, we get an algorithm for
converting any improper learner into a proper one. We state the formal results here: in all of these
results we assume that h is a hypothesis which we are given oracle access to.

Algorithm 7: FILTERTRONDISTILLER(✏, ⌘, �,�, T)

1 Let w1 be an arbitrary vector in the unit ball.
2 Build a empirical distribution Ĥ from m = ⌦(log(T/�)/✏2) samples (to use as a test set).
3 for t = 1 to T do
4 if êrr(wt) < ⌘ + ✏/2 then
5 Return wt.
6 else
7 Let �t = 1p

t
.

8 Let gt =
BOOSTSEPARATIONORACLE(h,wt, FINDDESCENTDIRECTION(·, ✏/6, �/2T,�)).

9 Let wt+1 = wt�⌘tgt

max(1,kwt�⌘tgtk) .

Theorem D.2. Suppose that (X, Y) is an ⌘-Massart halfspace model with margin � and ⌘ < 1/2.
Suppose that ✏ > 0 such that ⌘+ ✏/6  1/2. With probability at least 1� �, Algorithm FILTERTRON
combined with BOOSTSEPARATIONORACLE and oracle hypothesis h, returns w such that

err(w)  err(h) + ✏

when T = O

⇣
1

�2✏2

⌘
and � = ⌘ + ✏/6. The algorithm runs in total sample complexity n =

O

⇣
log(2/��✏)
�4✏6

⌘
and runtime O(nd+ n log n).

Using the cutting plane variant, as in Theorem C.15, gives a matching result with improved sample
complexity O

⇣
d log(2/��)

�2✏4

⌘
. Finally, we state the result for halfspaces without a margin assumption.

Theorem D.3. Suppose that (X, Y) is an ⌘-Massart halfspace model and X is supported on vectors
of bit-complexity at most b. There exists an algorithm (the ellipsoid method combined with BOOSTSEP-
ARATIONORACLE applied to GENERALHALFSPACEORACLE) which runs in time poly(d, b, 1/✏, 1/�)
and sample complexity Õ

⇣
poly(d,b)

✏4

⌘
which outputs w such that

err(w)  err(h) + ✏

with probability at least 1� �.

D.3 Applications of the Proper-to-Improper Reduction

An interesting feature of the proper to improper reduction for Massart noise is that it allows us to use
our toolbox of very general learners (e.g. boosting, kernel regression, neural networks) to fit an initial
classifier, while nevertheless allowing us to output a simple halfspace in the end. In this section, we
describe a number of interesting applications of this idea.

To start, we give the first proper learner achieving error better than ⌘ + ✏ for Massart halfspaces over
the hypercube, i.e. X ⇠ Uni({±1}d); in fact, we show that error OPT + ✏ is achievable for any
fixed ✏ > 0 in polynomial time. (This is a stronger guarantee except when ⌘ is already quite small.)
We start with the following improper learner for halfspaces in the agnostic model [KKMS08], which
is based on L1 linear regression over a large monomial basis:
Theorem D.4 (Theorem 1 of [KKMS08]). Suppose that (X, Y) are jointly distributed random
variables, where the marginal law of X follows Uni({±1}d) and Y is valued in {±1}. Define

OPT = min
w⇤ 6=0

Pr[sgn(hw⇤
,Xi) 6= Y].

29

For any ✏ > 0, there exists an algorithm with runtime and sample complexity poly(d1/✏
4

, log(1/�))
which with probability at least 1� �, outputs a hypothesis h such that

Pr[h(X) 6= Y]  OPT + ✏.

No matching proper learner is known in the agnostic setting. Based on results in computational
complexity theory [ABX08], there should not be a general reduction from proper to improper learning
of halfspaces. This means that there is no apparent way to convert h(X) into a halfspace with similar
performance; it’s also possible that h performs significantly better than OPT, since it can fit patterns
that a halfspace cannot.

If we make the additional assumption that (X, Y) follows the Massart halfspace model, it turns out
that all of these issues go away. By combining Theorem D.4 with our Theorem D.3, we immediately
obtain the following new result:
Theorem D.5. Suppose that (X, Y) ⇠ D follows an ⌘-Massart halfspace model with true halfspace
w⇤, and the marginal law of X is Uni({±1}d). For any ✏ > 0, there exists an algorithm (given by
combining the algorithms of Theorem D.4 and Theorem D.3) with runtime and sample complexity
poly(d1/✏

4

, log(1/�)) which with probability at least 1� �, outputs w such that

Pr[sgn(hw,Xi) 6= Y]  OPT + ✏.

(Recall that OPT = Pr[sgn(hw⇤
,Xi) 6= Y].)

As applications of the same distillation-based meta-algorithm, we note a few other interesting results
for learning halfspaces in the Massart model which follow by combining an improper agnostic learner
with our reduction:

1. Theorem D.5 remains true with the weaker assumption that X is drawn from an arbitrary
permutation-invariant distribution over the hypercube [Wim10].

2. For learning Massart conjunctions (or disjunctions) over an arbitrary permutation-invariant
distribution over the hypercube, there is an algorithm with runtime and sample complexity
can be improved to d

O(log(1/✏)) by combining the improper learner of [FK15] with our
reduction.

3. Suppose that Z is a d-dimensional random vector with independent coordinates. Suppose
that for each i from 1 to d, Zi is valued in set Zi and |Zi| = O(poly(d)). A linear threshold
function is a halfspace in the one-hot encoding X of Z, i.e. a function of the form

z 7! sgn

nX

i=1

wi(zi)

!

where each wi is an arbitrary function. Then combining our reduction with the result of
[BOW10] shows that we can properly learn Massart linear threshold functions in runtime
and sample complexity poly(dO(1/✏4)

, log(1/�)).
4. If we furthermore assume |Zi| = O(1) for all i, then the same result as 3. holds for Z drawn

from a mixture of O(1) product measures [BOW10].

All of these algorithms can be implemented in the SQ framework. Interestingly, the result 2. above
(for learning Massart conjunctions) matches the SQ lower bound over Uni({±1}d) observed in
Theorem E.1, so this result is optimal up to constants in the exponent.

E Statistical Query Lower Bound for Getting OPT+ ✏

In this section we make an intriguing connection between evolvability as defined by Valiant [Val09]
and PAC learning under Massart noise. To the best of our knowledge, it appears that this connection
has been overlooked in the literature. As our main application, we use an existing lower bound from
the evolvability literature [Fel11] to deduce a super-polynomial statistical query lower bound for
learning halfspaces under Massart noise to error OPT+ ✏ for sub-constant ✏. This answers an open
question from [DGT19].

Formally, we show the following:

30

Theorem E.1. There is an absolute constant 0 < c < 1 such that for any sufficiently large k 2 N ,
the following holds. Any SQ algorithm that can distribution-independently PAC learn any halfspace
to error OPT + 2�k

/12 in the presence of 2�ck Massart noise must make (n/8k)k/9 statistical
queries of tolerance (n/8k)�k/9.

In Section E.1, we review basic notions of evolvability and statistical query learning. In Section E.2
we show that if a concept class is distribution-independently evolvable, then it can be distribution-
independently PAC-learned to error OPT+ ✏. In Section E.3 we show a partial reverse implication,
namely that certain kinds of lower bounds against evolvability of concept classes imply lower bounds
even against PAC-learning those concepts under specific distributions to error OPT+✏ in the presence
of Massart noise. In Section E.4, we describe one such lower bound against evolvability of halfspaces
due to [Fel11] and then apply the preceding machinery to conclude Theorem E.1.

E.1 Statistical Query Learning Preliminaries

Definition E.2. Let ⌧ > 0. In the statistical query model [Kea98], the learner can make queries to
a statistical query oracle for target concept f : Rn ! {±1} with respect to distribution Dx over
Rn and with tolerance ⌧ . A query takes the form of a function F : Rn ⇥ {±1}! [�1, 1], to which
the oracle may respond with any real number z for which |EDx [F (x, f(x))]� z|  ⌧ . We say that
a concept class C is SQ learnable over a distribution Dx if there exists an algorithm which, given
f 2 C, PAC learns f to error ✏ using poly(1/✏, n) SQ queries with respect to Dx with tolerance
poly(✏, 1/n).

A correlational statistical query (CSQ) is a statistical query F of the form F (x, y) , G(x) · y for
some function G : Rn ! [�1, 1]. We say that a concept class C is CSQ learnable if it is SQ learnable
with only correlational statistical queries.

Valiant [Val09] introduced a notion of learnability by random mutations that he called evolvability. A
formal definition of this notion would take us too far afield, so the following characterization due to
[Fel08] will suffice:
Theorem E.3 ([Fel08], Theorems 1.1 and 4.1). A concept class is CSQ learnable over a class of
distributions Dx if and only if it is evolvable with Boolean loss over that class of distributions.

Henceforth, we will use the terms evolvable and CSQ learnable interchangeably.

E.2 Evolvability Implies Massart Learnability

We now show the following black-box reduction which may be of independent interest, though we
emphasize that this result will not be needed in our proof of Theorem E.1.
Theorem E.4. Let C be a concept class for which there exists a CSQ algorithm A which can
learn any f 2 C to error ✏ over any distribution Dx running in time T and using at most N
correlational statistical queries with tolerance ⌧ . Then for any ⌘ 2 [0, 1/2), given any distribution D
arising from f with ⌘ Massart noise, MASSARTLEARNFROMCSQS(D,A, ✏, �) outputs h satisfying
PrD[h(x) 6= y]  OPT + 2✏ with probability at least 1 � �. Furthermore it draws at most
M = N · poly(1/✏, 1/(1� 2⌘), 1/⌧) · log(N/�) samples and runs in time T +M .

By Theorem E.3, one consequence of Theorem E.4 is that functions which are distribution-
independently evolvable with Boolean loss are distribution-independently PAC learnable in the
presence of Massart noise.

