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A Proof of Theorem 1

Since the horizon of play is fixed at n, the decision maker may play at most n distinct arms. Therefore,
it suffices to focus only on the sequence of the first n arms that may be played. A realization of an
instance ν = (G(µ1),G(µ2)) is defined as the n-tuple r ≡ (ri)16i6n, where ri ∈ G(µ1) ∪ G(µ2)

indicates the reward distribution of arm i ∈ {1, 2, ..., n}. It must be noted that the decision maker
need not play every arm in r. The distribution over the possible realizations of ν = (G(µ1),G(µ2)) in
{r : ri ∈ G(µ1) ∪ G(µ2), 1 6 i 6 n} satisfies P(ri ∈ G(max(µ1, µ2)) = α for all i ∈ {1, 2, ..., n}.
Recall that the cumulative pseudo-regret after n plays of a policy π on ν = (G(µ1),G(µ2)) is given
by Rπn(ν) =

∑n
m=1

(
max(µ1, µ2)− µt(πm)

)
, where t(πm) ∈ {1, 2} indicates the type of the arm

played by π at time m. Our goal is to lower bound ERπn(ν), where the expectation is w.r.t. the
randomness in π as well as the distribution over the possible realizations of ν. To this end, we define
the notion of expected cumulative regret of π on a realization r of ν = (G(µ1),G(µ2)) by

Sπn(ν, r) := Eπ
[

n∑
m=1

(
max(µ1, µ2)− µt(πm)

)]
,

where the expectation Eπ is w.r.t. the randomness in π. Note that ERπn(ν) = EνSπn(ν, r), where the
expectation Eν is w.r.t. the distribution over the possible realizations of ν. We define our problem
class N∆ as the collection of ∆-separated instances given by

N∆ :=
{

(G(µ1),G(µ2)) : µ1 − µ2 = ∆, (µ1, µ2) ∈ R2
}
.

Definition 1 (Consistent policy) Let Λ(r) denote the number of “optimal” arms in realization r.
We call π, an asymptotically consistent policy for the problem class N∆ if for any instance ν ∈ N∆

and any realization r thereof, it satisfies the following two conditions:

ERπn(ν) = o (np) for every p ∈ (0, 1), α ∈ (0, 1]. (1)
Eν [Sπn(ν, r)|Λ(r) = m] > Eν [Sπn(ν, r)|Λ(r) = k] ∀ (m,n, k) : 0 6 m 6 k 6 n. (2)

The set of such policies is denoted by Πcons (N∆). Notice that (1), barring the condition on α, is
the standard definition of asymptotic consistency first introduced in [6] and subsequently adopted
by many other papers. The exclusion of α = 0 is necessary since no policy can achieve sublinear
regret in said case. We also remark that the additional condition in (2) is not restrictive since any
reasonable policy is expected to incur a larger cumulative regret (in expectation) on realizations with
fewer optimal arms.

Fix an arbitrary ∆ > 0 and consider an instance ν = ({Q1}, {Q2}) ∈ N∆, where (Q1, Q2) are unit-
variance Gaussian distributions with means (µ1, µ2) respectively. Consider an arbitrary realization
r ∈ {Q1, Q2}n of ν and let I ⊆ {1, 2, ..., n} denote the set of inferior arms in r (arms with reward
distribution Q2). Consider another instance ν′ ∈ N∆ given by ν′ =

(
{Q̃1}, {Q1}

)
, where Q̃1 is
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another unit variance Gaussian with mean µ1 + ∆. Now consider a realization r′ ∈ {Q̃1, Q1}n
of ν′ that is such that the arms at positions in I have distribution Q̃1 while those at positions in
{1, 2, ..., n}\I have distribution Q1. Notice that I is the set of optimal arms in r′ (arms with reward
distribution Q̃1), implying Λ(r′) = |I|. Then, the following always holds:

Sπn(ν, r) + Sπn(ν′, r′) >

(
∆n

2

)(
Pπν,r

(∑
i∈I

Ni(n) >
n

2

)
+ Pπν′,r′

(∑
i∈I

Ni(n) 6
n

2

))
,

where Pπν,r(·) and Pπν′,r′(·) denote the probability measures w.r.t. the instance-realization pairs (ν, r)

and (ν′, r′) respectively, and Ni(n) denotes the number of plays up to and including time n of arm
i ∈ {1, 2, ..., n}. Using the Bretagnolle-Huber inequality (Theorem 14.2 of [7]), we obtain

Sπn(ν, r) + Sπn(ν′, r′) >

(
∆n

4

)
exp

(
−D

(
Pπν,r,Pπν′,r′

))
,

where D
(
Pπν,r,Pπν′,r′

)
denotes the KL-Divergence between Pπν,r and Pπν′,r′ . Using Divergence

decomposition (Lemma 15.1 of [7]), we further obtain

Sπn(ν, r) + Sπn(ν′, r′) >

(
∆n

4

)
exp

−
D

(
Q2, Q̃1

)
∆

Sπn(ν, r)

 =

(
∆n

4

)
exp (−2∆Sπn(ν, r)) ,

where the equality follows since Q̃1 and Q2 are unit variance Gaussian distributions with means
separated by 2∆. Next, taking the expectation Eν on both the sides above and a direct application of
Jensen’s inequality thereafter yields

ERπn(ν) + EνSπn(ν′, r′) >

(
∆n

4

)
exp (−2∆ERπn(ν)) . (3)

Consider the EνSπn(ν′, r′) term in (3) and an arbitrary α ∈ (0, 1/2]. Using a simple change-of-
measure argument, we obtain

