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A Proof of Theorem 1

Since the horizon of play is fixed at n, the decision maker may play at most n distinct arms. Therefore,
it suffices to focus only on the sequence of the first n arms that may be played. A realization of an
instance v = (G(p1),G(p2)) is defined as the n-tuple r = (), ;.. where r; € G(p1) U G(p2)
indicates the reward distribution of arm ¢ € {1,2,...,n}. It must be noted that the decision maker
need not play every arm in r. The distribution over the possible realizations of v = (G(1), G(u2)) in
{r:ri € G(u1)UG(uz), 1 <i< n}satisfies P(r; € G(max(py,p2)) = aforalli e {1,2,...,n}.

Recall that the cumulative pseudo-regret after n plays of a policy 7 on v = (G(u1), G(p2)) is given
by RE(v) = >0y (max(p1, pi2) — fig(r,,))» Where ¢(my,) € {1,2} indicates the type of the arm
played by 7 at time m. Our goal is to lower bound ER” (), where the expectation is w.r.t. the
randomness in 7 as well as the distribution over the possible realizations of v. To this end, we define
the notion of expected cumulative regret of 7 on a realization r of v = (G(p1), G(u2)) by

n

Su(v,r) =E" | Y (max(u, #2) = fiyie,)) | -

m=1

where the expectation E™ is w.r.t. the randomness in 7. Note that ER] (v) = E” ST (v, r), where the
expectation E¥ is w.r.t. the distribution over the possible realizations of v. We define our problem
class VA as the collection of A-separated instances given by

Na = {(G(11),G(u2)) : pn — p2 = A, (1, p2) € R?}.

Definition 1 (Consistent policy) Ler A(r) denote the number of “optimal” arms in realization r.
We call ©r, an asymptotically consistent policy for the problem class N if for any instance v € Na
and any realization r thereof, it satisfies the following two conditions:

ER}(v) = o(n”) foreveryp € (0,1), a € (0,1]. (1)
EY [Sh (v, )| A(r) = m] = EV [S] (v, )| A(r) = k] V(m,n,k):0<m<k<n (2

The set of such policies is denoted by IIons (Ma). Notice that (T]), barring the condition on «, is
the standard definition of asymptotic consistency first introduced in [6] and subsequently adopted
by many other papers. The exclusion of @ = 0 is necessary since no policy can achieve sublinear
regret in said case. We also remark that the additional condition in (@) is not restrictive since any
reasonable policy is expected to incur a larger cumulative regret (in expectation) on realizations with
fewer optimal arms.

Fix an arbitrary A > 0 and consider an instance v = ({Q1}, {Q2}) € Na, where (Q1, Q2) are unit-
variance Gaussian distributions with means (p1, o) respectively. Consider an arbitrary realization
r €{Q1,Q2}" of vandletZ C {1,2,...,n} denote the set of inferior arms in r (arms with reward

distribution QQ2). Consider another instance v’ € N given by v/ = ({@1}, {Ql}) , where @1 is
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another unit variance Gaussian with mean 17 + A. Now consider a realization ' € {Q1,Q1}"

of v/ that is such that the arms at positions in Z have distribution @1 while those at positions in
{1,2,...,n}\Z have distribution Q1. Notice that 7 is the set of optimal arms in ' (arms with reward

distribution (1), implying A(r’) = |Z|. Then, the following always holds:

Sn(v,r)+Sp(v,r') = (Agn) (IP;:T <Z N;(n) > 7;) + P (Z N;(n) < Z)) ,

i€z i€Z
where P}, (-) and P7, () denote the probability measures w.r.t. the instance-realization pairs (v, )

and (v/,r') respectively, and V;(n) denotes the number of plays up to and including time n of arm
i € {1,2,...,n}. Using the Bretagnolle-Huber inequality (Theorem 14.2 of [7]), we obtain

An

ST, 1)+ ST 1) > (4) exp (=D (P, BT, ) |

where D (P7 ., PT, ) denotes the KL-Divergence between P7 . and P7, ... Using Divergence

v,r v,r

decomposition (Lefnma 15.1 of [[7]]), we further obtain

A D (Q2. Q1 A
S™(v,r) + ST, ') > (4”) exp [ — (A) S (v,r) | = <4”) exp (—2A8™ (v, 1)),
where the equality follows since él and ()2 are unit variance Gaussian distributions with means

separated by 2A. Next, taking the expectation E¥ on both the sides above and a direct application of
Jensen’s inequality thereafter yields

