
Appendix

A Aggregation Masks Micro Dynamics: an Example

In this section, we provide a simple example where linear aggregation would lose the non-linear

relationship embedded within the micro-data. The example is given in Table 1. Other aggregation

methods would incur extra tuning, complicating the overall procedure.

data point xi yi intrinsic mapping

i = 1 (1, 2) 9 1 + 23 = 9
i = 2 (2, 3) 29 2 + 33 = 29

aggregated (1.5, 2.5) 19 1.5 + 2.53 6= 19

Table 1: The mapping from xi := (xi,1, xi,2) to yi is yi = xi,1+x3
i,2. In this case, linear aggregation

distorts the original intrinsic mapping, as 1.5 + 2.53 6= 19.

B Proof of Theorem 2

To prove the theorem, we require the following lemma originally derived in [17]. For completeness,

we provide both the statement and the proof.

B.1 A Technical Lemma

Lemma 3 ([17]). For all ǫ > 0,

P[φ(θ(k))− Φ(θ(k), λ(k)) > (2K2 + 1)ǫ] ≤ (1− q(ǫ))m∆(k,ǫ).

Proof of Lemma 3. By algorithm construction, λ is only updated when the objective value improves.

That is, for all i ∈ {0, . . . ,m},

Φ(θ(k), λ(k+1)) ≥ Φ(θ(k), λ(k,i)). (8)

Since Φ is K-Lipschitz continuous with respect to θ, we immediately have

|Φ(θ(k+1), λ(k+1))− Φ(θ(k), λ(k+1))| ≤ K‖θ(k+1) − θ(k)‖ ≤ K2ηk. (9)

Likewise,

|Φ(θ(k+1), λ(k,i))− Φ(θ(k), λ(k,i))| ≤ K‖θ(k+1) − θ(k)‖ ≤ K2ηk. (10)

Plugging (9) and (10) into (8), we immediately have

Φ(θ(k+1), λ(k+1)) ≥ Φ(θ(k+1), λ(k,i))− 2K2ηk. (11)

With the above principle, we can apply the relaxation technique repeatedly, and obtain the following

chain of inequalities

Φ(θ(k+1), λ(k+1)) ≥ Φ(θ(k), λ(k+1))−K2ηk ≥ Φ(θ(k), λ(k))−K2ηk

≥ Φ(θ(k−1), λ(k))−K2(ηk + ηk−1) ≥ Φ(θ(k−1), λ(k−1))−K2(ηk + ηk−1)

≥ · · · ≥ Φ(θ(k−j), λ(k−j+1))−K2
k∑

κ=k−j

ηκ, (12)

and

Φ(θ(k−j), λ(k−j+1)) ≥ Φ(θ(k−j), λ(k−j,i)) ≥ Φ(θ(k−j+1), λ(k−j,i))−K2ηk−j

≥ Φ(θ(k−j+2), λ(k−j,i))−K2(ηk−j + ηk−j+1)

≥ · · · ≥ Φ(θ(k+1), λ(k−j,i))−K2
k∑

κ=k+1−j

ηκ

≥ Φ(θ(k+1), λ(k−j,i))−K2
k∑

κ=k−j

ηκ. (13)
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Combining (12) and (13), and setting j = ∆(k + 1, ǫ)− 1, we get

Φ(θ(k+1), λ(k+1)) ≥ Φ(θ(k+1), λ(j′,i))− 2K2
k∑

κ=k+1−∆(k+1,ǫ)

ηκ (14)

for all j′ ∈ {k −∆(k + 1, ǫ) + 1, . . . , k} and all i ∈ {0, . . . ,m}. By the definition of ∆(k + 1, ǫ),
we further have

Φ(θ(k+1), λ(k+1)) ≥ Φ(θ(k+1), λ(j′,i))− 2K2ǫ. (15)

Denote set Sk+1 = {λ(j′,i) : j′ ∈ {k + 1−∆(k + 1, ǫ), . . . , k}, i ∈ {0, . . . ,m}}, we have

P

[
φ(θ(k+1))− Φ(θ(k+1), λ(k+1)) ≥ (2K2 + 1)ǫ

]
≤ P

[
φ(θ(k+1))− max

λ∈Sk+1

Φ(θ(k+1), λ) ≥ ǫ

]
.

(16)

Now, since the λ’s in S are drawn i.i.d., we immediately have

P

[
φ(θ(k+1))− max

λ∈Sk+1

Φ(θ(k+1), λ) ≥ ǫ

]
≤ (1− q(ǫ))m∆(k+1,ǫ), (17)

and hence we have proven the lemma.