The main ingredient in the proof of Theorem E.4 is the following basic observation.
Fact E.5. Take any distribution Dx over Rn which has density Dx(·), any function f : Rn ! {±1},
and any correlational statistical query F (x, y) , G(x) · y, and let D be the distribution arising from
f with ⌘ Massart noise. If D0

x is the distribution with density given by

D0
x(x) ,

1

Z
(1� 2⌘(x))Dx(x) 8 x 2 Rn

, Z ,
Z

Rn

(1� 2⌘(x))Dx(x)dx, (9)

and D0 is the distribution over (x, y) where x ⇠ D0
x and y = f(x), then

E
(x,y)⇠D

[F (x, y)] = Z · E
(x,y)⇠D0

[F (x, y)]. (10)

31

Proof. This simply follows from the fact that E(x,y)⇠D[F (x, y)] = Ex⇠Dx [f(x)G(x)(1� 2⌘(x))].

This suggests that given a CSQ algorithm for learning a concept f over arbitrary distributions, one can
learn f over arbitrary distributions in the presence of Massart noise by simply brute-force searching
for the correct normalization constant Z in (9) and simulating CSQ access to D0 using (10). Formally,
this is given in MASSARTLEARNFROMCSQS.

Algorithm 8: MASSARTLEARNFROMCSQS(D,A, ✏, �)
Input: Sample access to distribution D arising from f 2 C with ⌘ Massart noise, algorithm A

which distribution-independently learns any concept in C to error ✏ using at most N
CSQs with tolerance ⌧ , error parameter ✏ > 0, failure probability �

Output: Hypothesis h for which Pr(x,y)⇠D[h(x) 6= y]  OPT+ 2✏
1 Set ⌧ 0 ⌧(1� 2⌘)2/2.
2 for Z̃ 2 [0, ⌧ 0, 2⌧ 0, ..., 1] do
3 Simulate A: answer every correlational statistical query F (x, y) , G(x) · y that it makes

with an empirical estimate of 1
Z̃
E(x,y)⇠D[F (x, y)] formed from O(log(N/�)

(1�2⌘)2⌧2) samples.
4 Let h be the output of A.
5 Empirically estimate Pr(x,y)⇠D[h(x) 6= y] using O(log(1/�⌧(1� 2⌘)2/✏2) samples. If it is

at most OPT+ 3✏/2, output h.
6 Return FAIL.

Proof. Let D0
x,D0

, Z be as defined in Fact E.5, and let ⌧ 0 = ⌧(1� 2⌘)2/2. First note that Z defined
in (9) is some quantity in [1� 2⌘, 1]. Let Z̃ be any number for which Z  Z̃  Z + ⌧

0. Note that
this implies that |1/Z � 1/Z̃|  ⌧ 0/Z2  ⌧/2. In particular, for any correlational statistical query
F (x, y), Fact E.5 implies that

����
1

Z̃
E
D
[F (x, y)]� E

D0
[F (x, y)]

���� 
����
1

Z
� 1

Z̃

���� · |ED
[F (x, y)]|  ⌧/2.

With O

⇣
log(2N/�)
(1�2⌘)2⌧2

⌘
samples, we can ensure that for this choice of Z̃ and this query F , the empirical

estimate, call it bED[F (x, y)], formed in Step 3 satisfies

1

Z̃

����ED
[F (x, y)]� bED[F (x, y)]

����  ⌧/2,

with probability 1� �/2N . In particular, this implies that for this choice of Z̃ in the main loop of
MASSARTLEARNFROMCSQS, all of our answers to the CSQs made by A are correct to within error
⌧ with probability 1� �/2, in which case the simulation is correct and the hypothesis h output by A
in that iteration of the loop satisfies PrD0

x
[h(x) 6= f(x)]  ✏.

So we have that

✏ � Pr
D0

x

[h(x) 6= f(x)] =
1

Z
E
Dx

[(1�2⌘(x)) ·1[h(x) 6= f(x)]] � E
Dx

[(1�2⌘(x)) ·1[h(x) 6= f(x)]],

or equivalently, Pr(x,y)⇠D[h(x) 6= y]  OPT+ ✏. O(log(1/�⌧(1�2⌘)2)/✏2) samples are sufficient
to ensure that the empirical estimates in Step 5 are accurate in every iteration of the loop with
probability 1� �/2, so we conclude that the hypothesis output by MASSARTLEARNFROMCSQS has
error at most OPT+ 2✏ with probability at least 1� �, as desired.

Remark E.6. The reduction from Theorem E.4 can be applied to study distribution-dependent
learning of Massart halfspaces. If Dx is the distribution we want to learn Massart halfspaces over, it
suffices to have a CSQ algorithm which succeeds over any distribution with a density over Dx valued
in [1� 2⌘, 1

1�2⌘].

As an example application of this reduction, we can combine it with the results of [KVV10] to get a
learning algorithm with error O(

p
⌘) for Massart conjunctions over the unit hypercube; this follows

32

from the fact that their analysis is robust to a small amount of misspecification (related to the notion
of drift in their work). This is somewhat weaker than our proper learner which can achieve ⌘ + ✏

error in the same setting.

E.3 A Partial Converse to Theorem E.4

Next, we show a partial converse to Theorem E.4, namely that in some cases, correlational statistical
query lower bounds can imply distribution-specific SQ hardness of learning to error OPT+ ✏ in the
presence of Massart noise.
Theorem E.7. Let 0  ⌘ < 1/2, and let D⇤

x be a known distribution over Rn with density D⇤
x(·)

and support X . Let C be a concept class consisting of functions Rn ! {±1}, and let F be a family
of distributions supported on X for which the following holds:

1. For every x 2 X and Dx 2 F , 1� ⌘  Dx(x)
D⇤

x(x)
 1 + ⌘.

2. Any CSQ algorithm that can learn concepts in Cto error ✏ over any distribution in F must
make more than N correlational statistical queries with tolerance ⌧ .

Then any SQ algorithm that can learn concepts in C over D⇤
x to error OPT+ ✏ in the presence of ⌘

Massart noise requires more than N statistical queries in with tolerance ⌧ .

Proof. We will show the contrapositive. Let A be an SQ algorithm for learning C over D⇤
x to error

OPT+ ✏ in the presence of ⌘ Massart noise.

Take any f 2 C and any Dx 2 F and consider the following distribution D over X ⇥ {±1} arising
from f with ⌘ Massart noise. For every x 2 X , let ⌘(x) satisfy

1� 2⌘(x) =
Dx(x)

(1 + ⌘)D⇤
x(x)

. (11)

By assumption, the right-hand side is at most 1 and at least 1�⌘
1+⌘ � 1 � 2⌘, so 0  ⌘(x)  ⌘. Let

D be the distribution over pairs (x, y) where x ⇠ D⇤
x, and y = f(x) with probability 1� ⌘(x) and

y = �f(x) otherwise.

We will now show how to use A to produce a CSQ algorithm A0 for learning any f 2 C over
distribution Dx. Suppose A makes N statistical queries F1(x, y), ..., FN (x, y) with tolerance ⌧ and
outputs h : X ! {±1} for which PrD[h(x) 6= y]  OPT+ ✏. Equivalently, we have that

E
x⇠D⇤

x

[(1� 2⌘(x)) · 1[f(x) 6= h(x)]]  ✏.

Note that this implies that
Pr

x⇠Dx

[f(x) 6= h(x)]  (1 + ⌘)✏. (12)

The CSQ algorithm A0 proceeds as follows. Say A makes query Fi(x, y) with tolerance ⌧ . If Fi only
depends on x, then because D⇤

x is a known distribution, this is just an average over Rn ⇥ {1} that A0

can compute on its own, without making any correlational statistical queries. If Fi depends on both x
and y, it can be decomposed as Fi(x, y) = Gi(x) · y +G

0
i
(x) for some functions Gi, G

0
i
. Again, A0

can compute EDx [G
0
i
(x)] on its own without making any correlational statistical queries, and it can

make a query 1
1+⌘Gi(x) · y to the CSQ oracle over Dx with tolerance ⌧ to get a ⌧ -close estimate of

1

1 + ⌘
E
Dx

[Gi(x)f(x)] = E
D⇤

x

[Gi(x)f(x)]

By the guarantees on A and by (12), we know A0 makes at most N correlational statistical queries
and outputs a hypothesis h with error (1 + ⌘)✏ relative to f , with respect to the distribution Dx.

Remark E.8. By definition OPT in Theorem E.7 is given by OPT = ED⇤
x
[⌘(x)], so by (11) we

conclude that 1� 2OPT = 1
1+⌘ , so in particular, OPT = ⌘

2(1+⌘) .

33

Remark E.9. The following converse to Remark E.6 holds as a consequence of Theorem E.7. Namely,
known results for learning Massart halfspaces to error OPT + ✏ over a known base distribution can
be implemented in SQ and therefore imply CSQ algorithms for tiltings of the base distribution in
the absence of noise. Equivalently, by Theorem E.3, this yields evolutionary algorithms with some
natural resistance to “drift” [KVV10].

This is the case for the algorithm of [ZLC17] for learning Massart halfspaces under the uniform
measure on the sphere, which runs a Langevin gradient method directly on the (smoothed) zero-one
loss; the zero-one loss is easily estimated by a CSQ query. In fact, since their algorithm is based on
searching for local improvements to the zero-one loss, it can be more directly fit into the evolvability
framework without using the reduction of [Fel08], and can be viewed as a natural improvement to
the drift-resistant halfspace evolvability results over the sphere established in [KVV10].

E.4 Instantiating Theorem E.7 for Halfspaces

In this section we show that for C the class of conjunctions of k variables, there exists a family
of distributions F satisfying the hypotheses of Theorem E.7 for D⇤

x the uniform distribution over
{0, 1}n ⇥ {1}.