EνSπn(ν′, r′) = Eν
′

[
Sπn(ν′, r′)

(
1− α
α

)2(Λ(r′)−n/2)
]

6 ERπn(ν′) + Eν
′

[
Sπn(ν′, r′)

(
1− α
α

)2(Λ(r′)−n/2)
1 {Λ(r′) > n/2}

]
, (4)

where the inequality follows since α 6 1/2. Now consider the second term on the RHS in (4). It
follows that

Eν
′

[
Sπn(ν′, r′)

(
1− α
α

)2(Λ(r′)−n/2)
1 {Λ(r′) > n/2}

]

=
∑
k>n/2

Eν
′

[
Sπn(ν′, r′)

(
1− α
α

)2(Λ(r′)−n/2)
1 {Λ(r′) = k}

]

=
∑
k>n/2

(
1− α
α

)(2k−n)

Eν
′
[Sπn(ν′, r′)1 {Λ(r′) = k}]

=
∑
k>n/2

(
1− α
α

)(2k−n)

Eν
′
[Sπn(ν′, r′)|Λ(r′) = k]Pν′ (Λ(r′) = k)

=
∑
k>n/2

(
1− α
α

)(2k−n)

Eν
′
[Sπn(ν′, r′)|Λ(r′) = k]

(
n

k

)
αk(1− α)(n−k)

= αn
∑
k>n/2

(
n

k

)(
1− α
α

)k
Eν
′
[Sπn(ν′, r′)|Λ(r′) = k] . (5)
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Recall that ν′ ∈ N∆ and π ∈ Πcons (N∆). We have

ERπn(ν′) = Eν
′
Sπn(ν′, r′)

>
k∑

m=1

Eν
′
[Sπn(ν′, r′)|Λ(r′) = m]Pν′ (Λ(r′) = m) (for any k 6 n)

> Eν
′
[Sπn(ν′, r′)|Λ(r′) = k]Pν′ (Λ(r′) 6 k) . (using (2)) (6)

Since α 6 1/2, it follows that for any k > n/2, Pν′ (Λ(r′) 6 k) = On(1) (the subscript n indicates
that the asymptotic scaling is w.r.t. n). Using this observation together with (1) and (6), we conclude
that

∀ k > n/2, α ∈ (0, 1/2] and every p ∈ (0, 1), Eν
′
[Sπn(ν′, r′)|Λ(r′) = k] = o (np) . (7)

Combining (4), (5), (7) and using the fact that ν′ ∈ N∆ with π ∈ Πcons (N∆), we conclude
∀ k > n/2, α ∈ (0, 1/2] and every p ∈ (0, 1), EνSπn(ν′, r′) = o (np) . (8)

Now consider (3). Taking the natural logarithm of both sides and rearranging, we obtain

ERπn(ν)

log n
>

(
1

2∆

)(
1 +

log
(

∆
4

)
log n

− log(ERπn(ν) + EνSπn(ν′, r′))

log n

)
.

Since ν, ν′ ∈ N∆ and π ∈ Πcons (N∆), the assertion follows using (8) that for any α ∈ (0, 1/2],

lim inf
n→∞

ERπn(ν)

log n
>

1

2∆
.

Therefore, for any ∆ > 0, ∃ ν ∈ N∆ and an absolute constant C s.t. the expected cumulative regret
of any consistent policy π on ν satisfies ∀ α 6 1/2 and n large enough, ERπn(ν) > C∆−1 log n. �

B Proof of Theorem 2

We divide the horizon of play into epochs of length m each. For each k > 0, let Sk denote the
cumulative pseudo-regret incurred by the algorithm when it is initialized at the beginning of epoch
(2k + 1) and continued until the end of the horizon of play, i.e., the algorithm starts at time 2km+ 1
and runs until time n. We are interested in an upper bound on ERπn = ES0. To this end, suppose that
the algorithm is initialized at time 2km+ 1. Label the arms played in epochs (2k + 1) and (2k + 2)
as ‘1’ and ‘2’ respectively. Let Xi denote the empirical mean reward from m plays of arm i ∈ {1, 2}.
Recall that t(i) ∈ T = {1, 2} denotes the type of arm i, that type 1 is assumed optimal and lastly,
that the probability of a new arm being of the optimal type is α. Suppose that 1{E} denotes the
indicator random variable associated with event E. Then, we have that Sk evolves according to the
following stochastic recursive relation:
Sk = 1{t(1) = 1, t(2) = 2}

[
∆m+ 1{X2 −X1 > δ} [n− (2k + 2)m] + 1{|X1 −X2| < δ}Sk+1

]
+

1{t(1) = 2, t(2) = 1}
[
∆m+ 1{X1 −X2 > δ} [n− (2k + 2)m] + 1{|X1 −X2| < δ}Sk+1

]
+

1{t(1) = 2, t(2) = 2}
[
2∆m+ 1{|X1 −X2| > δ}∆ [n− (2k + 2)m] + 1{|X1 −X2| < δ}Sk+1

]
+

1{t(1) = 1, t(2) = 1}1{|X1 −X2| < δ}Sk+1.