�

Lemma 3 implies that, for any fixed m, one can roughly treat the updates of θ’s within the last

∆(k, ǫ) iterations as constant when k is large enough, so that the sampled λ’s have a larger chance

of hitting the region where the value of Φ(θ(k), ·) is very close to φ(θ(k)). When the step size

vanishes, ∆(k, ǫ) → ∞, which directly leads to the following conclusion:

Corollary 4 ([17]). When ηk → 0 and
∑

k≥1 ηk = ∞, we have Φ(θ(k), λ(k)) converges to φ(θ(k))
in probability.

In the following, we show that Lemma 3 also has non-asymptotic implications: when k is large,

the gradient ∇θΦ(θ
(k), λ(k)) converges towards the gradient of φ(θ(k)), and hence leads to the

convergence to the stationary point. We develop this idea in more details in the remainder of this

section.

B.2 Proof of (i): Asymptotic Convergence to a Stationary Point

Consider the Moreau envelope of φ:

φν(θ) := min
θ′

{
φ(θ′) + δΘh

(θ′) +
1

2ν
‖θ − θ′‖2

}
, (18)

where δΘh
(θ′) = 0 if θ′ ∈ Θh and ∞ otherwise. Let

θ̂(k) = argmin
θ∈Θh

{
φ(θ) +

1

2ν
‖θ − θ(k)‖2

}
. (19)

Then,

φν(θ
(k+1)) ≤ φ(θ̂(k)) +

1

2ν
‖θ(k+1) − θ̂(k)‖2

= φ(θ̂(k)) +
1

2ν

∥∥∥Π
[
θ(k) − ηk∇θΦ(θ

(k), λ(k+1))
]
−Π

[
θ̂(k)

]∥∥∥
2

≤ φ(θ(k)) +
1

2ν

∥∥∥θ(k) − θ̂(k) − ηk∇θΦ(θ
(k), λ(k+1))

∥∥∥
2

, (20)

where the first inequality holds from the definition of the Moreau envelope, and the last inequality

holds from the non-expansiveness of the projection operator. Further expanding the last term in (20),
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we can further upper bound φν(θ
(k+1)) by

φν(θ
(k+1)) ≤ φ(θ(k)) +

1

2ν
‖θ(k) − θ̂(k)‖2 + 1

2ν
‖ηk∇θΦ(θ

(k), λ(k+1))‖2+

+
1

2ν
· 2〈θ(k) − θ̂(k),−ηk∇θΦ(θ

(k), λ(k+1))〉

= φν(θ
(k)) +

1

2ν
‖ηk∇θΦ(θ

(k), λ(k+1))‖2 + 1

ν
〈θ(k) − θ̂(k),−ηk∇θΦ(θ

(k), λ(k+1))〉

≤ φν(θ
(k)) +

1

2ν
η2kK

2 +
1

ν
〈θ(k) − θ̂(k),−ηk∇θΦ(θ

(k), λ(k+1))〉, (21)

where the first equality holds by the definition of the Moreau envelope and the construction of θ̂(k),
and the second inequality holds by upper bounding the gradient norm ‖∇θΦ(θ

(k−1), λ(k))‖2 ≤ K2.

Now, by the smoothness of φ, we have

φ(θ̂(k)) ≥ Φ(θ̂(k), λ(k+1))

≥ Φ(θ(k), λ(k+1)) + 〈∇θΦ(θ
(k), λ(k+1)), θ̂(k) − θ(k)〉 − L

2
‖θ̂(k) − θ(k)‖2. (22)

Hence, letting ν = 1/2L, and plugging (22) into (21), we immediately have

φ1/2L(θ
(k+1)) ≤ φ1/2L(θ

(k))− 2Lηk

[
φ(θ(k))− φ(θ̂(k))− L

2
‖θ̂(k) − θ(k)‖2

]
+

+ 2Lηk

[
φ(θ(k))− Φ(θ(k), λ(k+1))

]
+ Lη2kK

2. (23)

By the smoothness assumption on φ, it is also a weakly convex function. In particular, φ(θ)+L‖θ−
θ(k)‖2 is L-strongly convex. Hence,

φ(θ(k))− φ(θ̂(k))− L

2
‖θ̂(k) − θ(k)‖2 =

(
φ(θ(k)) + L‖θ(k) − θ(k)‖2

)
−

−
(
φ(θ̂(k)) + L‖θ̂(k) − θ(k)‖2

)
+

L

2
‖θ̂(k) − θ(k)‖2

≥ L‖θ̂(k) − θ(k)‖2 =
1

4L
‖∇φ1/2L(θ

(k))‖2. (24)