The construction is based on [Fel11] which showed a super-polynomial lower bound against
distribution-independently CSQ learning conjunctions, so we follow their notation closely. Fix
parameter k 2 N . Let U denote the uniform distribution over {0, 1}n. For every S ⇢ [n] of
size k, define the function ✓S as follows. First, let tS : {0, 1}n ! {±1} denote the conjunction
on the bits indexed by S. This has Fourier expansion tS(x) = �1 + 2�k+1

P
I✓S

�I(x), where
�I(x) , Q

i2I
xi. Define the function �S by zeroing out all Fourier coefficients of tS of size

1, ..., k/3:
�S(x) = �1 + 2�k+1 + 2�k+1

X

I✓S:|I|>k/3

�I(x).

Define Z ,P
x2{0,1}n |�S(x)| and let DS

x be the distribution given by DS
x (x) = |�S(x)|/Z. Define

the “tilted” conjunction ✓S(x) = 2n · �S(x)/Z.
Fact E.10. There is an absolute constant 0 < c < 1 such that for every x 2 [n], |tS(x)� �S(x)| 
2�ck. In particular, for k sufficiently large, tS(x) = sgn(�S(x)) for all x 2 {0, 1}n, and therefore
DS

x (x) · tS(x) = U(x) · ✓S(x).

Proof.

2�k+1
X

I⇢S:|I|2[k/3]

�I(x)  2�k+1
X

j2[k/3]

✓
k

j

◆
 2 · Pr[Bin(k, 1/2)  k/3]  2�ck

for some absolute constant 0 < c < 1, from which the the first part of the claim follows. The latter
parts follow immediately by triangle inequality.

Fact E.10 implies that the likelihood ratio between DS
x and U is bounded:

Fact E.11. There is an absolute constant 0 < c < 1 such that for every x, |DS
x (x)/U(x)�1|  2�ck.

Proof. By definition DS
x (x)/U(x) = |�S(x)|/Ex[|�S(x)|]. By Fact E.10, �S(x) 2 [1� 2�ck

, 1 +
2�ck], from which the claim follows.

The following is implicit in [Fel11]:
Theorem E.12 ([Fel11], Theorem 8 and Remark 9). Let C be the class of all conjunctions tS for
S ⇢ [n] of size k. Let F be the family of distributions {DS

x}S✓[n]:|S|=k defined above. Any CSQ
algorithm for learning concepts in C over any distribution from F needs at least (n/8k)k/9 queries
with tolerance (n/8k)�k/9.

For completeness, we give a self-contained proof below.

34

Proof. Let ↵ , 1/EU [|�S(x)|], and define (x) , ↵(2�1+k � 1). Let A be any correlational
SQ algorithm for the problem in the lemma statement. Simulate A and let F1(x), ..., Fq(x) be the
sequence of correlational queries it makes given the oracle responds with hFi, iU , EU [Fi(x) ·
 (x)] for each i 2 [q]. Let h be the hypothesis the algorithm outputs at the end.

For any S ✓ [n] of size k, at least one of the following must happen:

1. There exists i 2 [q] for which |hFi, iU � hFi, tSiDS
x
| � ⌧ .

2. PrDS
x
[h (x) 6= tS(x)]  ✏ for ✏ , 2�k

/6.

Indeed, if (1) does not hold, then from the perspective of the algorithm in the simulation, the responses
of the CSQ oracle are consistent with the underlying distribution being DS

x and the underlying concept
being tS , so it will correctly output a hypothesis h (x) which is ✏-close to tS , so (2) will hold.

We now devise a large packing over subsets S of size k for which (2) holds for at most one subset, and
for which the number of subsets of the packing for which (1) can hold is upper bounded by O(q/⌧2)
in terms of q, yielding the desired lower bound on the number of queries any CSQ algorithm must
make to solve the learning problem.

The packing is simply the maximal family F of subsets S ⇢ [n] of size k whose pairwise intersections
are of size at most k/3. By a greedy construction, such a family will have size at least 2�k(n/k)k/3 =
(n/8k)k/3.

To show that (2) holds for exactly one subset in F , suppose there are two such subsets S, T . We have
that

Pr
U

[h (x) 6= tS(x)]  (1 + 2�ck) Pr
DS

x

[h (x) 6= tS(x)]  2✏  2�k
/3,

where the first step follows by Fact E.11. Similarly, PrU [h (x) 6= tT (x)]  2�k
/3. But S 6= T , so

PrU [tS(x) 6= tT (x)] � 2�k, a contradiction.

Finally, we upper bound the number of subsets of the packing for which (1) can hold. Recalling
that DS

x (x)tS(x) = U(x)✓S(x) for every x, (1) is equivalent to the condition that there exists some
i 2 [q] for which |hFi, ✓S � iU | � ⌧ . But by construction

 (x)� ✓S(x) =
2�k+1

EU [|�S(x)|]
X

I✓S:|I|>k/3

�I(x),

from which it follows that

⌧  2�k+1

EU [|�S(x)|]
X

I✓S:|I|>k/3

|h�I , FiiU |.

By averaging and recalling that EU [|�S(x)|] 2 [1� 2�ck
, 1 + 2�ck], we conclude that there exists

some Fourier coefficient IS ✓ S of size greater than k/3 for which |h�IS , FiiU | � ⌧/4. Furthermore,
for S 6= T in F for which (1) holds, clearly IS 6= IT because IS ✓ S, IT ✓ T are of size greater than
|S\T |. On the other hand, for any i 2 [q], there are at most 16/⌧2 sets I for which |h�I , FiiU | � ⌧/4,
as kFik22  1. We conclude that there are most 16q/⌧2 sets S 2 F for which (1) holds. The proof of
the theorem upon taking ⌧ = (n/8k)�k/9.

We can now apply Theorem E.12 and Theorem E.7 to prove the main result of this section:

Proof of Theorem E.1. Let D⇤
x be the uniform distribution over {0, 1}n⇥{1}. We show the following

stronger claim, namely that the theorem holds even if we restrict to instances where x ⇠ D⇤
x, and the

unknown halfspace w 2 Rn+1 is promised to consist, in the first n coordinates, of some bitstring
of Hamming weight k (corresponding to a conjunction of size k) and, in the last coordinate, the
number k. By design, if f is the conjunction corresponding to w, then f(x) = sgn(w, (x, 1)) for all
x 2 {0, 1}n.

Let F be as defined in Theorem E.12. By Theorem E.7 and Theorem E.12, it is enough to show
that for any DS

x 2 F and any x 2 {0, 1}n ⇥ {1}, 1 � ⌘  DS
x (x)
D⇤

x
 1 + ⌘ for ⌘ = 2�ck for some

0 < c < 1. But this was already shown in Fact E.11, completing the proof of the Theorem.

35

Note that by Remark E.8, OPT is within a factor of 2 of ⌘. On the one hand, this implies that our
Theorem E.1 is not strong enough to rule out efficient SQ algorithms for achieving O(OPT) + ✏ for
Massart halfspaces. On the other hand, one can also interpret Theorem E.1 as saying that improving
the accuracy guarantees of [DGT19] by even a constant factor will require super-polynomial statistical
query complexity.

F Improperly Learning Misspecified GLMs

In this section we will prove our main result about GLMs:
Theorem F.1. Fix any ✏ > 0, � > 0. Let D be a distribution arising from an ⇣-misspecified GLM
with odd link function �(·). With probability at least 1� �, algorithm LEARNMISSPECGLM(D, ✏, �)
outputs an improper classifier h for which

err
X
(h)  1� ED[�(|hw⇤

,Xi|)]
2

+ ⇣ +O(✏).

Moreover, the algorithm has sample complexity N = poly(L, ✏�1
, (⇣ _ ✏)�1) · log(1/�) and runs in

time d · poly(N), where d is the ambient dimension.6

Our lemmas will reference subsets X 0 ✓ X ; when the definition of X 0 is clear, we will use D0 and
D0

x to denote the distributions D and Dx conditioned on X 2 X 0.

For any such X 0, define

�(X 0) , E[�(|hw⇤
,Xi|) | X 2 X 0]� 2⇣.

This should be interpreted as the accuracy of the optimal classifier on the clean data, minus a
conservative upper bound on the loss in performance when ⇣-misspecification is introduced; our
goal is to produce a classifier with accuracy at least �(X)�O(✏). Also define the “optimal leakage
parameter”

�(X 0) , 1��(X 0)

2
. (13)

Equivalently, our goal is to produce a classifier whose misclassification error is at most �(X) +O(✏).
Note that in the special case of halfspaces under ⌘-Massart noise, which can be viewed as a 0-
misspecified GLM with link function �(z) = (1� 2⌘)sgn(z), �(X 0) would be equal to 1� 2⌘, and
�(X 0) would be ⌘, i.e. the ideal choice of leakage parameter from [DGT19], regardless of the choice
of X 0.

We give an improper, piecewise-constant classifier h(·) which is specified by a partition X = tiX (i)

and a choice of sign s
(i) 2 {±1} for each region of the partition, corresponding to the classifier’s

label for all points in that region. As our goal is for errX (h)  �(X) +O(✏), it will suffice for every
index i of the partition of our improper classifier to satisfy errX (i)(s(i))  �(X (i)) +O(✏).

At a high level, our algorithm starts with a trivial partition and labeling of X and iteratively refines it.
At any point, each region X (i) of the current partition is in one of two possible states:

• Live: the algorithm may continue refining the classifier over points in X (i) in future itera-
tions.

• Frozen: the current constant classifier s(i) on X (i) is sufficiently competitive that we do not
need to update it in future iterations.