Collecting like terms together,
Sk = 1{t(1) = 1, t(2) = 2}1{X2 −X1 > δ}∆ [n− (2k + 2)m] +

1{t(1) = 2, t(2) = 1}1{X1 −X2 > δ}∆ [n− (2k + 2)m] +

1{t(1) = 2, t(2) = 2}1{|X1 −X2| > δ}∆ [n− (2k + 2)m] +

[1{t(1) 6= t(2)}+ 21{t(1) = 2, t(2) = 2}] ∆m+ 1{|X1 −X2| < δ}Sk+1. (9)
Define the following conditional events:

E1 :=
{
X2 −X1 > δ

∣∣ t(1) = 1, t(2) = 2
}
, (10)

E2 :=
{
X1 −X2 > δ

∣∣ t(1) = 2, t(2) = 1
}
, (11)

E3 :=
{∣∣X1 −X2

∣∣ > δ
∣∣ t(1) = 2, t(2) = 2

}
, (12)

E4 :=
{∣∣X1 −X2

∣∣ < δ
∣∣ t(1) = t(2)

}
, (13)

E5 :=
{∣∣X1 −X2

∣∣ < δ
∣∣ t(1) 6= t(2)

}
. (14)
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Taking expectations on both sides in (9) and rearranging, one obtains the following using
(10),(11),(12),(13),(14):

ESk =
[
α(1− α) {P(E1) + P(E2)}+ (1− α)2P(E3)

]
∆ [n− (2k + 2)m]

+
[
2α(1− α) + 2(1− α)2

]
∆m+ P

(∣∣X1 −X2

∣∣ < δ
)
ESk+1. (15)

Notice that Sk+1, by definition, is independent of (Xi,j)i∈{1,2},16j6m, and hence
E
[
1{|X1 −X2| < δ}Sk+1

]
= P

(∣∣X1 −X2

∣∣ < δ
)
ESk+1 in (15). Further note that

P
(∣∣X1 −X2

∣∣ < δ
)

=
[
α2 + (1− α)2

]
P(E4) + 2α(1− α)P(E5). (16)

From (15) and (16), we conclude after a little rearrangement the following:

ESk = ξ1 − ξ2k + ξ3ESk+1, (17)

where the ξi’s do not depend on k and are given by

ξ1 := ∆
[
α(1− α) {P(E1) + P(E2)}+ (1− α)2P(E3)

]
(n− 2m) + 2∆(1− α)m, (18)

ξ2 := 2∆
[
α(1− α) {P(E1) + P(E2)}+ (1− α)2P(E3)

]
m, (19)

ξ3 :=
[
α2 + (1− α)2

]
P(E4) + 2α(1− α)P(E5). (20)

Observe that the recursion in (17) is solvable in closed-form and admits the following solution:

ES0 = ξ1

l−1∑
k=0

ξk3 − ξ2
l−1∑
k=0

kξk3 + ξl3ESl, (21)

where l := bn/(2m)c. Since the ξi’s are all non-negative for n > 2m and ESl 6 2∆m, we have for
n > 2m,

ERπn = ES0 6
ξ1

1− ξ3
+ 2∆m. (22)

Now using (10),(11),(12),(13),(14) and Hoeffding’s inequality [4] along with the fact that the Xi’s
are bounded in [0, 1], we conclude

{P(E1),P(E2)} 6 exp
(
−(∆ + δ)2m/2

)
, (23)

{P(E3),P(Ec4)} 6 2 exp
(
−δ2m/2

)
, (24)

P(E5) 6 exp
(
−(∆− δ)2m/2

)
. (25)

From (18),(19),(20),(22),(23),(24) and (24), we conclude

ERπn 6
2∆n exp

(
−δ2m/2

)
+ ∆m

α (1− exp (−(∆− δ)2m/2))
+ 2∆m.

Finally since m =
⌈(

2/δ2
)

log n
⌉
, the stated assertion follows, i.e., for all n ≥ 2m,

ERπn 6 2∆

(
1 +

1

2α

)[(
2

δ2

)
log n+ 1

]
+

(
∆

α

)
[2 + f(n, δ,∆)] , (26)

where f(n, δ,∆) = o(1) in n given by

f(n, δ,∆) :=

(
n−( ∆−δ

δ )
2

1− n−( ∆−δ
δ )

2

)[(
2

δ2

)
log n+ 3

]
. (27)

For n < 2m, ERπn 6 2∆m follows trivially. Therefore, the bound in (26) is valid for all n > 1. Of
course, ERπn 6 ∆n offers a sharper bound whenever ∆ is very small, similar to finite-armed settings.
Thus in conclusion, ERπn is bounded as follows for any n:

ERπn 6 min

[
∆n, 2∆

(
1 +

1

2α

){(
2

δ2

)
log n+ 1

}
+

(
∆

α

)
{2 + f(n, δ,∆)}

]
.

�

4



C Proof of Proposition 1

The statement of the proposition assumes |µ1 − µ2| = ∆ > 0. However, we will only prove it for
the case where µ1 − µ2 = ∆ > 0. The proof for the other case is symmetric and an identical bound
will follow. Fix an arbitrary (F1, F2) ∈ G(µ1)× G(µ2) and consider the following stopping time:

τ := inf

{
n > 1 :

n∑
k=1

(Ψk − θ̄n) < 0

}
, (28)

where Ψk := Y F1

k − Y F2

k and θ̄n := θn/n. Note that EΨk = ∆ > 0 (by assumption). Then,

it follows that P
(⋂∞

m=1

∣∣∣∑m
j=1

(
Y F1
j − Y F2

j

)∣∣∣ > θm) > P(τ = ∞). Therefore, it suffices to
show that P(τ = ∞) is bounded away from 0. To this end, fix an arbitrary λ ∈ (0, 1) and let
n0 := min{k ∈ N : θ̄n 6 λ∆}. Since θ̄n → 0 as n → ∞ and ∆ > 0, it follows that n0 < ∞.
Suppose that ω denotes an arbitrary sample-path and consider the following set:

E :=
{
ω : Ψk(ω) > θ̄k; 1 6 k 6 n0

}
. (29)

Since Assumption 1 (main text) is satisfied, n0 <∞ and θ̄n is monotone decreasing in n with θ̄1 < 1,
it follows that P(E), as given below, is strictly positive.