Hence, plugging (24) into (23) immediately leads to

φ1/2L(θ
(k+1)) ≤ φ1/2L(θ

(k))− ηk
2
‖∇φ1/2L(θ

(k))‖2+

+ 2Lηk

[
φ(θ(k))− Φ(θ(k), λ(k+1))

]
+ Lη2kK

2. (25)

Finally, upon telescoping over k from k0 to ∞, we have
∞∑

k=k0

ηk
2
‖∇φ1/2L(θ

(k))‖2 ≤ φ1/2L(θ
(k0))− min

θ∈Θh

φ1/2L(θ)+

+ 2L

∞∑

k=k0

ηk

[
φ(θ(k))− Φ(θ(k), λ(k+1))

]
+ LK2

∞∑

k=k0

η2k. (26)

With simple algebraic manipulations, we have

1

2

∞∑

k=k0

ηk∑∞
t=k0

ηt
‖∇φ1/2L(θ

(k))‖2 ≤ φ1/2L(θ
(k0))−minθ∈Θh

φ1/2L(θ)∑∞
k=k0

ηk
+

+ 2L

∑∞
k=k0

ηk[φ(θ
(k))− Φ(θ(k), λ(k+1))]∑∞
k=k0

ηk
+

+ LK2

∑∞
k=k0

η2k∑∞
k=k0

ηk
. (27)

By the assumption on the step size ηk, the first and third terms on the right-hand side vanish as

k → ∞. By Lemma 3, we have Φ(θ(k), λ(k+1)) → φ(θ(k)) in probability, which implies that for

any ǫ > 0, P[φ(θ(k))− Φ(θ(k), λ(k+1)) > ǫ] → 0 as k → ∞. Invoking Cesàro’s lemma, we further

have, for any ǫ > 0, the probability that the second term in (27) being greater than ǫ is asymptotically
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0. Since the left-hand side of (27) is lower-bounded by infk≥k0
‖∇φ1/2L(θ

(k))‖2, we further have

lim infk→∞ ‖∇φ1/2L(θ
(k))‖ = 0 in probability.

B.3 Proof of (ii): Vanishing Gradient in the Sense of Mean Square

We start from taking unconditional expectations on (27) over k ∈ {1, . . . , T}, which leads to

1

2
E

[ T−1∑

k=1

ηk∑T−1
t=1 ηt

‖∇φ1/2L(θ
(k))‖2

]
≤ Eφ1/2L(θ

(1))−minθ∈Θh
φ1/2L(θ)∑T−1

k=1 ηk
+

+ 2L

∑T−1
k=1 ηkE[φ(θ

(k))− Φ(θ(k), λ(k+1))]
∑T−1

k=1 ηk
+

+ LK2

∑T−1
k=1 η2k∑T−1
k=1 ηk

. (28)

When ηk = Θ(1/
√
k), the combination of the first and the third terms is upper bounded by

O(LK2 log(T − 1)/
√
T − 1). We now bound the second term.

First notice that we always have

φ(θ(k)) ≥ Φ(θ(k), λ(k+1)). (29)

Secondly, by Lemma 3 and applying one more round of sampling, we have

P

[
φ(θ(k))− Φ(θ(k), λ(k+1)) ≥ (2K2 + 1)ǫ

]
≤ (1− q(ǫ))m(∆(k,ǫ)+1). (30)

Since Θh and Θu are compact and convex regions, we can assume that there exists a constant D
such that

φ(θ)− Φ(θ, λ) ≤ D. (31)

Hence, we can upper bound E[φ(θ(k))− Φ(θ(k), λ(k+1))] with

E[φ(θ(k))− Φ(θ(k), λ(k+1))] ≤ ǫ · P[φ(θ(k))− Φ(θ(k), λ(k+1)) ≤ ǫ]+

+D · P[φ(θ(k))− Φ(θ(k), λ(k+1)) > ǫ]

≤ ǫ+D(1− q(ǫ))m(∆(k,ǫ/(2K2+1))+1). (32)

Notice that the second term in the right-hand side of (32) is vanishing as k → ∞. Hence, we can

also choose a vanishing ǫ to minimize the upper bound for E[φ(θ(k))− Φ(θ(k), λ(k+1))].