ER] (v) + EVSI (V' r') > (?) exp (—2AER] (v)) . (3)

Consider the E¥ ST (v/,r') term in (@) and an arbitrary o € (0,1/2]. Using a simple change-of-
measure argument, we obtain

s (12)"0 )

EVST{' / / :EV’
n(V’T) a

<ERT(V) +E”

(67

—a 2(A(r")—n/2)
sz<u’,r’>(1 ) 1{A<r'>>n/2}], @

where the inequality follows since o < 1/2. Now consider the second term on the RHS in ). It
follows that

/ Cw 2(A(r")—n/2)
E” 1S (v r') (1 - ) L{A(r") > n/Q}]
/ o 2(A(r")—n/2)
= Z EY lSﬁ(u’m’) (1 - ) L{A() = k}l
k>n/2
1—a (2k—n) ,
= > < E” (SR, ) L{A(r) = k}]
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Recall that v* € Na and 7 € Tleons (Ma). We have
ER} (V) = BV S(v/,r)
k
> Y B [SE A = m] Py (A(r) = m) (for any k < n)
m=1
>EY (ST, )| A(F) = K] P, (A(F) < k). (using @) (6
Since o < 1/2, it follows that for any k > n/2, P,/ (A(r") < k) = O,,(1) (the subscript n indicates

that the asymptotic scaling is w.r.t. n). Using this observation together with (T)) and (6), we conclude
that

VEk>n/2 ac(0,1/2] andevery p € (0,1), BV [ST(W/,7)|A(') =k =o(nP). (7)
Combining @), (), (7) and using the fact that v’ € Na with 7 € T¢ons (Ma), we conclude
Vk>n/2, a€(0,1/2] and every p € (0,1), EVST(V,r') = o (n?). ®)
Now consider (3. Taking the natural logarithm of both sides and rearranging, we obtain

ERL(v) ( 1 ) <1+ log () log(ERZ(V)—s—IE”Sg(V’,r’)))'

logn 2A logn logn
Since v, € Na and m € Il ons (Ma), the assertion follows using (8) that for any « € (0,1/2],
. . .ERI(v) 1
lim inf >

n—oc  logn =~ 2A°
Therefore, for any A > 0, 3 v € N and an absolute constant C's.t. the expected cumulative regret
of any consistent policy 7 on v satisfies V « < 1/2 and n large enough, ERT (v) > CA~tlogn. O

B Proof of Theorem 2

We divide the horizon of play into epochs of length m each. For each £ > 0, let Si denote the
cumulative pseudo-regret incurred by the algorithm when it is initialized at the beginning of epoch
(2k + 1) and continued until the end of the horizon of play, i.e., the algorithm starts at time 2km + 1
and runs until time n. We are interested in an upper bound on ER] = ESj. To this end, suppose that
the algorithm is initialized at time 2km + 1. Label the arms played in epochs (2k + 1) and (2k + 2)
as ‘1” and ‘2’ respectively. Let X; denote the empirical mean reward from m plays of arm i € {1,2}.
Recall that t(i) € T = {1, 2} denotes the type of arm ¢, that type 1 is assumed optimal and lastly,
that the probability of a new arm being of the optimal type is . Suppose that 1{E} denotes the
indicator random variable associated with event E. Then, we have that .Sy evolves according to the
following stochastic recursive relation:

Sk = 1{t(1) = 1,¢(2) = 2} [Am +1{Xs— X1 > 6} [n—(2k+2)m] + 1{|X; — X1| < 6}Sk+1] +
1{t(1) = 2,¢(2) = 1} [Am + 1{X| — X5 > 6} [n — (2k + 2)m] + L{| X1 — Xo| < 6} k1] +
1{t(1) = 2,¢(2) = 2} [2Am + 1{|X1 — X2 > 6}A [n — (2k + 2)m] + 1{| X1 — X2| < 6}Sk41] +
1{t(1) = 1,t(2) = 1}1{| X1 — Xa| < 8} Sk+1-