P(E) =

n0∏
k=1

P
(
Ψk > θ̄k

)
> 0, where n0 = min{k ∈ N : θ̄n 6 λ∆}. (30)

Notice that τ > n0 on the event indicated by E. In particular,

τ |E = inf

{
n > n0 + 1 :

n∑
k=n0+1

(Ψk − θ̄n) < −
n0∑
k=1

(Ψk − θ̄n)

∣∣∣∣∣ E
}

>
(†)

inf

{
n > n0 + 1 :

n∑
k=n0+1

(Ψk − θ̄n) < −
n0∑
k=1

(θ̄k − θ̄n)

∣∣∣∣∣ E
}

>
(‡)

inf

{
n > n0 + 1 :

n∑
k=n0+1

(Ψk − θ̄n) < −
n0∑
k=1

(θ̄k − θ̄n0
)

∣∣∣∣∣ E
}

>
(•)

inf

{
n > n0 + 1 :

n∑
k=n0+1

(Ψk − λ∆) < −
n0∑
k=1

(θ̄k − θ̄n0
)

∣∣∣∣∣ E
}

=
(?)

n0 + inf

{
n > 1 :

n∑
k=1

(Ψ′k − λ∆) < −η

}
, (31)

where (†) follows from (29), (‡) follows since θ̄n 6 θ̄n0
for n > n0, (•) since θ̄n 6 λ∆ for n > n0,

and (?) holds with η :=
∑n0

k=1(θ̄k − θ̄n0) and Ψ′k := Ψn0+k since (Ψ′k)k∈N is independent of E.
Note that η > 0 since θ̄n is monotone decreasing in n. Now consider the following stopping time:

τ ′ := inf

{
n > 1 :

n∑
k=1

(Ψ′k − λ∆) < −η

}
. (32)

It follows from (31) and (32) that P(τ = ∞|E) > P(τ ′ = ∞). We next show that P(τ ′ = ∞) is
bounded away from 0.

Let Sn :=
∑n
k=1(Ψ′k − λ∆), with S0 := 0. Since the Ψ′k’s are i.i.d. with EΨ′1 = ∆ and |Ψ′k| 6 1,

it follows that Wn := exp (aSn) is a Martingale w.r.t. (Ψ′k)k∈N, where ‘a’ is the non-zero solution
to E [exp (a (Ψ′1 − λ∆))] = 1 (Note that EΨ′1 = ∆ > 0 and λ ∈ (0, 1) ensures a < 0.). Fix an
arbitrary b > 0 and define Tη,b := inf{n > 1 : Sn /∈ [−η, b]} (We already know that η > 0.). By
Doob’s Optional Stopping Theorem [3], it follows that EWmin(Tη,b,n) = EW0 = 1. Furthermore,
since the stopped Martingale Wmin(Tη,b,n) is uniformly integrable, we in fact have EWTη,b = 1.
Thereafter using Markov’s inequality, we obtain P

(
STη,b < −η

)
= P

(
WTη,b > e−ηa

)
6 exp(ηa).
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Since b > 0 is arbitrary, taking limb→∞ on both sides and invoking the Bounded Convergence
Theorem, we finally conclude that P(τ ′ =∞) = P

(
STη,∞ > −η

)
> 1− exp(ηa), and hence

P(τ =∞|E) > 1− exp(ηa) > 0. (33)

In conclusion,

P

 ∞⋂
m=1

∣∣∣∣∣∣
m∑
j=1

(
Y F1
j − Y F2

j

)∣∣∣∣∣∣ > θm
 > P(τ =∞) > P(τ =∞|E)P(E)

>
(∗)

(1− exp(ηa))

n0∏
k=1

P(Ψk > θ̄k) > 0,

where (∗) follows from (30) and (33). Since (F1, F2) ∈ G(µ1) × G(µ2) is arbitrary, taking
minF1∈G(µ1),F2∈G(µ2) on both the sides above appealing to the fact that the G(µi)’s are finite,
proves our assertion. �

D Proof of Theorem 3

Consider the first epoch and assign the labels 1, 2 to the two arms picked to be played in this
epoch. Suppose Ni(n) denotes the number of times arm i is played up to and including time n. Let
Mn := min (N1(n), N2(n)) and define the following stopping time:

τ := inf

{
n > 2 :

∣∣∣∣∣
Mn∑
k=1

(X1,k −X2,k)

∣∣∣∣∣ < θMn

}
,

where the sequence Θ ≡ (θm)m∈N is defined through (2) (main text). Then, τ denotes the time of the
terminal play in the first epoch after which the algorithm starts over again. Recall that t(i) denotes
the type of arm i and define the following conditional stopping times:

τI := τ | {t(1) = t(2) = 2}, (34)
τD := τ | {t(1) 6= t(2)}, (35)

where the subscripts I and D above indicate “Identical” and “Distinct” types, respectively. Let Sn
denote the cumulative pseudo-regret of UCB1 after n plays in a stochastic two-armed bandit problem
with separation ∆. Recall that Rπn denotes the cumulative pseudo-regret of π = ALG (UCB1,Θ, 2)
after n plays; we shall suppress the superscript π for notational simplicity and write Rn for Rπn. For
any n ∈ N, let R′n be an i.i.d. copy of Rn. Then, Rn must satisfy the following stochastic recursive
relation:

Rn = 1 {t(1) 6= t(2)}Smin(τ,n) + 1 {t(1) = t(2) = 2}∆ min(τ, n) +R′n−min(τ,n)

6 1 {t(1) 6= t(2)}Sn + 1 {t(1) = t(2) = 2}∆τ +R′n−min(τ,n)

= 1 {t(1) 6= t(2)}Sn + 1 {t(1) = t(2) = 2}∆τ +

n∑
k=2

1{τ = k}R′n−k

6 1 {t(1) 6= t(2)}Sn + 1 {t(1) = t(2) = 2}∆τ + 1{τ 6 n}R′n , (36)

where the last step holds since R′n−k 6 R
′
n ∀ k 6 n (this follows trivially since π is agnostic to the

horizon of play1). Taking expectations on both sides of (36), we obtain

ERn 6
(†)

2α(1− α)ESn + (1− α)2∆EτI +
[
2α(1− α)P(τD 6 n) + α2 + (1− α)2

]
ERn

6
(‡)

2α(1− α)ESn + (1− α)2∆EτI +
[
2α(1− α) (1− β∆) + α2 + (1− α)2

]
ERn

= 2α(1− α)ESn + (1− α)2∆EτI + (1− 2β∆α(1− α))ERn

=⇒ ERn 6
(

1

β∆

)
ESn +

(
(1− α)∆EτI

2β∆α

)
,

1We could not claim this directly for Algorithm 1 as it depended on ex ante knowledge of the horizon of play.
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where (†) uses (34), (35) and the fact that D (T ) = (α, 1− α), and (‡) follows from part (i) of
Lemma 2 (see Appendix F). We also know from part (ii) of Lemma 2 that EτI < C0, where C0 is a
constant that depends on the user-defined parameters (m0, γ). The proof now concludes by invoking
Theorem 1 of [1] for an upper bound on ESn in order to obtain the desired upper bound on ERn, i.e.,

ERn 6
(

8

∆β∆

)
log n+

(
1 +

π2

3
+

(1− α)C0

2α

)(
∆

β∆

)
6 8 (∆β∆)

−1
log n+

(
C1 + α−1C2

)
β−1

∆ ∆,

where C1 := 1 + π2/3 and C2 := C0/2. �

E Proof of Theorem 4

E.1 Proof of part (i)

For i ∈ {1, 2}, define Bi,s,t := Xi(s) +
√

(2 log t)/s, where Xi(s) denotes the empirical mean
reward from the first s plays of arm i. UCB1 [1] plays each arm i ∈ {1, 2} once at t ∈ {1, 2} and
thereafter for t ∈ {3, 4, ..., n}, plays the arm It ∈ arg maxi∈{1,2}Bi,Ni(t−1),t−1. Then, note that the
following holds for any integer u > 1:

{N1(n) > u} ⊆ {∃ t ∈ {u+ 2, ..., n} : B1,u,t−1 > B2,t−u−1,t−1} .

Thus, using the Union bound,

P (N1(n) > u) 6
n∑

t=u+2

P (B1,u,t−1 > B2,t−u−1,t−1)

=

n−1∑
t=u+1

P (B1,u,t > B2,t−u,t)

=

n−1∑
t=u+1

P
(
X1(u)−X2(t− u) >

√
2 log t

(
1√
t− u

− 1√
u

))
. (37)

Note that E
[
X1(u)−X2(t− u)

]
= 0. Now consider an arbitrary ε ∈ (0, 1/2). For t < n and

u = (1/2 + ε)n, notice that

1√
t− u

− 1√
u
>

1√
t

 1√
1
2 − ε

− 1√
1
2 + ε

 > 0.

This lets us apply Hoeffding’s inequality [4] to (37) when u = (1/2 + ε)n. Applying the inequality
to (37), leveraging the fact that the rewards are uniformly bounded in [0, 1], we obtain

P (N1(n) > u) 6
n−1∑
t=u+1

exp

(
−4

(
1− 2

√
u(t− u)

t2

)
log t

)

<

n−1∑
t=u+1

exp
(
−4
(

1−
√

1− 4ε2
)

log t
)
,

where the last step above follows since u(t − u) <
(
1/4− ε2

)
t for u = (1/2 + ε)n and t < n.

Now substituting u = (1/2 + ε)n above, we obtain

P
(
N1(n) >

(
1

2
+ ε

)
n

)
<

n−1∑
t=n

2

exp
(
−4
(

1−
√

1− 4ε2
)

log t
)
< 8n−(3−4

√
1−4ε2).

Notice that the upper bound is meaningful only when 3 − 4
√

1− 4ε2 > 0 ⇐⇒ ε >
√

7/8, and
therefore holds for all ε ∈ (0, 1/2) trivially. Since our proof is symmetric w.r.t. the arm labels, an
identical result holds also for the other arm and therefore, the stated assertion follows. �
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E.2 Proof of part (ii)

Note that the following is true for any integer u > 1 and i ∈ {1, 2}:

Ni(n) 6 u+

n∑
t=u+1

1 {It = i, Ni(t− 1) > u} ,

where It ∈ {1, 2} indicates the arm played at time t. We set u = (1/2 + ε)n for an arbitrary
ε ∈ (0, 1/2) and without loss of generality, carry out the rest of the analysis fixing i = 1. Therefore,