Finding the optimal ǫ. We let ǫ be dependent on k, denoted by ǫk. By the design of the step size,

there exist constants C1 and C2 such that

C1ǫ
√
k ≤ ∆(k, ǫk/(2K

2 + 1)) ≤ C2ǫ
√
k. (33)

In order to balance ǫk and D(1 − q(ǫk))
m(∆(k,ǫk/(2K

2+1))+1), we can fix C3 and C4 to be two

positive constants and desire

C3ǫk ≤ D(1− q(ǫk))
m(C2ǫk

√
k+1) ≤ D(1− q(ǫk))

m(C1ǫk
√
k+1) ≤ C4ǫk. (34)

Focusing on the right-hand portion of (34), we require

log
D

C4ǫk
≤ −m(C1ǫk

√
k + 1) log(1− q(ǫk)) (35)

for it to hold. Since log(1− q(ǫk)) ≤ −q(ǫk), (35) holds true if

log
D

C4ǫk
≤ 2m(C1ǫk

√
k + 1)q(ǫk). (36)

Reparameterizing ǫk by γk/
√
k, we see that (36) holds if

log
D
√
k

C4γk
≤ 2m(C1γk + 1)q(γk/

√
k), (37)

or equivalently

log D
√
k

C4γk

2m(C1γk + 1)
≤ q(γk/

√
k). (38)
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By assumption, there exists a constant C5 such that

q(γk/
√
k) ≥ C5

(
γk√
k

)δq

. (39)

Hence, (38) holds true if

log D
√
k

C4γk

2m(C1γk + 1)
≤ C5

(
γk√
k

)δq

, (40)

which holds if

γk = Ω

(
m

− 1
δq+1

√
k

δ1
δk+1 log

1
δq+1 k

)
,

or equivalently

ǫ = Ω

((
log k

m
√
k

) 1
δq+1

)
. (41)

Hence choosing ǫ = Θ

((
log k

m
√
k

) 1
δq+1

)
yields

E[φ(θ(k))− Φ(θ(k), λ(k+1))] = O
((

log k

m
√
k

) 1
δq+1

)
. (42)

Noticing that ηk = Θ(1/
√
k), we further have

∑T−1
k=1 ηkE[φ(θ

(k))− Φ(θ(k), λ(k+1))]
∑T−1

k=1 ηk
= O




∑T−1
k=1

1√
k

(
log k

m
√
k

) 1
δq+1

√
T − 1




= O
(
log

1
δq+1 (T − 1)

m
1

δq+1
√
T − 1

T−1∑

k=1

1
√
k

1
δq+1

)

= O
((

log(T − 1)

m
√
T − 1

) 1
δq+1

)
, (43)

which completes the proof.

Meanwhile, if we choose m = log1−q(ǫ) ǫ, then the right-hand side of (32) can be further

upper bounded by (1 + D)ǫ. Hence, the convergence rate of min1≤k≤T ‖∇φ1/2L(θ
(T ))‖ is

O(ǫ+ log T/
√
T ).

C GDRS for Stochastic Objective and its Convergence Rate

We consider when Φ in Algorithm 1 can only be estimated via Φ̂Nk
, an average of Nk noisy obser-

vations of Φ at the k-th iteration. In particular, we define

Φ̂(θ, λ) = Φ(θ, λ) + w(θ, λ), (44)

to be a random observation, with w being the noise component, and define

Φ̂Nk
(θ, λ) = N−1

k

Nk∑

i=1

Φ̂(i)(θ, λ), (45)

where Φ̂(i)’s are i.i.d. observations of Φ̂. In this setting, we have the following results.

Theorem 5 (Convergence of GDRS under noisy observations of Φ). Under Assumption 1, suppose

E‖w(θ, λ)‖2 < σ2 < ∞. Assume supθ∈Θh,λ∈Θu
‖∇θΦ̂(θ, λ)‖2 = K̂ < ∞, E[w(θ, λ)] = 0, and

E[∇θΦ̂(θ, λ)] = ∇θΦ(θ, λ). Let {Nk}k≥1 be an increasing and diverging sequence, and set m = 1
in Algorithm 1. Then,

• if
∑

k≥1 ηk = +∞ and
∑

k≥1 η
2
k < ∞, we have limT→∞ ‖∇φ1/2L(θ

(T ))‖ = 0 in proba-

bility, and almost surely if ∃δ > 1 such that kδ/Nk → 0.
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• if ηk = Θ(1/
√
k), and Nk = Ω