To update a given partition and labeling, the algorithm takes one of two actions at every step as long
as the mass of the live regions is non-negligible:

a) Splitting: for the largest live region X (i) of the partition, try to break off a non-negligible
subregion X̃ ⇢ X (i) for which we can update the label we assign to points in X̃ and make
progress. We will show that if this is impossible, then this certifies that the performance of the
current constant classifier s(i) on X (i) is already sufficiently close to �(X (i)) that we can mark
X (i) as frozen.

6More precisely, our sample complexity is poly(L0, ✏�1, (⇣ _ ✏)�1) · log(1/�), where L0 , L · infX 0✓X �(X 0)
for �(X 0) defined in (13) below. In particular, for Massart halfspaces, we recover the guarantees of [DGT19].

36

b) Merging: after a splitting step, try to merge any two regions which the current classifier assigns
the same label and on which it has comparable performance. This ensures that the number of live
regions in the partition is bounded and, in particular, that as long as the mass of the live regions is
non-negligible, the mass of the region chosen in the next splitting step is non-negligible.

Formally our algorithm, LEARNMISSPECGLM, is given in Algorithm 9 below.

Algorithm 9: LEARNMISSPECGLM(D, ✏, �)
Input: Sample access to D, error parameter ✏, failure probability �
Output: O(⇣)-competitive improper classifier h given by a partition of X into regions {X (i)}

with labels {s(i)}
1 �0 O(�✏6/L), � O(✏3/2).
2 Draw O(log(1/�0)/✏2) samples from D and pick s 2 {±1} minimizing cerrX (s).
3 Initialize with trivial classifier h = ({X}{s}) and set live region to be Xlive = X .
4 while True do
5 Draw O(log(1/�0)/✏2) samples and form estimate bµ(Xlive).
6 if bµ(Xlive)  ✏ then
7 return h

8 Draw O(log(1/�0�)/✏�2) samples from D and form estimate bµ(X (i) | Xlive) for every
region X (i) in current classifer.

9 X 0 argmaxX (i) bµ(X (i) | Xlive). Let s0 be its label under h.
10 if SPLIT(X 0

, s0, ✏, �
0) outputs X̃ , s̃, s then

11 Update h by splitting X into X̃ and X\X̃ and assigning these regions labels s̃ and s

respectively.
12 if MERGE(h, �, �0) outputs a hypothesis h0 then
13 h h0.

14 else
15 Freeze region X 0 with the label s output by SPLIT. Xlive Xlive\X 0.

Remark F.2. To sample from a particular region of the partition in a given iteration of the main
loop of LEARNMISSPECGLMS, we will need an efficient membership oracle in order to do rejection
sampling. Fortunately, the function sending any x 2 X to the index of the region in the current
partition to which it belongs has a compact representation as a circuit given by wiring together the
outputs of certain linear threshold functions. To see this inductively, suppose that some region X 0

from the previous time step gets split into X̃ = X 0 \ A(w, ⌧) and X 0\X̃ . Then if C is the circuit
computing the previous partition, then the new partition after this split can be computed by taking the
gate in C which originally output the index of region X 0 and replacing it with a gate corresponding to
membership in A(w, ⌧), which is simply an AND of two (affine) linear threshold functions. Similarly,
suppose some regions X1, ...,Xm from the previous time step get merged to form a region X 0. Then C
gets updated by connecting the output gates for those regions with an additional OR gate.

In particular, because the main loop of LEARNMISSPECGLMS terminates after polynomially many
iterations, and the size of the circuit increases by an additive constant with every iteration, the circuits
that arise in this way can always be evaluated efficiently.

F.1 Splitting Step

The pseudocode for the splitting procedure, SPLIT, is given in Algorithm 10. At a high level,
when SPLIT is invoked on a region X 0 of the current partition, for every possible choice of leakage
parameter �, it runs SGD on L

X 0

�
and, similar to [DGT19], finds a non-negligible annulus over which

the conditional misclassification error is minimized. It picks the � for which this conditional error is
smallest and splits off the half of the annulus with smaller conditional error7 as long as the error of
7There is a small subtlety that if the mass of this half is too small, then we will instead split off the other, larger
half of the annulus as its conditional error will, by a union bound, be comparable to that of the whole annulus
(see Step 14).

37

Algorithm 10: SPLIT(X 0
, s0, ✏, �)

Input: Region X 0 ✓ X with label s0 2 {±1}, error parameter ✏ > 0, failure probability � > 0
Output: Region X̃ ⇢ X 0 and labels s, s̃ 2 {±1} for X 0\X and X̃ respectively; or FREEZE and

label s 2 {±1} (see Lemma F.3)
1 �0 O(�✏).
2 ⇣ 0 2⇣ + ✏.
3 Draw O(log(1/�0)/✏2) samples from D0 and if cerrX 0(s0) > 1/2, s �s0. Otherwise, s s0.

Use cerrX 0(s0) to define cerrX 0(s) accordingly.
4 Draw O

⇣
L

2

✏3⇣02

⌘
fresh samples from D0 to form an empirical distribution D̂0.

5 for � 2 {0, ✏/4, 2✏/4, 3✏/4, ..., 1/2} do
6 Run SGD on L

X 0

�
(·) for O(L

2

✏2⇣02 · log(1/�0)) iterations to get w� for which kw�k = 1 and

L
X 0

�
(w�)  minw0:kw0k1 L

X 0

�
(w0) + ✏⇣

0

4L .
7 Find a threshold ⌧� such that bµ(X 0 \A(w�, ⌧�) | X 0) � ✏⇣

0

9L�̃
and misclassification error

cerrX 0\A(w�,⌧�)(w�) is minimized, where the empirical estimates bµ and cerr are with respect
to D̂0.

8 Take � for which empirical misclassification error cerrX 0\A(w�,⌧�)(w�) is minimized.
9 For each s

0 2 {±1}, X̃s0 X 0 \Hs
0
(w�, ⌧�).

10 Draw O(L�

✏4⇣0 · log(1/�
0)) samples from D0 and, for each s

0 2 {±1}, form empirical estimates
bµ(X̃s0 | X 0) and cerrX̃s0

(s0).

11 if mins0 bµ(X̃s0 | X 0) � ⌦(✏
2
⇣
0

L�
) then

12 s̃ argmin
s0 cerrX̃s0

(s0).

13 else
14 s̃ argmax

s0 bµ(X̃s0 | X 0)

15 X̃ X̃s̃.
16 if cerrX̃ (s̃)  cerrX 0(s)� ✏ then
17 return X̃ and labels s̃, s
18 else
19 return FREEZE and label s

Algorithm 11: MERGE(h, �, �)
Input: Improper classifier h given by a partition X = tiX (i) and labels s(i) 2 {±1},

coarseness parameter � > 0, failure probability � > 0
Output: Either an improper classifier h0 given by partition X = tiX 0(i) and labels

s
0(i) 2 {±1}, or None (see Lemma F.8)

1 Let M be the size of the partition tiX (i).
2 Draw O(log(M/�)/�2) samples; for every region X (i), form empirical estimate cerrX (i)(s(i)).
3 if exist indices i 6= j for which |cerrX (i)(s(i))�cerrX (j)(s(j))| � � then
4 return partition given by merging X (i) and X (j) and retaining the other regions in {X (i)},

and labels defined in the obvious way
5 else
6 return None

38

that half is non-negligibly better than the error of the previous constant classifier s over all of X 0. If
this is not the case, X 0 gets frozen.

Below, we prove the following main guarantee about SPLIT, namely that if it does not make progress
by splitting off a non-negligible sub-region X̃ of X 0, then this certifies that the classifier was already
sufficiently competitive on X 0 that we can freeze X 0.
Lemma F.3. Take any X 0 ✓ X with label s0. With probability at least 1� � over the entire execution
of SPLIT(X 0

, s0, ✏, �), O((1/✏2 _ L
2

✏4·(⇣_✏)2) · log(1/�✏)) samples are drawn from D0, the s computed
in Step 3 satisfies errX 0(s)  1/2� ⌦(✏) if errX 0(s0) � 1/2 + ⌦(✏) and s = s0 otherwise, and at
least one of the following holds:

i) SPLIT outputs X̃ , s, s̃ for which errX̃ (s̃)  errX 0(s)�✏ and µ(X̃ | X 0) � ⌦(✏
2·(⇣_✏)

L(�(X 0)+O(✏)))

ii) SPLIT outputs FREEZE and s for which errX 0(s)  �(X 0) + 5✏.

We first show that the LeakyRelu loss incurred by the true classifier w⇤ is small. The following
lemma is the only place where we make use of our assumptions about �(·) and ⇣-misspecification.
Lemma F.4. Let ✏ � 0 be arbitrary, and let X 0 be any subset of X . Then for � = �(X 0) + ✏,

L
X 0

�
(w⇤)  �2✏

L
· E
D0
[|�(hw⇤

,Xi)|]

Proof. In this proof, all expectations will be with respect to D0. By definition we have

E[yhw⇤
,Xi]

E[|hw⇤,Xi|] =
E[|hw⇤

,Xi| · sgn(hw⇤
,Xi) · (�(hw⇤

,Xi) + �(X))]

E[|hw⇤,Xi|]

� E[|hw⇤
,Xi| · |�(hw⇤

,Xi)|]
E[|hw⇤,Xi|] � 2⇣

= �(X 0) + Cov
✓

|hw⇤
,Xi|

E[|hw⇤,Xi|] ,�(|hw
⇤
,Xi|)

◆

� �(X 0) +
1

L
· V[�(|hw

⇤
,Xi|)]

E[|hw⇤,Xi|] ,

where the second step we uses the fact that sgn(�(hw⇤
,Xi)) = sgn(hw⇤

,Xi) together with the fact
that �(X) � �2⇣, the third step uses the definition of �(X 0), and the fourth step uses L-Lipschitz-
ness of �.