Collecting like terms together,

S =1{t(1) = 1,t(2) = 2}1{X2 — X1 > §}A[n — (2k +2)
1{t(1) = 2,t(2) = 1}1{X; — X2 > 6}A[n — (2k +2)
1{t(1) = 2,t(2) = 2}1{| X1 — Xa| > 0}A [n — (2k + 2)m] +
[1{t(1) # £(2)} + 20{(1) = 2,4(2) = 2}] Am + 1{|X) — Xo| < }Sisr. )
Define the following conditional events:

m|+
m|+

Ep:={Xy-X1>6]|t(1)=1, t(2) =2}, (10)
Ey={X1-Xy>6|t(1)=2, t(2) =1}, (1D
Es:={|X1 - Xa|>6]| t(1) =2, t(2) =2}, (12)
Ey={|X1-Xa| <5 | t(1)=t2)}, (13)
Es ={|X1-Xa| <8 | t(1) #t(2)}. (14)



Taking expectations on both sides in (9) and rearranging, one obtains the following using

(T0). (LID.(T2).(T3).(T4):
ESy = [a(l - a) {P(E1) + P(E2)} + (1 — a)’P(E3)] An — (2k + 2)m]
+ [20(1 — @) +2(1 — )] Am + P (| X1 — X2| < 6) ESiy1. 15)

Notice that Ski;, by definition, is independent of (Xm-)ie (1.2} 1<j<m and hence

E [1{\?1 - Xo| < 5}Sk+1] =P (|Y1 - Y2| < 5) ESj+1 in (T3). Further note that
P(|X1 - X2| <6) = [0®+ (1 — )] P(E4) + 2a(1 — a)P(Es). (16)
From (T3) and (T6), we conclude after a little rearrangement the following:
ESk = & — &k + E&ESk11, A7)
where the &;’s do not depend on k& and are given by

& :=Ala(l—a){P(E1) +P(E2)} + (1 - a)QIP’(Eg)] (n—2m) 4+ 2A(1 — a)m, (18)

& = 2A[a(l — ) {P(E1) + P(E2)} + (1 — a)*P(E3)] m, (19)
&= [a® + (1 — )’| P(E4) 4 2a(1 — a)P(E5). (20)
Observe that the recursion in (I7) is solvable in closed-form and admits the following solution:
-1 -1
ESo =&Y & — &> ké§ + GRS, 1)
k=0 k=0

where [ := [n/(2m)]. Since the &;’s are all non-negative for n > 2m and ES; < 2Am, we have for
n = 2m,

ERT =ES) <

+ 2Am. (22)

Now using (T0),(TT),(12).(T3).(T4) and Hoeffding’s inequality [4] along with the fact that the X;’s
are bounded in [0, 1], we conclude

{P(Ey),P(E>)} < exp (—(A+6)*m/2), (23)
{P(E5),P(ES)} < 2exp (—0%m/2), (24)
P(E5) < exp (—(A —6)*m/2) . (25)

From (T8),(19),20).(22),23).(24) and (24), we conclude
2Anexp (—6*m/2) + Am
a(l—exp(=(A —4)*m/2))

Finally since m = {(2/52) log n1 the stated assertion follows, i.e., for all n > 2m,

ERT < 2A (1+ 1) K;) logn-i-l] + (2) 2+ f(n,6,A)], (26)

where f(n,d,A) = o(1) in n given by

ER; < + 2Am.

n=(55°)

F(n,6,A) = (1_n—(‘%>> K;) logn+3] @7)

For n < 2m, ERT < 2Am follows trivially. Therefore, the bound in (26) is valid for all n > 1. Of
course, ERT < An offers a sharper bound whenever A is very small, similar to finite-armed settings.
Thus in conclusion, ER], is bounded as follows for any n:

ERT < min [An, 2 (1+ 21a> {(;) logn-i-l} + (2) {2+f(n,5,A)}] .