N1(n) 6

(
1

2
+ ε

)
n+

n∑
t=( 1

2 +ε)n+1

1

{
It = 1, N1(t− 1) >

(
1

2
+ ε

)
n

}

6

(
1

2
+ ε

)
n+

n∑
t=( 1

2 +ε)n+1

1

{
B1,N1(t−1),t−1 > B2,N2(t−1),t−1, N1(t− 1) >

(
1

2
+ ε

)
n

}
,

where Bi,s,t := Xi(s) +
√

(2 log t)/s for i ∈ {1, 2}, with Xi(s) denoting the empirical mean
reward from the first s plays of arm i. Then,

N1(n) 6

(
1

2
+ ε

)
n+

n−1∑
t=( 1

2 +ε)n

1

{
B1,N1(t),t > B2,N2(t),t, N1(t) >

(
1

2
+ ε

)
n

}

6

(
1

2
+ ε

)
n+

n−1∑
t=( 1

2 +ε)n

1

{
B1,N1(t),t > B2,N2(t),t, N1(t) >

(
1

2
+ ε

)
t

}

=

(
1

2
+ ε

)
n+ Zn, (38)

where Zn :=
∑n−1

t=( 1
2 +ε)n 1

{
B1,N1(t),t > B2,N2(t),t, N1(t) >

(
1
2 + ε

)
t
}

. Now,

EZn

=

n−1∑
t=( 1

2 +ε)n

P
(
B1,N1(t),t > B2,N2(t),t, N1(t) >

(
1

2
+ ε

)
t

)

=

n−1∑
t=( 1

2 +ε)n

P

(∑N1(t)
j=1 X1,j

N1(t)
−
∑N2(t)
j=1 X2,j

N2(t)
>
√

2 log t

(
1√
N2(t)

− 1√
N1(t)

)
, N1(t) >

(
1

2
+ ε

)
t

)

=

n−1∑
t=( 1

2 +ε)n

P

(∑N1(t)
j=1 Y1,j

N1(t)
−
∑N2(t)
j=1 Y2,j

N2(t)
>
√

2 log t

(
1√
N2(t)

− 1√
N1(t)

)
, N1(t) >

(
1

2
+ ε

)
t

)
,

(39)

where Yi,j := Xi,j − EXi,j for i ∈ {1, 2}, j ∈ N. Note that the last equality above follows since the
mean rewards of both the arms are equal. We therefore have

EZn

=

n−1∑
t=( 1

2 +ε)n

P

(∑N1(t)
j=1 Y1,j

N1(t)
−
∑N2(t)
j=1 Y2,j

N2(t)
>
√

2 log t

(
1√
N2(t)

− 1√
N1(t)

)
, N1(t) >

(
1

2
+ ε

)
t

)

6
n−1∑

t=( 1
2 +ε)n

P

∑N1(t)
j=1 Y1,j

N1(t)
−
∑N2(t)
j=1 Y2,j

N2(t)
>

√
2 log t

t

 1√(
1
2 − ε

) − 1√(
1
2 + ε

)
 , N1(t) >

(
1

2
+ ε

)
t


6

n−1∑
t=( 1

2 +ε)n

P

Wt >
1√(

1
2 − ε

) − 1√(
1
2 + ε

)
 , (40)
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where Wt :=
√

t
2 log t

(∑N1(t)
j=1 Y1,j

N1(t) −
∑N2(t)
j=1 Y2,j

N2(t)

)
. Now,

|Wt|

6

√
t

2 log t

(∣∣∣∣∣
∑N1(t)
j=1 Y1,j

N1(t)

∣∣∣∣∣+

∣∣∣∣∣
∑N2(t)
j=1 Y2,j

N2(t)

∣∣∣∣∣
)

=

√
t

log t

(√
log logN1(t)

N1(t)

∣∣∣∣∣
∑N1(t)
j=1 Y1,j√

2N1(t) log logN1(t)

∣∣∣∣∣+

√
log logN2(t)

N2(t)

∣∣∣∣∣
∑N2(t)
j=1 Y2,j√

2N2(t) log logN2(t)

∣∣∣∣∣
)

6

√
t

log t

(√
log log t

N1(t)

∣∣∣∣∣
∑N1(t)
j=1 Y1,j√

2N1(t) log logN1(t)

∣∣∣∣∣+

√
log log t

N2(t)

∣∣∣∣∣
∑N2(t)
j=1 Y2,j√

2N2(t) log logN2(t)

∣∣∣∣∣
)

=

√
log log t

log t

(√
t

N1(t)

∣∣∣∣∣
∑N1(t)
j=1 Y1,j√

2N1(t) log logN1(t)

∣∣∣∣∣+

√
t

N2(t)

∣∣∣∣∣
∑N2(t)
j=1 Y2,j√

2N2(t) log logN2(t)

∣∣∣∣∣
)
.