Rearranging, we conclude that

(�(X 0)� ✏)E[|hw⇤
,Xi|]� E[yhw⇤

,Xi]  �✏ · E[|hw⇤
,Xi|] + 1

L
· V[�(|hw⇤

,Xi|)],

from which we get

(�(X 0)� 2✏)E[|hw⇤
,Xi|]� E[yhw⇤

,Xi]  � 1

L
(2✏E[|�(hw⇤

,Xi)|] + V[�(|hw⇤
,Xi|)]) (14)

by using L-Lipschitz-ness of � again to upper bound E[|hw⇤
,Xi|] by 1

L
E[�(|hw⇤

,Xi|)].
Noting that E[y | X] · hw⇤

,Xi = (1� 2 errX(w⇤)) · |hw⇤
,Xi|, we can rewrite the right-hand side

of (14) as

E

2|hw⇤

,Xi|
✓

err
X
(w⇤)� 1��(X 0)

2
� ✏
◆�

= L
X 0

�
(w⇤)

for � = �(X 0) as defined in (13).

We will also need the following averaging trick from [DGT19], a proof of which we include for
completeness.

Lemma F.5. Take any X 0 ✓ X . For any w,� for which L
X 0

�
(w) < 0 and kwk  1, there is a

threshold ⌧ � 0 for which 1) µ(X 0 \A(w, ⌧) | X 0) � |LX 0
� (w)|
2� , 2) errX 0\A(w,⌧)(w)  �.

39

Proof. Without loss of generality we may assume X 0 = X . For simplicity, denote L
X
�

by L. Let
⇠ , �L(w)/2. We have that

0 > L(w) + ⇠  L(w) + ⇠ · E
Dx

[|hw,Xi|]

= E
Dx

[(err
X
(w)� �+ ⇠)|hw,Xi|]

=

Z 1

0
E
Dx

[(err
X
(w)� �+ ⇠) · 1[X 2 A(w, ⌧)]]d⌧,

where the second inequality follows by our assumption that kwk  1 and D is supported over the
unit ball, and where the integration in the last step is over the Lebesgue measure on [0, 1]. So by
averaging, there exists a threshold ⌧ for which 2) holds. Pick ⌧ to be the minimal such threshold. We
conclude that

L(w) + ⇠ �
Z 1

⌧

E
Dx

[(err
X
(w)� �+ ⇠)1[X 2 A(w, ⌧)]]d⌧ � �� · Pr

Dx

[X 2 A(w, ⌧)],

where the first step follows by minimality of ⌧ and the second follows by the fact that errx(w)� �+
⇠ � �� for all x. Condition 1) then follows.

Next we show that, provided �(X 0) is not too small, some iteration of the main loop of SPLIT finds
a direction w� and a threshold ⌧� such that the misclassification error of w� over X 0 \A(w�, ⌧�) is
small.
Lemma F.6. Take any X 0 ✓ X . If ED0 [|�(hw⇤

,Xi)|] � 2⇣ + ✏, then with probability at least 1� �0
there is at least one iteration � of the main loop of SPLIT for which the threshold ⌧� found in Step 7
satisfies errX 0\A(w�,⌧�)(w�)  �(X 0) + ✏.

Proof. Let ⇣ 0 , 2⇣ + ✏. The hypothesis implies �(X 0) < 1/2 � ✏/2. So by searching for �
over an ✏/4-grid of [0, 1/2], we ensure that for some � in the iteration of the main loop of SPLIT,
✏/4  �� �(X 0) < ✏/2. Denote this � by �̃.

By Lemma F.4 we have that LX 0

�̃
(w⇤)  � ✏⇣

0

2L , so by Lemma B.5, SGD finds a unit vector w
�̃

for
which L

X 0

�̃
(w

�̃
)  � ✏⇣

0

4L with probability 1� �0 in O(L
2

✏2⇣02 · log(1/�0)) steps. By Lemma F.5 there

is a threshold ⌧ for which 1) µ(X 0 \A(w
�̃
, ⌧) | X 0) � ✏⇣

0

8L�̃
and 2) errX 0\A(w�̃,⌧)

(w
�̃
)  �̃.

It remains to verify that a threshold with comparable guarantees can be determined from the empirical
distribution D̂0. By the DKW inequality, if the empirical distribution D̂0 is formed from at least
⌦
⇣

L
2
�̃
2

✏2⇣02 · log(1/�0)
⌘

samples from D0, then with probability at least 1 � �0 we can estimate the

CDF of the projection of D0 along direction w
�̃

to within additive O(✏⇣
0

L�̃
). On the other hand,

if D̂0 is formed from at least ⌦(L�̃
✏⇣0 ·

1
✏2

· log(1/�0)) samples from D0, then we can estimate the
misclassification error on the annulus within X 0 to error O(✏). The threshold ⌧� found in Step 7 will
therefore satisfy the claimed bound.

We now apply Lemma F.6 to argue that provided �(X 0) is not too small, the constant classifier s̃
defined in Steps 12/14 of SPLIT has good performance on X̃s̃, and furthermore X̃s̃ has non-negligible
mass.
Lemma F.7. Take any X 0 ✓ X . If ED0 [|�(hw⇤

,Xi)|] � 2⇣ + ✏, then with probability at least
1�O(�0/✏), we have that µ(X̃s̃ | X 0) � ⌦(✏

2·(⇣_✏)
L�

) and PrD0 [y 6= s̃ | X 2 X̃s̃]  �(X 0) + 4✏.

Proof. Let ⇣ 0 , 2⇣ + ✏. With probability at least 1�O(�0/✏), for every � in the main loop of SPLIT,
the CDF of D̂0 projected along the direction w�is pointwise O

⇣
✏⇣

0

L�

⌘
-accurate, and the empirical

misclassification error cerrX 0\A(w�,⌧�)(w�) is O(✏)-accurate. In this case, for the � minimizing

empirical misclassification error in Step 8, we have that 1) µ(X 0 \A(w�, ⌧�) | X 0) � ⌦
⇣
✏⇣

0

L�

⌘
, and

by Lemma F.6, 2) errX 0\A(w�,⌧�)(w�)  �(X 0) + 2✏.

40

With O(L�

✏4⇣0 · log(1/�
0)) samples from D0, with probability at least 1 � �0 we can estimate each

bµ(X̃s0 | X 0) to within O(✏
2
⇣
0

L�
) error and, if mins0 bµ(X̃s0 | X 0) � ⌦(✏

2
⇣
0

L�
), each cerrX̃s0

(s0) to within
O(✏) error.

Without loss of generality suppose that +1 = argmin
s0 cerrX̃s0

(s0). By averaging, errX̃+
(+1) 

�(X 0) + 2✏. If mins0 bµ(X̃s0 | X 0 \A(w�, ⌧�)) � ✏, then µ(X̃+ | X 0) � ⌦(✏ · ✏⇣
0

L�
) and we are done.

Otherwise mins0 µ(X̃s0 | X \ A(w�, ⌧�))  2✏, so for s̃ = argmax
s0 bµ(X̃s0 | X 0) we have that

errX̃s̃
(s̃)  �(X 0) + 4✏ and we are again done.

We are now ready to complete the proof of Lemma F.3.

Proof of Lemma F.3. With probability 1 � �0, cerrX 0(s0) computed in Step 3 is accurate to within
error O(✏), so the first part of the Lemma F.3 about s and s0 is immediate. Note that it also implies
errX 0(s)  1/2 +O(✏) unconditionally.

Now suppose outcome i) does not happen. By the contrapositive of Lemma F.7, this implies at least
one of two things holds: either errX 0(s) is already sufficiently low, so that errX 0(s)  �(X 0) + 5✏, or
the hypothesis of Lemma F.7 that ED0 [|�(hw⇤

,Xi)|] � 2⇣ + ✏ does not hold.

But if the latter is the case, we would be able to approximate the optimal 0/1 accuracy on X 0 just by
choosing random signs for the labels on X 0. Formally, we have that �(X 0) � 1/2� ✏/2, so because
errX 0(s)  1/2 +O(✏), it certainly holds that errX 0(s)  �(X 0) + 5✏.

F.2 Merging Step

The pseudocode for the merging step is given in Algorithm 11. The following guarantee for MERGE
is straightforward.

Lemma F.8. Given partition {X (i)}, signs {s(i)}, and any �, � > 0, the following holds with proba-
bility 1��. If MERGE({X (i)}, {s(i)}, �, �) outputs None, then for any i 6= j for which s

(i) = s
(j), we

have |errX (i)(s(i))� errX (j)(s(j))| � �/2. Otherwise, if the output of MERGE({X (i)}, {s(i)}, �, �)
is given by merging some pair of regions X (i)

,X (j), then |errX (i)(s(i))� errX (j)(s(j))|  3�/2.

Proof. With probability 1�� we have that every empirical estimate cerrX (i)(s(i)) is accurate to within
error �/4, so the claim follows by triangle inequality.

F.3 Potential Argument

We need to upper bound the number of iterations that LEARNMISSPECGLM runs for; we do this by
arguing that we make progress in one of three possible ways:

1. After a SPLIT, a region X 0 is frozen. This decreases the total mass of live regions.
2. After a SPLIT, a region X 0 is split into X̃ and its complement, and the regions are assigned

opposite labels. This increases the overall accuracy of the classifier.
3. After a SPLIT, a region X 0 is split into X̃ and its complement, and the regions are assigned

the same label. This, even with a possible subsequent MERGE, decreases the proportion of
the variance of �(hw⇤

,Xi) unexplained by the partition.

Henceforth, condition on all of the (1 � �)-probability events of Lemmas F.3 and F.8 holding for
every SPLIT and MERGE.
Lemma F.9. There are at most O(1/�) live regions at any point in the execution of LEARNMIS-
SPECGLM.

Proof. If the number of live regions in the current partition exceeds 2/� after some invocation
of SPLIT, then by the contrapositive of the first part of Lemma F.8, the subsequent MERGE will
successfully produce a coarser partition.