C Proof of Proposition 1

The statement of the proposition assumes |1 — 2| = A > 0. However, we will only prove it for
the case where (1 — 2 = A > 0. The proof for the other case is symmetric and an identical bound
will follow. Fix an arbitrary (Fy, F») € G(u1) X G(u2) and consider the following stopping time:

= inf{n>1;2(\pk§n) <0}, (28)

k=1
where ¥, := YkF1 - Y,CF2 and 0,, := 0, /n. Note that E¥;, = A > 0 (by assumption). Then,

it follows that P (ﬂf::l din (Y]»Fl - Y]Fz)‘ > Qm) > P(r = o). Therefore, it suffices to

show that P(1 = 00) is bounded away from 0. To this end, fix an arbitrary A € (0,1) and let
ng := min{k € N : 0,, < AA}. Since §,, — 0asn — oo and A > 0, it follows that ng < co.
Suppose that w denotes an arbitrary sample-path and consider the following set:

E:={w: ¥p(w) >0 1 <k<nof. (29)

Since Assumption 1 (main text) is satisfied, ng < oo and 8., is monotone decreasing in n with 6, <1,
it follows that P(E), as given below, is strictly positive.

P(E) = [[ P (x> 6x) > 0, where ng = min{k € N: 6, < AA}. (30)
k=1

Notice that 7 > ng on the event indicated by E. In particular,

TE:inf{n2n0+1: Z (\Ilk—gn)<—2(\lfk—§n) E}
k=no+1 k=1
> inf{n>no+1; > (W —0n) <= > (0 — ) E}
() k=no+1 k=1
2inf{n>n0+1: Z (‘I’k—én)<—2(§k—§no) E}
® k=no+1 k=1
> inf{n>n0+1; D (T —AA) <= (Or — Ony) E}
(®) k=no+1 k=1
=ng+infn>1: U, —AA) < -1 5, (31)
) 0 { kZ:l( k ) TZ}

where (1) follows from (29), (1) follows since f,, < éno for n > ng, (e) since 8,, < MA forn = ng,
and (x) holds with 1) := > 7'° | (0, — 0,,,) and ¥}, := W, since (V},), o is independent of E.
Note that 17 > 0 since 6,, is monotone decreasing in . Now consider the following stopping time:

7/ = inf {n >1: Z(\II;C — A < —77} . (32)
k=1

It follows from (31)) and (32) that P(7 = oo|E) > P(7' = o). We next show that P(7' = c0) is
bounded away from 0.

Let S, := > p_; (U}, — AA), with Sy := 0. Since the U}’s are i.i.d. with E¥] = A and [P} | < 1,
it follows that W, := exp (aS,) is a Martingale w.r.t. (¥}), _, where ‘a’ is the non-zero solution
to IE [exp (a (T] — AA))] = 1 (Note that E¥} = A > 0 and A € (0,1) ensures a < 0.). Fix an
arbitrary b > 0 and define T, , := inf{n > 1: 5, ¢ [—n, ]} (We already know that > 0.). By
Doob’s Optional Stopping Theorem [3], it follows that EW iy, , .n) = EWy = 1. Furthermore,
since the stopped Martingale Wy,in(7,, ,,n) is uniformly integrable, we in fact have EWr, , = 1.

Thereafter using Markov’s inequality, we obtain P (STM < —7]) =P (WTW’ y > e’"“) < exp(na).



Since b > 0 is arbitrary, taking lim;_,~, on both sides and invoking the Bounded Convergence
Theorem, we finally conclude that P(7/ = c0) = P (STn,oo > fn) > 1 — exp(na), and hence

P(r = o0|E) = 1 — exp(na) > 0. (33)

In conclusion,

PO (YjFl - Ysz) >0 | = P(r = 00) > P(r = | E)P(E)
m=1 |j=1
ng
> (1 — exp(na)) H P(¥), > ;) > 0,
(%) =1
where (x) follows from (B0) and (33). Since (F1,F>) € G(p1) X G(us) is arbitrary, taking
Ming, eg(u,),Fm2eg(us) ON both the sides above appealing to the fact that the G(u;)’s are finite,
proves our assertion. O

D Proof of Theorem 3

Consider the first epoch and assign the labels 1,2 to the two arms picked to be played in this
epoch. Suppose N;(n) denotes the number of times arm 4 is played up to and including time n. Let
M,, ;== min (N7(n), N2(n)) and define the following stopping time:

< 9Mn}>

where the sequence © = (6,,),, cn 18 defined through (2) (main text). Then, 7 denotes the time of the
terminal play in the first epoch after which the algorithm starts over again. Recall that ¢(7) denotes
the type of arm ¢ and define the following conditional stopping times:

=1 [{t(1) =1(2) = 2}, (34)