(41)

Notice that the following can be deduced from part (i) of Theorem 4 using the Borel-Cantelli Lemma:

lim inf
t→∞

Ni(t)

t
>

1

2
−
√

3

4
w.p. 1 ∀ i ∈ {1, 2}. (42)

In addition to the result in (42) that holds w.p. 1, we also know that Ni(t), for any i ∈ {1, 2} and
t > 0, can be lower bounded pathwise by a deterministic non-decreasing function of time, say λ(t),
that grows to +∞ as t→∞. This is a trivial consequence due to the structure of the UCB1 policy
and the fact that the rewards are uniformly bounded. We therefore have for any i ∈ {1, 2} and t > 0,∣∣∣∣∣

∑Ni(t)
j=1 Yi,j√

2Ni(t) log logNi(t)

∣∣∣∣∣ 6 sup
m>λ(t)

∣∣∣∣∣
∑m
j=1 Yi,j√

2m log logm

∣∣∣∣∣ .
Now for any fixed i ∈ {1, 2}, EYi,j ∼ i.i.d. ∀ j with EYi,1 = 0 and Var (Yi,1) = Var (Xi,1) 6 1.
Also, λ(t) is non-decreasing and λ(t) ↑ ∞. Therefore, the Law of the Iterated Logarithm [5] implies

lim sup
t→∞

∣∣∣∣∣
∑Ni(t)
j=1 Yi,j√

2Ni(t) log logNi(t)

∣∣∣∣∣ 6 1 w.p. 1 ∀ i ∈ {1, 2}. (43)

From (41), (42) and (43), we conclude that

lim
t→∞

Wt = 0 w.p. 1. (44)

Now consider an arbitrary δ > 0. Then,

P
(
N1(n)

n
>

(
1

2
+ ε+ δ

))
= P

(
N1(n)−

(
1

2
+ ε

)
n > δn

)
6
(†)

P(Zn > δn)

6
(‡)

EZn
δn

6
(?)

1

δn

n−1∑
t=( 1

2 +ε)n

P

Wt >
1√(

1
2 − ε

) − 1√(
1
2 + ε

)
 ,
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where (†) follows using (38), (‡) using Markov’s inequality and (?) from (40). Now,

P
(
N1(n)

n
>

(
1

2
+ ε+ δ

))
6

1

δn

n−1∑
t=( 1

2 +ε)n

P

Wt >
1√(

1
2 − ε

) − 1√(
1
2 + ε

)


6

( 1
2 − ε
δ

)
sup

( 1
2 +ε)n6t6n−1

P

Wt >
1√(

1
2 − ε

) − 1√(
1
2 + ε

)


6

( 1
2 − ε
δ

)
sup
t>n/2

P

Wt >
1√(

1
2 − ε

) − 1√(
1
2 + ε

)
 . (45)

Using (44) and (45), we conclude that

lim sup
n→∞

P
(
N1(n)

n
>

(
1

2
+ ε+ δ

))
6

( 1
2 − ε
δ

)
lim sup
n→∞

P

Wn >
1√(

1
2 − ε

) − 1√(
1
2 + ε

)
 = 0.

Since δ > 0 is arbitrary, it follows that limn→∞ P
(
N1(n)
n > 1

2 + ε
)

= 0 for any ε > 0. Since

our proof is symmetric w.r.t. the arms, we also have limn→∞ P
(
N2(n)
n > 1

2 + ε
)

= 0 =⇒

limn→∞ P
(
N1(n)
n 6 1

2 − ε
)

= 0. Therefore, limn→∞ P
(∣∣∣Ni(n)

n − 1
2

∣∣∣ > ε) = 0 for i ∈ {1, 2} and
any ε > 0. �

F Ancillary results

Lemma 1 Consider a stochastic two-armed bandit with rewards bounded in [0, 1]. Suppose that the
reward distributions of the two arms (F1, F2) ∈ G(µ1)×G(µ2) satisfy Assumption 1 (main text). Let
Ni(n) denote the number of times arm i is played by UCB1 [1] up to and including time n. At any
time n+, (Xi,k)

m
k=1 denotes the sequence of rewards realized from the first m 6 Ni(n) plays of arm

i. For each n ∈ N, let Mn := min (N1(n), N2(n)) and consider the following stopping times:

τ := inf

{
n > 2 :

∣∣∣∣∣
Mn∑
k=1

(X1,k −X2,k)

∣∣∣∣∣ < θMn

}
, (46)

τ ′ := inf

{
n > 1 :

∣∣∣∣∣
n∑
k=1

(X1,k −X2,k)

∣∣∣∣∣ < θn

}
, (47)

where the sequence Θ ≡ {θn : n = 1, 2, ...} is defined through (2) (main text). Then, Mτ = τ ′

pathwise.

Lemma 2 Consider the setting of Lemma 1. Recall that T = {1, 2} and t(i) ∈ T denotes the type
of arm i. Define the following conditional stopping times:

τD := τ | t(1) 6= t(2), (48)
τI := τ | t(1) = t(2), (49)

where the subscripts D and I indicate “Distinct” and “Identical” types, respectively. Then, the
following results hold:

(i) P(τD =∞) > β∆, where β∆ is as defined in (1) (main text).

(ii) EτI < C0, where C0 is a constant that depends on the user-defined parameters (m0, γ)
featuring in (2) (main text) that ensure Θ satisfies the conditions of Proposition 1 (main text).

F.1 Proof of Lemma 1

We begin by noting the following facts:
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1. Fact 1: (Mn)n>2 is a non-decreasing sequence of natural numbers (starting from M2 = 1),
with Mn+1 6Mn + 1.

2. Fact 2: For each i ∈ {1, 2}, lim infn→∞Ni(n) = ∞ pathwise2 (consequence of UCB1
and uniformly bounded rewards). Consequently, lim infn→∞Mn =∞ pathwise.