Lemma F.10. Event 1 can happen at most O(log(1/✏)/�) times.

41

Proof. Suppose Event 1 happens after SPLIT is called on some region X 0. Let Xlive denote the union
of all live regions immediately prior to this. Because X 0 is, by Step 9 of LEARNMISSPECGLM, the
region with largest empirical mass, and its empirical mass is O(µ(Xlive) · �)-close to its true mass, by
Lemma F.9 we must have that µ(X 0) � µ(Xlive) · ⌦(�), and once X 0 is frozen, the mass of the live
region decreases by a factor of 1� ⌦(�).

The total mass of the live regions is non-increasing over the course of LEARNMISSPECGLM, so the
claim follows.

Lemma F.11. Event 2 can happen at most O(L

✏3·(⇣_✏)) times.

Proof. If X 0 was originally assigned some label s0 prior to the invocation of SPLIT, then by design,
the label s computed in Step 3 performs at least as well as s0 over X 0.

Additionally, if after this SPLIT X 0 is broken into X̃ and X 0\X̃ , and these two sub-regions are
assigned opposite labels, we know X̃ must have been assigned �s.

These two facts imply that the overall error of the classifier must decrease by at least µ(X̃) · (1 �
2 errX̃ (s̃)) when Event 2 happens. By Lemma F.3, errX̃ (s̃)  errX 0(s0) � ✏  1/2 � ✏ and
µ(X̃ | X 0) � ⌦(✏

2·(⇣_✏)
L�

), so it follows that the overall error decreases by at least ⌦(✏
3·(⇣_✏)
L�

) when
Event 2 happens.

Note that the overall accuracy of the classifier is non-increasing, from which the claim follows.
Indeed, the overall accuracy of the classifier is not affected by MERGE or freezes. And when Event 3
happens, the accuracy can only improve, again by the fact that s performs at least as well as s0 over
X 0 by design.

Lemma F.12. Event 3 can happen at most O(L/✏6) times.

Proof. Given partition and labeling, consider the potential function �({X (i)}, {s(i)}) ,
Vi[errX (i)(s(i))], where i is chosen from among the live indices of the partition with probabil-
ity proportional to µ(X (i)). We will show that Event 3 always increases this quantity and then bound
how much the other iterations of LEARNMISSPECGLM decrease this quantity.

First consider how � changes under a SPLIT in which a region X 0, previously assigned some label
s
⇤, is split into X̃ and X 0\X̃ that get assigned the same label s. If Xlive is the union of all live regions

at that time, then � increases by precisely µ(X 0 | Xlive) times the variance of the random variable
Z which takes value errX̃ (s) with probability µ(X̃ | X 0) and errX 0\X̃ (s) otherwise. By Lemma F.3,

µ(X 0 | Xlive) � ⌦(✏
2·(⇣_✏)
L�

), and moreover

err
X̃
(s)  err

X 0
(s0)� ✏  err

X 0\X̃
(s)� ✏,

where s0 is the sign for which errX 0(s0) is minimized and the second step follows by an averaging
argument. By Fact B.6, we conclude that V[Z] � ⌦(✏2 · ✏

2·(⇣_✏)
L�(X 0)).

If MERGE is not called immediately after this, then this occurrence of Event 3 increases � by at least
µ(X 0) · ⌦(✏2 · ✏

2·(⇣_✏)
L�(X 0)).

If MERGE is called however, � will decrease as follows. Let X1 and X2 be the two live regions, both
with label s0 2 {±1}, that get merged. Because X 0 was chosen to be the largest live region at the time,
µ(X1), µ(X2)  µ(X 0) +O(✏�2)  O(µ(X 0)). So MERGE decreases � by at most µ(X1 [X2) 
O(µ(X 0)) times the variance of the random variable Z

0 which takes value errX1(s
0) with probability

µ(X1 | X1 [X2) and errX2(s
0) otherwise. By Lemma F.8, we know |errX1(s

0)� errX2(s
0)| � 3�/2.

So
V[Z 0] = O

�
�
2 · µ(X1 | X1 [X2) · µ(X2 | X1 [X2)

�
 O(�2).

By taking � = ⇥(✏3/2), we ensure that if Event 3 consists of a SPLIT followed by a MERGE, then �
increases by at least µ(X 0) · ⌦(✏3) � ⌦(✏9/2), where we used Lemma F.9 and our choice of � in the
last step.

42

It remains to verify that the other iterations of LEARNMISSPECGLM do not decrease � by too much.
Clearly any SPLIT that does not freeze a region will only ever increase �, so we just need to account
for A) invocations of MERGE immediately following a SPLIT under Event 2, and B) freezes.

For A), note that by the above calculations, SPLIT under Event 2 followed by a MERGE will decrease
� by at most V[Z 0]  O(✏3), and by Lemma F.11 this will happen at most O(L

✏3·(⇣_✏)) times. So all
invocations of MERGE following an occurrence of Event 2 will collectively decrease � by at most
O(L

⇣_✏  O(L/✏).

For B), we will naively upper bound the decrease in variance from a freeze by 1/4. By Lemma F.10
this happens at most O(log(1/✏)/�)  O(log(1/✏)/✏3/2) times. The claim follows.

Corollary F.13. LEARNMISSPECGLM makes at most O(L/✏6) calls to either SPLIT or MERGE.

Proof. The number of invocations of MERGE is clearly upper bounded by the number of invocations
of SPLIT, which is upper bounded by Lemmas F.10, F.11, and F.12.

F.4 Putting Everything Together

We can now complete the proof of Theorem F.1.

Proof of Theorem F.1. By Corollary F.13 and a union bound over the conclusions of Lemmas F.3
and F.8 holding for the first O(L/✏6) iterations, LEARNMISSPECGLM outputs a hypothesis h after
O(L/✏6) iterations. Furthermore, each iteration of LEARNMISSPECGLM calls SPLIT and Merge at
most once each and draws O(log(1/�0)/poly(✏)) additional samples, so by the sample complexity
bounds in Lemma F.3 and F.8, LEARNMISSPECGLM indeed has the claimed sample complexity.
The poly(N) · d runtime is also immediate.

It remains to verify that the output h is O(✏)-competitive with �(X). For any frozen region X 0 of h
with label s, the last part of Lemma F.3 tells us that errX 0(s)  �(X 0) + 5✏. On the other hand, at the
end of the execution of LEARNMISSPECGLM, µ(Xlive)  2✏, while

|�(X\Xlive)� �(X)| = 1

2
|�(X\Xlive)��(X)| = µ(Xlive)

2
·
����err
Xlive

(h)� err
X\Xlive

(h)

����  ✏

by a union bound. So

err
X
(h)  µ(X\Xlive) · (�(X\Xlive) + 5✏) + ✏  �(X) + 7✏,

as claimed.

F.5 Making it Proper in the Massart Setting

When ⇣ = 0, the Generalized Linear Model is always an instance of the ⌘ = 1/2 Massart halfspace
model. This means we can use the proper-to-improper reductions we developed in Section D to
convert our improper learner to a proper learner. The proper-to-improper reduction will require either
a margin or a bit complexity bound; below we give the result under the natural margin assumption for
GLMs.
Theorem F.14. Fix any ✏ > 0. Let D be a distribution arising from an 0-misspecified
GLM with odd link function �(·) and true weight vector w⇤. Suppose we have the follow-
ing �-margin assumption: that |�(hw⇤

,Xi)| � � almost surely. With probability 1 � �, al-
gorithm LEARNMISSPECGLM(D, ✏, �/2) combined with Algorithm FILTERTRONDISTILL with
⌘ = (1� �)/2 outputs a w for which

err
X
(w)  1� ED[�(|hw⇤

,Xi|)]
2

+O(✏).

Moreover, the algorithm has sample complexity N = poly(L, 1/�, ✏�1
, (⇣ _ ✏)�1) · log(1/�) and

runs in time d · poly(N), where d is the ambient dimension.

43

It is also possible to modify the GLM learning algorithm directly in this case and extract a separation
oracle, giving a slightly different proof of the above result: whenever the algorithm finds a region on
which the current w is performing significantly worse than the best constant function, that region can
be fed into the separation oracle for the proper halfspace learning algorithm.

In the more general setting ⇣ > 0, we do not expect a proper to improper reduction to be possible
because agnostic learning is embeddable (by adding a lot of noise of Y), and in the agnostic setting
there are complexity-theoretic barriers [ABX08].

G Numerical Experiments

Figure 2: Synthetic data: Effect of RCN versus Massart noise on FILTERTRON and baselines

We evaluated FILTERTRON, gradient descent on the LeakyRelu loss, random forest8, and logistic
regression9 on both synthetic and real-world datasets in the presence of (synthetic) Massart noise.
Note that all of the methods considered except for random forest output simple halfspace classifiers;
we included random forest as a benchmark for methods which are allowed to output somewhat more
complex and less interpretable predictors. Because the theoretical guarantees in this work are in terms
of zero-one error on the distribution with Massart corruptions, we measure the performance using
this metric, i.e. both the training and test set labels are corrupted by the Massart adversary.

G.1 Experiments on Synthetic Data

We evaluated the above algorithms on the following distribution. Let Dx be a uniform mixture of

N (0, I2) and N (0,⌃), where ⌃ =

✓
8 0.1
0.1 0.024

◆
, and let w = (1, 0) be the true direction for the

underlying halfspace. For various ⌘, we considered the following ⌘-Massart adversary: the labels
for all (x1, x2) ⇠ Dx for which x2 > 0.3 are flipped with probability ⌘, and the labels for all other
points are not flipped.