=7 | {t(1) # t(2)}, (35)
where the subscripts I and D above indicate “Identical” and “Distinct” types, respectively. Let .S,
denote the cumulative pseudo-regret of UCB1 after n plays in a stochastic two-armed bandit problem
with separation A. Recall that R7 denotes the cumulative pseudo-regret of 7 = ALG (UCBI1, ©, 2)
after n plays; we shall suppress the superscript 7 for notational simplicity and write R,, for R . For
any n € N, let R}, be an i.i.d. copy of R,,. Then, R,, must satisfy the following stochastic recursive
relation:

R, = 1{t(1) # t(2)} Smin(r,n) + 1{t(1) = £(2) = 2} Amin(7,n) + R;_min(ﬂn)
SL{t(1) # (2} Sn + 1{t(1) =1(2) =2} AT+ Ry, _in(rm)

M,

Z (X1p — Xog)

T = inf{n>2:
k=1

=1{t(1) #¢(2)} S, +1{t(1) =¢(2) =2} AT+ i 1{r =k}R,_,

k=2
<L{t(1) #t(2)} S+ 1{t(1) =t(2) = 2} AT + 1{r < n}R,,, (36)
where the last step holds since R;_ < R! Y k < n (this follows trivially since 7 is agnostic to the
horizon of playﬂ). Taking expectations on both sides of (36)), we obtain
ER, < 2a(1 — @)ES, + (1 — a)?AE7; + [2a(1 — a)P(rp < n) + o® + (1 — @)’ ER,
)

< 2a(1 — @)ES, + (1 - a)’AE7 + [2a(1 — ) (1 - Ba) + o + (1 — @)*] ER,
(1)

=2a(1 — @)ES, + (1 — @)?AE7; + (1 — 28aa(l — a)) ER,,

L (1 — a)AEn)
= ER, < <ﬁA) ES, + (26Aa ,

"We could not claim this directly for Algorithm 1 as it depended on ex ante knowledge of the horizon of play.




where (1) uses (34), (33) and the fact that D (7) = (o, 1 — &), and () follows from part (i) of
Lemma 2] (see Appendix [F). We also know from part (ii) of Lemma 2] that Er; < Cj, where Cj is a
constant that depends on the user-defined parameters (mq, 7). The proof now concludes by invoking
Theorem 1 of [1]] for an upper bound on ES,, in order to obtain the desired upper bound on ER,,, i.e.,

8 7'(‘2 (1 — Oé)CO A

<8(ABA) ogn + (C1 +a71C) BRA,
where C; := 1+ 72/3 and Cy := Cy /2. O

E Proof of Theorem 4
E.1 Proof of part (i)

For i € {1,2}, define B; 5 ; := X;(s) + y/(2logt)/s, where X;(s) denotes the empirical mean
reward from the first s plays of arm ¢. UCBI [1]] plays each arm ¢ € {1,2} once at ¢ € {1,2} and
thereafter for ¢t € {3,4, ...,n}, plays the arm I; € arg max;e (1,2} Bi, N, (t—1),t—1- Then, note that the
following holds for any integer © > 1:

{Ni(n) >u} C{Ite{u+2,...,n}: Biut-1 2 Bogu-14-1}-
Thus, using the Union bound,

P(Ni(n) > u) < Z P(Biut—1 = Botu—1,t-1)

t=u+2

+

=

3

= Z P (Bt = Bat—uyt)

!
:tiz_ilP(Xl(u)—Xg(t—u)}@(ﬁ—ﬁ))- (37)

Note that E [ X (u) — X5(t — u)] = 0. Now consider an arbitrary ¢ € (0,1/2). Fort < n and
u = (1/2 + €) n, notice that

1 1 1
>

1 1
= — — > 0.
T—u Vu~ Vi /%_6 /%Jre

This lets us apply Hoeffding’s inequality [4] to when u = (1/2 + €) n. Applying the inequality
to (37), leveraging the fact that the rewards are uniformly bounded in [0, 1], we obtain

P(Ni(n) >u) < ’i exp <—4 (1 — 24/ u(t);u)) logt>

t=u-+1
n—1
< Z exp (—4 (1 —V1- 462) 10gt) ,
t=u-+1

where the last step above follows since u(t — u) < (1/4 —€*) ¢t foru = (1/24+€¢)nand t < n.
Now substituting u = (1/2 + €) n above, we obtain