(
σ2k

1
2
(1+ 3

δq+1
)

log
3

δq+1 k

)
, then

min
1≤k≤T

E‖∇φ1/2L(θ
(k))‖2 = O

((
log T

m
√
T

) 1
δq+1

+
log T√

T

)
. (46)

Remark 6. Similar to Theorem 2, Theorem 5(i) provides asymptotic convergence of GDRS under

stochastic observations of the objective, while Theorem 5(ii) provides convergence rate. Interest-

ingly, one does not need too many samples in order to accurately evaluate Φ. In particular, the

larger the δq , the less samples one needs at each iteration. This is because the random search proce-

dure eventually dominates the speed of convergence. As a direct consequence, setting Nk = Ω(k2)
suffices to guarantee the same rate as if we are observing noiseless Φ.

To prove the theorem, we require the following lemma originally derived in [17].

Lemma 7 ([17]). Let ∆k , ∆k(ǫ) → ∞ be any diverging sequence satisfying ∆k(ǫ)/Nk−∆k(ǫ) →
0 and

∑k−1
i=k−∆k(ǫ)

ηi ≤ ǫ. Then, for all ǫ > 0,

P[φ(θ(k))− Φ(θ(k), λ(k)) > ǫ] ≤ (1− q(ǫ/2))∆k +
32σ2∆k

ǫ2Nk−∆k

.

Furthermore, when there exists δ > 1 such that kδ/Nk → 0, one can construct a sequence ∆k such

that for any b ∈ [0, 1),
∑

k≥1 b
∆k < ∞ and

∑
k≥1 ∆k/Nk < ∞.

Lemma 7 shows that as long as the observation noise is asymptotically mitigated, then one can

guarantee convergence of Φ(θ(k), λ(k)) to φ(θ(k)). When ηk = Θ(1/
√
k), we have ∆k = O(

√
k).

Below, we invoke Lemma 7 to prove our conclusion.

C.1 Proof of (i): Asymptotic Convergence to a Stationary Point

Similar to the proof of Theorem 2, we have

φν(θ
(k+1)) ≤ φ(θ̂(k)) +

1

2ν
‖θ(k+1) − θ̂(k)‖2

= φ(θ̂(k)) +
1

2ν

∥∥∥Π
[
θ(k) − ηk∇θΦ̂Nk

(θ(k), λ(k+1))
]
−Π

[
θ̂(k)

]∥∥∥
2

≤ φ(θ(k)) +
1

2ν

∥∥∥θ(k) − θ̂(k) − ηk∇θΦ̂Nk
(θ(k), λ(k+1))

∥∥∥
2

, (47)

where the first inequality holds from the definition of the Moreau envelope, and the last inequality

holds from the non-expansiveness of the projection operator. Further expanding the last term in (47),

we can further upper bound φν(θ
(k+1)) by

φν(θ
(k+1)) ≤ φ(θ(k)) +

1

2ν
‖θ(k) − θ̂(k)‖2 + 1

2ν
‖ηk∇θΦ̂Nk

(θ(k), λ(k+1))‖2+

+
1

2ν
· 2〈θ(k) − θ̂(k),−ηk∇θΦ̂Nk

(θ(k), λ(k+1))〉

= φν(θ
(k)) +

1

2ν
‖ηk∇θΦ̂Nk

(θ(k), λ(k+1))‖2 + 1

ν
〈θ(k) − θ̂(k),−ηk∇θΦ̂Nk

(θ(k), λ(k+1))〉

≤ φν(θ
(k)) +

1

2ν
η2kK̂

2 +
1

ν
〈θ(k) − θ̂(k),−ηk∇θΦ̂Nk

(θ(k), λ(k+1))〉, (48)

where the first equality holds by the definition of the Moreau envelope and the construction of θ̂(k),
and the second inequality holds by upper bounding the gradient norm ‖∇θΦ̂Nk

(θ(k−1), λ(k))‖2 ≤
K̂2. Now, by the smoothness of φ, we have

φ(θ̂(k)) ≥ Φ(θ̂(k), λ(k+1))

≥ Φ(θ(k), λ(k+1)) + 〈∇θΦ(θ
(k), λ(k+1)), θ̂(k) − θ(k)〉 − L

2
‖θ̂(k) − θ(k)‖2. (49)
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Hence, letting ν = 1/2L, and plugging (49) into the unconditional expected version of (48), we

immediately have

E[φ1/2L(θ
(k+1))] ≤ E[φ1/2L(θ

(k))]− 2LηkE

[
φ(θ(k))− φ(θ̂(k))− L

2
‖θ̂(k) − θ(k)‖2

]
+

+ 2LηkE
[
φ(θ(k))− Φ(θ(k), λ(k+1))