For every ⌘ 2 [0.05, 0.1, . . . , 0.45], we ran the following experiment 50 times: (1) draw 1250
samples from the mixture of Gaussians, label them according to halfspace w, and randomly split
them into a training set of size 1000 and a test set of size 250, (2) randomly flip the labels for the
training and test sets according to this Massart adversary, (3) train on the noisy training set, and (4)
evaluate according to zero-one loss on the noisy test set. For both FILTERTRON and gradient descent
on LeakyRelu, we ran for a total of 2000 iterations with step size 0.05 and ✏ = 0.05. We then ran the
exact same experiment but with RCN rather than Massart noise. The results of these experiments are
shown in Figure 2.

8We used the implementation in scikit-learn and tuned the max depth differently for the synthetic and numerical
experiments, see below

9We used the LIBLINEAR library solver in scikit-learn with regularization strength 1/C = N/50, 200 iterations,
L2 penalty, and 0.1 tolerance. We chose to use very little regularization because the datasets we considered are
fairly low-dimensional; increasing the regularization makes the logistic regression accuracy decrease.

44

Regarding our implementation of random forest, we found that taking a smaller max depth led to
better performance, so we chose this parameter to be five.

Note that whereas under RCN, the baselines are comparable to FILTERTRON especially for large ⌘,
logistic regression and gradient descent on LeakyRelu perform significantly worse under Massart
noise. The intuition is that by reducing the noise along some portion of the distribution, in particular
the portion mostly orthogonal to w, we introduce a spurious correlation that encourages logistic
regression and gradient descent on the LeakyRelu loss to move in the wrong direction. On the other
hand, random forest appears to do quite well. We leave open the possibility that more sophisticated
synthetic examples can cause FILTERTRON to outperform random forest.

These two experiments on synthetic data were conducted on a MacBook Pro with 2.6 GHz Dual-Core
Intel Core i5 processor and 8 GB of RAM and each took roughly 15 minutes of CPU time, indicating
that each run of FILTERTRON took roughly two seconds.

G.2 Experiments on UCI Adult Dataset

We also evaluated the above algorithms on the UCI Adult dataset, obtained from the UCI Machine
Learning Repository [DG17] and originally curated by [Koh96]; it consists of demographic informa-
tion for N = 48842 individuals, with a total of 14 attributes including age, gender, education, and
race, and the prediction task is to determine whether a given individual has annual income exceeding
50K. Henceforth we will refer to individuals with annual income exceeding (resp. at most) 50K as
high (resp. low) income. In regards to our experiments, some important statistics about the individuals
in the dataset are that 23.9% are high-income, 9.6% are African American, 1.2% are high-income
and African American, 33.2% are Female, 3.6% are high-income and Female, 10.3% are Immigrants,
and 2.0% are high-income Immigrants.

For various ⌘ and various predicates p on demographic information, we considered the following
⌘-Massart adversary: for individuals who satisfy the predicate p (the target group), do not flip the
response, and for all other individuals, flip the response with probability ⌘. The intuition is that
because most individuals in the dataset are low-income, the corruptions will make individuals not
satisfying the predicate p appear to be higher-income on average, which may bias the learner against
classifying individuals satisfying p as high-income. We measured the performance of a classifier
under this attack along two axes: A) their accuracy over the entire test set, and B) their accuracy over
the high-income members of the target group in the test set.

Concretely, for every predicate p, we took a five-fold cross validation of the dataset, and for every
⌘ 2 [0, 0.1, 0.2, 0.3, 0.4] we repeated the following five times: (1) randomly flip the labels for the
training and test set, (2) train on the noisy training set, and (3) evaluate according to (A) and (B)
above. For both FILTERTRON and gradient descent on the LeakyRelu loss, we ran for 2000 iterations
and chose the ✏ parameter by a naive grid search over [0.05, 0.1, 0.15, 0.2].

For our implementation of random forest, we found that a larger maximum depth improved perfor-
mance, so we took this parameter to be 20.

The predicates p that we considered were (1) African American, (2) Female, and (3) Immigrant.
Figure 3 plots the medians across each five-fold cross-validations, with error bars given by a single
standard deviation. In all cases, while the algorithms evaluated achieve very similar test accuracy,
FILTERTRON correctly classifies a noticeably larger fraction of high-income members of the target
group than logistic regression or gradient descent on LeakyRelu, and is comparable to random forest.
Note that in the sense of equality of opportunity [HPS16] (see Section G.3 for further discussion on
fairness issues), the behavior of gradient descent on LeakyRelu is particularly problematic as its false
negative rate among individuals outside of the target group is highest of all classifiers, in spite of its
poor performance on the target group.

An important consideration in some applications is that certain demographic information may be
hidden from the learner, either because they are unavailable or because they have been withheld for
legal reasons. Motivated by this, we also considered how well our classifier would perform under
such circumstances. We reran the experiment outlined above with the sole difference that after the
training and test labels have been randomly flipped according to the Massart adversary targeting
a predicate p, we pass to the learner the censored dataset obtained by removing all dimensions of
the data corresponding to demographic information relevant to p. For instance, for the adversary

45

Figure 3: UCI Adult: Effect of three different Massart adversaries, targeting African Americans,
Females, and Immigrants respectively, on the accuracy of FILTERTRON and baselines. Top figures
indicate accuracy over entire test set, bottom figures indicate accuracy over the target group.

targeting immigrated, we removed data identifying the country of origin for individuals in the dataset.
The rest of the design of the experiment is exactly the same as above, and Figure 4 depicts the results.

Note that the false negative rate among African Americans under logistic regression still degenerates
dramatically as ⌘ increases. Interestingly though, gradient descent on LeakyRelu no longer breaks
down but in fact has lowest false negative rate among all classifiers at high ⌘, though as with the
previous experiment, its overall accuracy is slightly lower.

The experiments on the Adult dataset were conducted in a Kaggle kernel with a Tesla P100 GPU,
and each predicate took roughly 40 minutes to run. All code is available at https://github.com/
secanth/massart.

G.3 Situating Our Results within the Fairness Literature

There is by now a mature literature on algorithmic fairness [DHP+12, HPS16, KMR17], with many
mathematically well-defined notions of what it means to be fair that themselves come from different
normative considerations. There is no one notion that clearly dominates the others, but rather it
depends on the circumstances and sometimes they are even at odds with each other [Cho17, KMR17,
MP19]. Our results are perhaps most closely related to the notion of equal opportunity [HPS16],
where our experiments show that many off-the-shelf algorithms achieve high false negative rate on
certain demographic groups when noise is added to the rest of the data. We view our work as making
a tantalizing connection between robustness and fairness in the sense that tools from the burgeoning
area of algorithmic robustness [DKK+19, LRV16], such as being able to tolerate noise rates that vary
across the domain, may ultimately be a useful ingredient in mitigating certain kinds of unfairness
that can arise from using well-known algorithms that merely attempt to learn a good predictor in
aggregate. Our specific techniques are built on top of new efficient algorithms to search for portions
of the distribution where a classifier is performing poorly and can be improved. We believe that even
these tools may find other compelling applications, particularly because as Figure 4 shows, they do
not need to explicitly rely on demographic information being present within the data, which is an
important consideration in some applications.

46

https://github.com/secanth/massart
https://github.com/secanth/massart

Figure 4: UCI Adult: Results of the same experiment that generated Figure 3, with the sole difference
that for each given target group, the corresponding demographic fields (race, gender, and nationality
respectively) were removed from the dataset after Massart corruption

H Proof of Lemma C.3

H.1 Tools from Empirical Process Theory

We recall a number of standard tools from empirical process theory, referencing the textbook [Ver18];
some alternative references include [vdG00, vH14]. Recall that a Rademacher random variable is
equal to +1 with probability 1/2 and �1 with probability 1/2.
Theorem H.1 (Symmetrization, Exercise 8.3.24 in [Ver18]). For any class of measurable functions
F valued in R and i.i.d. X1, . . . , Xn copies of random variable X ,

E sup
f2F

�����
1

n

nX

i=1

f(Xi)� E[f(X)]

�����  2E sup
f2F

�����
1

n

nX

i=1

�if(Xi)

�����

where the �1, . . . ,�n are i.i.d. Rademacher random variables, independent of the Xi.
Theorem H.2 (Contraction Principle, Theorem 6.7.1 of [Ver18]). For any vectors x1, . . . ,xn in an
arbitrary normed space,

E
�����

nX

i=1

ai�ixi

�����  kak1E
�����

nX

i=1

�ixi

�����

where the expectation is over i.i.d. Rademacher random variables �1, . . . ,�n.
Definition H.3. Let ⌦ be a set and let F be a class of boolean functions on ⌦, i.e. functions of type
⌦! {0, 1}. A finite subset ⇤ ⇢ ⌦ is shattered by F if the restriction of F to ⇤ contains all functions
⇤! {0, 1}. The VC dimension of F is the size of the largest such ⇤ which can be shattered by F .
Theorem H.4 (McDiarmid’s inequality, Theorem 2.9.1 of [Ver18]). Supose X1, . . . , Xn are inde-
pendent random variables valued in set X and X = (X1, . . . , Xn). Suppose that for all i, the
measurable function f : Xn ! R satisfies the bounded difference property |f(x)� f(x0)|  L for
all x,x0 2 X differing in only one coordinate. Then

Pr[f(X)� E[f(X)] � t]  exp

✓
� 2t2

nL2

◆
.

47

Theorem H.5 (Theorem 8.3.23 of [Ver18]). Let F be a class of Boolean functions with VC dimension
d. If X1, . . . , Xn are i.i.d. copies of random variable X then

E sup
f2F

�����
1

n

nX

i=1

f(Xi)� E[f(X)]

�����  2E sup
f2F

�����
1

n

nX

i=1

�if(Xi)

����� = O

 r
d

n

!

where the �i are i.i.d. Rademacher random variables.

In the following Lemma, we compute the VC dimension of the class of slabs along a fixed direction.