P (Nl(n) > (; - e> n> < Ti:l exp (—4 (1 - \/@) logt) < gp~(3-4VI=4E)

_n
t=3

Notice that the upper bound is meaningful only when 3 — 4y/1 —4€2 > 0 <= ¢ > 1/7/8, and
therefore holds for all € € (0,1/2) trivially. Since our proof is symmetric w.r.t. the arm labels, an
identical result holds also for the other arm and therefore, the stated assertion follows. O



E.2 Proof of part (ii)

Note that the following is true for any integer u > 1 and i € {1,2}:

n
Ni(n) <u+ Y 1{L; =i, Ni(t — 1) > u},
t=u+1

where I; € {1,2} indicates the arm played at time t. We set u = (1/2 + ¢)n for an arbitrary
e € (0,1/2) and without loss of generality, carry out the rest of the analysis fixing ¢ = 1. Therefore,

n

Ni(n) < <;—|—e>n+ > 1{3:1, Ni(t—1)> (;—l—e)n}

t=(3+e¢)n+1
1 " 1
< (2 + 6) n+ Z 1 {31,N1(t1),t1 > Ba ny(t—1) -1, Ni(t—1) > (2 + 6) n} ,
t=(1+e)n+1

where B; s = Xi(s) + /(2logt)/s for i € {1,2}, with X,(s) denoting the empirical mean
reward from the first s plays of arm ¢. Then,

n—1

1 1
Ni(n) < (2 +6> n+ Z 1 {Bl,Nl(t),t > B Ny (1), Ni(t) > (2 + 6) ﬂ}
t=(%+e)n
1 = 1
< (2 + 6) n+ Z 1 {Bl,Nl(t),t > By Ny by, Ni(t) > (2 + 6) t}
t=(%+e)n
1
where Z,, := ZZ:(EH)” 1{Bi N, ()t = Bony(),6, Ni(t) > (3 +¢€)t}. Now,
EZ,
n—1
1
= P (Bl,Nl(t),t = Ba ny),e Ni(t) = <2 + €> t)
t:(%+e)n
n—1 Ni(t) Na(t)
D=1 X1y 2210 Xay 1 1 1
= P = = = = > \/2logt — ,Nt>(+e>t
e ( MO N0 H\vmn vmw) e
=3 €n
SERY O =Ry =Y 1 1 1
- p&=i=l W=l 2 Hlogt - N t><+e>t ,
2 ( NG MO “\Vew vme) PG
=3 €n

(39)

where Y; ; := X; ; — EX, ; fori € {1,2}, j € N. Note that the last equality above follows since the
mean rewards of both the arms are equal. We therefore have

EZ,

— PORCE CRTND BrCLD OF 1 1 1
= Z) }P’( AT — RAD) 2\/2logt< ),Nl(t)> <—|—e> t>

B 2
(o NeEORNAT0
< S P Z;,Vzlgt) Yy, Z]szgt) Ya < 2logt 1 1 Ni(t) > <1 i )t
X - = - ) = a €
- Ni(t) No(t) Vot \/(1 — o) \/(1 +e) ! 2
t:(§+e)n 2 2
n—1 1 1
< ), PlWz -~ , (40)

(310 JE-9 (E+e



Na(t)

Ny ()
¢ it Vi 252 Ve
where W, := Tlog? ( N NAG) . Now,

| W2
g t Z Yl,j
\ 2logt Nl

|ZN2 Y2,

_ [t log log Nl( ) POARERCI log log NQ( ) SN0y,
logt V2N (t) log log Ny (t) V/2N2(t) log log Na(t)
< t log logt ZNl(t) Y15 n log logt Zfi?) Ys;
S Viogt V2N (t) loglogN1( ) V/2N5(t) loglog Ny (t)
Z 1(t )Yl,j t ZNQ(t)YQ )