Define Ψk := X1,k − X2,k. Fix some m ∈ N and consider an arbitrary sample-path ω such that

Mτ (ω) = m. Then on ω, we must also have m = inf
{
l > 1 :

∣∣∣∑l
k=1 Ψk(ω)

∣∣∣ < θl

}
(follows from

the definitions of τ and τ ′). Since the choice of m is arbitrary (due to Fact 1 and Fact 2), it must be
that on any arbitrary ω, Mτ (ω) = inf

{
l > 1 :

∣∣∣∑l
k=1 Ψk(ω)

∣∣∣ < θl

}
. The assertion thus follows. �

F.2 Proof of Lemma 2 part (i)

We know from Lemma 1 that Mτ = τ ′. In particular, this also implies MτD = τ ′ | t(1) 6= t(2).
Notice that τD > 2MτD is always true. Thus, it follows that τD > 2 τ ′ | t(1) 6= t(2). Therefore,
P (τD =∞) > P (τ ′ =∞ | t(1) 6= t(2)) = P (τ ′ =∞ | t(1) = 1, t(2) = 2) > β∆ (Recall from
(1) (main text) the definition of β∆.). The assertion thus follows. �

F.3 Proof of Lemma 2 part (ii)

Throughout this proof, the condition t(1) = t(2) is implicit and we shall avoid writing it explicitly to
simplify notation. Let Ψk := X1,k −X2,k. Consider the following:

P(τI > n) = P

(
n⋂
l=2

{∣∣∣∣∣
Ml∑
k=1

Ψk

∣∣∣∣∣ > θMl

})

6 P

(∣∣∣∣∣
Mn∑
k=1

Ψk

∣∣∣∣∣ > θMn

)

=

n∑
m=1

P

(∣∣∣∣∣
Mn∑
k=1

Ψk

∣∣∣∣∣ > θMn , N1(n) = m

)

=

n∑
m=1

P

∣∣∣∣∣∣
min(m,n−m)∑

k=1

Ψk

∣∣∣∣∣∣ > θmin(m,n−m), N1(n) = m

 .

Consider an arbitrary κ ∈
(
0, 1/2−

√
3/4
)
. Splitting the above summation three-ways, we obtain

P(τI > n) 6
κn∑
m=1

P (N1(n) = m) +

(1−κ)n∑
m=κn

P

∣∣∣∣∣∣
min(m,n−m)∑

k=1

Ψk

∣∣∣∣∣∣ > θmin(m,n−m)


6+

n∑
m=(1−κ)n

P (N1(n) = m)

6 P (N1(n) 6 κn) + P (N2(n) 6 κn) +

(1−κ)n∑
m=κn

P

∣∣∣∣∣∣
min(m,n−m)∑

k=1

Ψk

∣∣∣∣∣∣ > θmin(m,n−m)


6 P (N1(n) 6 κn) + P (N2(n) 6 κn) + 2

(1−κ)n∑
m=κn

exp

(
−θ2

min(m,n−m)

2 min(m,n−m)

)
,

where the last step follows from Hoeffding’s inequality [4] using the fact that Ψk’s are i.i.d. with
EΨ1 = 0 and |Ψ1| 6 1. Recall that for any κ ∈

(
0, 1/2−

√
3/4
)
, part (i) of Theorem 4 guarantees

that
∑T
n=1 (P (N1(n) 6 κn) + P (N2(n) 6 κn)) = OT (1) (the subscript T is added to indicate that

2For unbounded rewards, this would hold w.p. 1, not pathwise.
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the asymptotic scaling is w.r.t. T ), with the limit being a constant that depends on the user-defined
parameters (m0, γ) determining the sequence (θm)m∈N in (2) (main text). Therefore, we have

T∑
n=1

P(τI > n) 6 OT (1) + 2

T∑
n=1

(1−κ)n∑
m=κn

exp

(
−θ2

min(m,n−m)

2 min(m,n−m)

)
. (50)

To analyze the double-summation term, consider the following:

(1−κ)n∑
m=κn

exp

(
−θ2

min(m,n−m)

2 min(m,n−m)

)
6

n/2∑
m=κn

exp

(
−θ2

m

2m

)
+

(1−κ)n∑
m=n/2

exp

(
−θ2

n−m
2(n−m)

)

6 2

∞∑
m=κn

exp

(
−θ2

m

2m

)

6 2

∞∑
m=κn

exp

( −θ2
m−m0

2(m−m0)

)
, (51)

Notice that

θ2
m−m0

2(m−m0)
=
(

1− m0

m

)
(2 logm+ (γ/2) log logm) = 2 logm+ (γ/2) log logm+ om(1),

(52)

where the last equality follows since m0 and γ are finite user-defined parameters. Using (51) and
(52), we obtain

(1−κ)n∑
m=κn

exp

(
−θ2

min(m,n−m)

2 min(m,n−m)

)
6 2

∞∑
m=κn

exp (− (2 logm+ (γ/2) loglog m+ om(1)))

= 2

∞∑
m=κn

Om(1)

m2 (logm)
γ/2

6
1

(log n+ log κ)
γ/2

∞∑
m=κn

Om(1)

m2

= On

(
1

(log n+ log κ)
γ/2

(
1

κn
+

1

κ2n2

))
. (53)

From (50) and (53), it follows that

T∑
n=1

P(τI > n) 6 OT (1) +

T∑
n=1

On

(
1

(log n+ log κ)
γ/2

(
1

κn
+

1

κ2n2

))
= OT (1),

where the conclusion in the last step follows since γ > 2 is a finite user-defined parameter and
κ ∈

(
0, 1/2−

√
3/4
)

is arbitrarily chosen. Therefore, the stated assertion that EτI < C0, where C0

is some finite constant that depends on (m0, γ), follows. �

Remark. Part (i) of Theorem 4 has a significant bearing on this result. Specifically, if unlike
UCB1, the playing rule does not satisfy a concentration property akin to the one stated in part (i) of
Theorem 4, then the OT (1) term on the RHS in (50) would instead be Ω(T ).
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