Lemma H.6. Fix w 2 Rd. Let Fw be the class of indicators of slabs S(w, r) for all r � 0. The VC
Dimension of Fw is 1.

Proof. The lower bound of 1 is clear, as any point w with |hw,xi| > 0 is contained in every slab
with r > |hw,xi| and not contained in any slab with r < |hw,xi|. To show the VC dimension
is strictly less than two: consider two points x,x0 and suppose without loss of generality that
|hw,xi|  |hw,x0i|, we see that every slab containing x0 contains x, so it is impossible to shatter
these points.

H.2 Proof of Lemma C.3

At a high level, Lemma C.3 shows that the empirical process defined by looking at the LeakyRelu loss
over slabs with r 2 R is no harder to control (in terms of sample complexity) than controlling what
happens at the thinnest slab, for which the sample complexity is controlled by Bernstein’s inequality.
This happens because: (1) larger slabs receive more samples and so are very well-behaved, and (2)
every slab is completely contained within every larger slab, so slabs with similar mass have a lot of
overlap and behave similarly.

Based on this intuition, we split the proof of Lemma C.3 into two steps. First we prove the result for
slabs with a relatively large amount of probability mass. Second, we show how to deduce the general
result by a peeling argument, which groups slabs by probability mass. We further split the first step
into two Lemmas — the first Lemma below contains the empirical process bound coming from slabs
having bounded VC dimension.

Lemma H.7. Let � 2 [0, 1/2] be arbitrary. Suppose that w⇤
,w 2 Rd and X is a random vector in

Rd such that |hw⇤
,Xi|  1 almost surely. Define R = {r � 0 : Pr[X 2 S(w, r)] � 1/2}. Suppose

that

E
D
[`�(w

⇤
,X) · 1[X 2 S(w, r)]]  ��

for some � 2 R and all r 2 R. Then if D̂ is the empirical distribution formed by n i.i.d. samples
X1, . . . ,Xn from D,

sup
r2R

Ê
D
[`�(w

⇤
,X) · 1[X 2 S(w, r)]]  �� +O

⇣p
log(2/�)/n

⌘

with probability at least 1� �.

Proof. By McDiarmid’s inequality (Theorem H.4),

sup
r2R

Ê
D
[`�(w

⇤
,X) · 1[X 2 S(w, r)]]  E sup

r2R
Ê
D
[`�(w

⇤
,X) · 1[X 2 S(w, r)]] +O(

p
log(2/�)/n)

using the bounded differences properties with respect to the independent samples X1, . . . ,Xn (it
suffices to check this property for each particular value of r 2 R, and then it follows from the
Lipschitz property of `� and the fact |hw⇤

,Xi|  1 almost surely).

48

It remains to upper bound the first term. By the assumed upper bound on the true LeakyRelu loss,
symmetrization (Theorem H.1), and contraction (Theorem H.2),

E sup
r2R

Ê
D
[`�(w

⇤
,X) · 1[X 2 S(w, r)]] = E sup

r2R

1

n

nX

i=1

`�(w
⇤
,Xi) · 1[Xi 2 S(w, r)]

 �� + 2E sup
r2R

�����
1

n

nX

i=1

�i`�(w
⇤
,Xi) · 1[Xi 2 S(w, r)]

�����

 �� + 2E sup
r2R

�����
1

n

nX

i=1

�i1[Xi 2 S(w, r)]

����� .

Finally, by Lemma H.6 and Theorem H.5, the last term is upper bounded by O(
p
1/n).

Lemma H.8. Let � 2 [0, 1/2] be arbitrary. Suppose that w⇤
,w 2 Rd and X is a random vector in

Rd such that |hw⇤
,Xi|  1 almost surely. Define R = {r � 0 : Pr[X 2 S(w, r)] � 1/2}. Suppose

that
L
S(w,r)
�

(w⇤)  �� (15)

for some � > 0 and all r 2 R. Then if D̂ is the empirical distribution formed by n i.i.d. samples
X1, . . . ,Xn from D,

sup
r2R

L̂
S(w,r)
�

(w⇤)  ��/4

with probability at least 1� � as long as n = ⌦(log(2/�)/�2).

Proof. Observe that

L̂
S(w,r)
�

(w⇤) =
ED̂[`�(w

⇤
,X) · 1[X 2 S(w, r)]]

PrD̂[X 2 S(w, r)]
(16)

and the corresponding equation for L� together with (15) shows that ED[`�(w⇤
,X) · 1[X 2

S(w, r)]]  ��/2. The result then follows from Lemma H.7 and the assumed lower bound on n,
since this upper bounds the numerator in (16) and the denominator is always at most 1.

Proof of Lemma C.3. Define R
⇤ = {r > 0 : PrD̂[X 2 S(w, r)] � ✏/2}. We partition R

⇤ as

R
⇤
k
= {r > 0 : Pr

D̂
[X 2 S(w, r)] 2 (✏2k�1

, ✏2k]}.

For each bucket k, let rk = maxR⇤
k

which exists because the CDF is always right continuous. Let
pk = min(1/2,Pr[X 2 S(w, rk)])  ✏2k and observe that VZ⇠Ber(pk)[Z] 2 [pk/2, pk]. Using
Bernstein’s inequality (Theorem B.8), we have that

Pr[Pr
D̂
[X 2 S(w, rk)]  pk � t]  2 exp

✓
�nt2/2
pk + t/3

◆

so taking t = pk/2 we find

Pr[Pr
D̂
[X 2 S(w, rk)]  pk/2]  2 exp (�cnpk)

for some absolute constant c > 0.

Let �0 > 0 be a constant to be optimized later and define �k = 2�k
�0; applying Lemma H.8 with �k as

the failure probability shows that conditional on having ⌦(k log(2/�k)/�2) samples fall into R
⇤
k

, with
probability at least 1 � �k we have supr2R⇤

k
L̂
S(w,r)
�

 ��/4. Requiring ✏n = ⌦(log(2/�0)/�2),
we see that the total probability of failure in bucket k is at most 1� (1� �k)(1� 2 exp(�cnpk)) 
�k + 2 exp(�cnpk) since pkn✏/2 = ⌦(2k log(2/�k)/�2) = ⌦(k log(2/�k)/�2), which means that
(more than) enough samples fall into each bucket to apply Lemma H.8 with failure probability �k.

49

Therefore applying the union bound, we have that supr2R⇤ L̂
S(w,r)
�

 ��/4 with failure probability
at most

X

k�0,✏2k<1

(�k + 2 exp(�cnpk)) 
1X

k=0

�k +
1X

k=0

2 exp(�cn✏2k�1)  �0 + c
0 exp(�cn✏)

for some absolute constant c0 > 0, using that both infinite sums converge and are dominated by their
first term (the first sum is a geometric series, for the second sum its terms shrink doubly exponentially
fast towards zero). Using the lower bound on ✏n (and recalling that � < 1) gives that the failure
probability is at most c00�0 It follows that supr2R⇤

k
L̂
S(w,r))�  ��/4 with probability at least

1� �/2 as long as n = ⌦(log(2/�)/✏�2).

Finally, to prove the desired result we need to show that R ⇢ R⇤ with probability 1 � �/2. This
follows under our assumed lower bound on n by applying (similar to above) Bernstein’s inequality to
upper bound Pr[X 2 S(w, r�1)] for r�1 defined following the convention above. Using the union
bound, this proves the Lemma.

I Massart Noise and Non-Oblivious Adversaries

We note that all the algorithms presented, like that of [DGT19], are robust against the following
stronger noise model. Formally,

Definition I.1. (Non-oblivious Massart Adversary) let D̂x = {x1, ...,xN} be N draws from a
distribution Dx. Let r1, ..., rN ⇠ Bern(⌘). We then let the adversary choose any bit string z 2
{±1}N possibly depending on D̂x,w⇤

, {ri}Ni=1. The label yi will be determined to be yi = (1 �
ri)�(hw⇤

, xii) + rizi. We denote the full dataset D̂ = {(xi, yi)}Ni=1.

In the non-oblivious model we measure error in terms of empirical error on D̂. In a learning setting,
we can interpret this as drawing a constant factor more samples corrupted by the non-oblivious
adversary and splitting the dataset randomly into train and test. Our algorithmic guarantees then hold
over the test data.

We can run through all our analyses replacing ⌘(xi) with rizi. For succinctness we demonstrate
this for the no margin proper halfspace learner. Note that our results concerning the behavior of the
LeakyRelu loss on anulli and slabs such as Lemma C.4 do not use the Massart noise assumption.
Thus, it suffices to prove that under the non oblivious adversary, the behavior of the LeakyRelu loss
on w⇤ is unchanged.

Lemma I.2. For a dataset D̂ corrupted by the non-oblivious massart adversary above, specified up
to b bits of precision in d dimensions for which there are no � = Õ(db

✏
) outliers i.e for all x 2 D̂, we

have hx, ui2  �E[hx, ui2] over all unit vectors u 2 Sd�1. Then for � � ⌘ + ✏ and N = Õ(d
3
b
3

✏3
),

we have with high probability over the randomness in r1, ..., rN

LeakyRelu
�
(w⇤)  0

Proof. We will use the notation EX⇠D̂x
to represent an average over the X in D̂x.

LeakyRelu�(w
⇤) = Ex⇠D̂x

[(err(w⇤)� �)|hw⇤
,xi|]

= Ex⇠D̂x
[(rizi � �)|hw⇤

,xi|]
 Ex⇠D̂x

[(ri � �)|hw⇤
,xi|]

In the last inequality we make use of the fact rizi  ri. Note that we have made no appeals to
concentration up to this point. Now it suffices to show Ex⇠D̂[(ri � �)|hw⇤

,xi|] < 0 with high
probability over the randomness in in r. This follows from a standard application of bernstein as we
did in Theorem C.18.

50