_ [loglogt t
N logt

Notice that the following can be deduced from part (i) of Theorem 4 using the Borel-Cantelli Lemma:

t) loglog N1 (t)

t)loglog Na(t)
(41)

iming ) S L v3 w.p.1 Vie{1,2}. (42)

t— 00 t 2 4

In addition to the result in (#2) that holds w.p. 1, we also know that N;(t), for any i € {1,2} and
t > 0, can be lower bounded parhwise by a deterministic non-decreasing function of time, say A(t),
that grows to +00 as t — oo. This is a trivial consequence due to the structure of the UCB1 policy
and the fact that the rewards are uniformly bounded. We therefore have for any i € {1,2} and ¢ > 0,

t) Y m
< sup E— )
\/QN 1og log N, (t) m=A(t) | V2mloglogm

Now for any fixed ¢ € {1,2}, EY; ; ~ iid. V j with EY; ; = 0 and Var (Y; ;) = Var (X, ) < 1.
Also, A(t) is non-decreasing and A\(¢) 1 co. Therefore, the Law of the Iterated Logarithm [3] implies

lim sup 2 Vg <1 wp.1Vie{1,2} (43)
t—o0 | 1/2N;(t) loglog N;(t) h o T
From #I), and (@3], we conclude that
tlggo Wy=0 wp. 1. 44)

Now consider an arbitrary § > 0. Then,

P(Nlrf”) > <;+e+6>> :]P’(Nl(n)— (;—Fe)n}én)

e



where (}) follows using (38), (1) using Markov’s inequality and () from @0). Now,
1 1

p(Nlénb(;Hw)) (% i > = _V(l“)
<(55)
)

(i

Using (@4) and (@3), we conclude that

L\':h—t

=0.

l

2
sup P ! 45)
B L ¢ ¢ l+0)

N- 1 i_
lim sup P M} —+e+d <[ 2 hmsupIP’

Nl(n
n

e) G+

Since § > 0 is arbitrary, it follows that lim,,_, ., P ( > e) 0 for any € > 0. Since

()2 +e) =0 =

our proof is symmetric w.r.t. the arms, we also have lim,,_,, P -

lim,, o, P (NTW <i- e) — 0. Therefore, lim,,_,~, P (’w _ %’ > e) = 0fori € {1,2} and
any € > 0. ]

F Ancillary results

Lemma 1 Consider a stochastic two-armed bandit with rewards bounded in [0, 1]. Suppose that the
reward distributions of the two arms (F1, F3) € G(u1) X G(u2) satisfy Assumption 1 (main text). Let
N;(n) denote the number of times arm i is played by UCBI [l] up to and including time n. At any
time n™, (X;, ;C)ZT:1 denotes the sequence of rewards realized from the first m < N;(n) plays of arm
i. For eachn € N, let My, := min (N1(n), N2(n)) and consider the following stopping times:

My,

7 :=inf {n >2: Z (X1 — Xop)| < HMH} 5 (46)
k=1

7' = inf {n >1: Z (X1p—Xogp)| < 9n} ) (47)
k=1

where the sequence © = {0,, : n = 1,2, ...} is defined through (2) (main text). Then, M, = 7’
pathwise.

Lemma 2 Consider the setting of Lemmall| Recall that T = {1,2} and t(i) € T denotes the type
of arm i. Define the following conditional stopping times:

o = 7| t(1) # t(2), (48)
= 7| t(1) = ¢(2), (49)

where the subscripts D and I indicate “Distinct” and “ldentical” types, respectively. Then, the
following results hold:

(i) P(tp = 00) > Ba, where Ba is as defined in (1) (main text).

(ii) Er; < Co, where Cy is a constant that depends on the user-defined parameters (mg,~y)
featuring in (2) (main text) that ensure © satisfies the conditions of Proposition 1 (main text).

F.1 Proof of Lemmall]

We begin by noting the following facts:
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1. Fact 1: (My,)n>2 is a non-decreasing sequence of natural numbers (starting from Ms = 1),
with M1 < M, + 1.

2. Fact 2: For each i € {1,2}, liminf, . N;(n) = o0 pathwiseE] (consequence of UCBI
and uniformly bounded rewards). Consequently, lim inf,,_, ., M,, = co pathwise.

Define ¥, := X — X5 . Fix some m € N and consider an arbitrary sample-path w such that
M, (w) = m. Then on w, we must also have m = inf { ‘Zk 1 Wil )‘ < 9;} (follows from
the definitions of 7 and 7’). Since the choice of m is arbitrary (due to Fact I and Fact 2), it must be
that on any arbitrary w, M, (w) = inf {Z >1: 'ka:l \I/k(w)‘ < 91}. The assertion thus follows. [J

F.2 Proof of Lemma 2] part (i)

We know from Lemma [I] that M, = 7’. In particular, this also implies M., = 7' | t(1) # ¢(2).