]
+ Lη2kK̂

2. (50)

By the smoothness assumption on φ, it is also a weakly convex function. In particular, φ(θ)+L‖θ−
θ(k)‖2 is L strongly convex. Hence,

φ(θ(k))− φ(θ̂(k))− L

2
‖θ̂(k) − θ(k)‖2 =

(
φ(θ(k)) + L‖θ(k) − θ(k)‖2

)
−

−
(
φ(θ̂(k)) + L‖θ̂(k) − θ(k)‖2

)
+

L

2
‖θ̂(k) − θ(k)‖2

≥ L‖θ̂(k) − θ(k)‖2 =
1

4L
‖∇φ1/2L(θ

(k))‖2. (51)

Hence, plugging (51) into (50) immediately leads to

E[φ1/2L(θ
(k+1))] ≤ E[φ1/2L(θ

(k))]− ηk
2
E‖∇φ1/2L(θ

(k))‖2+

+ 2LηkE
[
φ(θ(k))− Φ(θ(k), λ(k+1))

]
+ Lη2kK̂

2. (52)

Finally, upon telescoping over k from k0 to ∞, and performing simple algebraic manipulations, we

have

1

2
E

[ ∞∑

k=k0

ηk∑∞
t=k0

ηt
‖∇φ1/2L(θ

(k))‖2
]
≤ E[φ1/2L(θ

(k0))]−minθ∈Θh
φ1/2L(θ)∑∞

k=k0
ηk

+

+ 2L

∑∞
k=k0

ηkE[φ(θ
(k))− Φ(θ(k), λ(k+1))]∑∞
k=k0

ηk
+

+ LK̂2

∑∞
k=k0

η2k∑∞
k=k0

ηk
. (53)

By the assumption on the step size ηk, the first and third terms on the right-hand side vanish. By

Lemma 3, we have Φ(θ(k), λ(k+1)) → φ(θ(k)) in probability, and since Θh and Θu are compact

and convex, φ(θ(k)) − Φ(θ(k), λ(k+1)) is bounded. In this case, convergence in probability implies

convergence in expectation. Hence, by Cesàro’s lemma, the second term on the right-hand side

converges to the limit of E[φ(θ(k))− Φ(θ(k), λ(k+1))], which is 0 as well.

Meanwhile, the left-hand side of (53) is lower bounded by 1
2 infk≥k0

E‖∇φ1/2L(θ
(k))‖2,

which is further lower bounded by 1
2E infk≥k0

‖∇φ1/2L(θ
(k))‖2, which converges to

1
2E lim infk→∞ ‖∇φ1/2L(θ

(k))‖2 as k0 → ∞. Hence, we have

lim inf
k→∞

‖∇φ1/2L(θ
(k))‖ = 0 (54)

in the mean square sense, and hence also in probability. Finally, when there exists δ > 1 such that

kδ/Nk → 0, we have φ(θ(k))− Φ(θ(k), λ(k+1)) → 0 almost surely by invoking Lemma 7 together

with union bound. In (53), this means that for any realization such that φ(θ(k))−Φ(θ(k), λ(k+1)) →
0, (54) holds true. Since such realizations happens with probability 1, (54) holds true almost surely.

Thus, we have reached the conclusion for the convergence of ‖∇φ1/2L(θ
(T ))‖.

We hence conclude the proof.

C.2 Convergence Rate of GDRS for Stochastic Objective

Similar to the proof of Theorem 2, we have

E[φ(θ(k))− Φ(θ(k), λ(k+1))] ≤ D

[
(1− q(ǫ/2))∆k +

32σ2∆k

ǫ2Nk−∆k

]
+ ǫ. (55)
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Since ηk = Θ(1/
√
k), we have ∆k = O(

√
k). By the analysis of Theorem 2, we immediately see

that the right-hand side of (55) is upper bounded by
(

log k√
k

) 1
δq+1

when

ǫ , ǫk = Θ

((
log k√

k

) 1
δq+1

)
. (56)

Notice that the second term on the right-hand side of (55) can be made arbitrarily small by increasing

Nk−∆k
for any given k. With simple manipulations, we see that the right-hand side of (55) is

dominated by ǫk when we set

Nk−
√
k = Ω

(
σ2k

1
2 (1+

3
δq+1 )

log
3

δq+1 k

)
. (57)

The remainder of the proof follows from (43).
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