Notice that 7p > 2M,, is always true. Thus, it follows that 7p > 2 7/ | (1) # Therefore,
>

-
' £(2).

]P’(TD:oo)>IP(T’=oo|t()7ét( ) =P (7' =c0] t(1) =1, t(2) = 2) > Ba (Recall from

(1) (main text) the definition of Sa.). The assertion thus follows. 0

F.3 Proof of Lemma 2] part (ii)

Throughout this proof, the condition ¢(1) = ¢(2) is implicit and we shall avoid writing it explicitly to
simplify notation. Let ¥, := X ;, — X5 . Consider the following:

B(rs > ) (ﬂ{ SR 9})

1=2
> ‘91%”>

<r (3
k=1
2 HM”, Nl(n) = m)

n

e

min(m,n—m)

n
Z P Z Wyl > omin(mmfm)a Ny (’I’L) =m

m=1 k=1

Consider an arbitrary x € (O, 1/2 -3/ 4). Splitting the above summation three-ways, we obtain

(1—k)n min(m,n—m)
7—I > n le Nl ) + Z P kz Uyl > emin(m,n—m)
m M=KN =1

+ Z P (Ny(n) =m)

m=(1—k)n

(1-kr)n min(m,n—m)
<P (N1 (n) < HTL) + IP(NQ(TL) < Nn) + Z P Z Uyl > 91111n(m,n—m)
m=kn k=1

(1—r)n —92 .
<P(Ni(n) < kn) + P(Nao(n) < kn) + 2 Z exp (mm(mnm)> ,

2min(m,n —m)

where the last step follows from Hoeffding’s inequality [4] using the fact that ¥;’s are i.i.d. with
E¥; = 0and |¥;] < 1. Recall that for any x € (0,1/2 — v/3/4), part (i) of Theorem 4 guarantees

that 22:1 (P(N1(n) < kn) + P (Na(n) < kn)) = Op(1) (the subscript T is added to indicate that

2For unbounded rewards, this would hold w.p. 1, not pathwise.
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the asymptotic scaling is w.r.t. T'), with the limit being a constant that depends on the user-defined
parameters (1mg,) determining the sequence (6., ),y in (2) (main text). Therefore, we have

T T (1—k)n 92 )
P < 1)+ 2 _mimenmm) )
; (rr>n) <Or(1)+2) 7 Y exp <2mm(m,n_m)> (50)

n=1 m=kn

To analyze the double-summation term, consider the following:

(1—kr)n 92 ( ) n/2 _ 92 (1—k)n _p2
min(m,n—m < m n—m
Z P <2m1n(m n—m)) h Z eXp(Zm)+ Z eXp(Q(n—m))
m=kn m=kn m=n/2

0o _92
<2 Z exp( 2nT>

> 0%1 m
<2y exp( — m%))’ (51)

Notice that

92
ﬁ (1 - H) (2logm + (v/2) loglogm) = 2logm + (v/2) loglog m + 0, (1),

(52)

where the last equality follows since mg and + are finite user-defined parameters. Using (51)) and
(52)), we obtain

(1-r)n 92
min(m,n—m)
z exp <2mm (o —m > 2 Z exp (— (2logm + (v/2) loglog m + 0,,(1)))

m=Kn m=Kn

> Om(1
:22 ()7/2

< ’Y/2 Z

(logn + log K e

1 1 1
-0, — . 53
((1ogn—|—logf-@)w2 (“"+’i2“2>> &)
From (50) and (33)), it follows that

S B > ) < +ZO< )())

n=1 n=1 IOg n+ lOg K
= OT( )7
where the conclusion in the last step follows since v > 2 is a finite user-defined parameter and

K€ (O7 1/2 — V3 / 4) is arbitrarily chosen. Therefore, the stated assertion that E7; < Cj, where Cj
is some finite constant that depends on (my, ), follows. ]

Remark. Part (i) of Theorem 4 has a significant bearing on this result. Specifically, if unlike
UCBI, the playing rule does not satisfy a concentration property akin to the one stated in part (i) of
Theorem 4, then the O (1) term on the RHS in (50) would instead be Q(7T').
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