Appendix

A Aggregation Masks Micro Dynamics: an Example

In this section, we provide a simple example where linear aggregation would lose the non-linear
relationship embedded within the micro-data. The example is given in Table 1. Other aggregation
methods would incur extra tuning, complicating the overall procedure.

data point x; Yi intrinsic mapping
i=1 (1,2) 9 1+2°=9
i=2 (2,3) 29 2+3%=29

aggregated | (1.5,2.5) 19 1.5+2.5% # 19

Table 1: The mapping from z; := (x; 1, z;2) toy; is y; = ;1 +mi2. In this case, linear aggregation
distorts the original intrinsic mapping, as 1.5 + 2.5% # 19.

B Proof of Theorem 2

To prove the theorem, we require the following lemma originally derived in [17]. For completeness,
we provide both the statement and the proof.

B.1 A Technical Lemma

Lemma 3 ([17]). Forall e > 0,
]p[(b(g(k)) _ q)(g(k)’ /\(k)) > (2K2 +1)<(1- q(e))mA(k,e)'

Proof of Lemma 3. By algorithm construction, ) is only updated when the objective value improves.
That is, forall ¢ € {0,...,m},

@(Q(k)’ )\(k+1)) > (I)(g(k)7 /\(kﬂ')). (8)
Since ® is K -Lipschitz continuous with respect to 6, we immediately have
|<I)(9(k+1),)\(k+1)) _ (I)(g(k),)\(k+1))| < K||9(k+1) _ e(k)H < K277k' ©)
Likewise,
|B(OFFD,AED) — o9 AFD)| < K[|0FTD — 9P| < K. (10)
Plugging (9) and (10) into (8), we immediately have
(I)(e(k—&-l)’ /\(k+1)) > @(9(k+1)’)\(k,i)) —oK?2p,. (11)

With the above principle, we can apply the relaxation technique repeatedly, and obtain the following
chain of inequalities
@(9(k+1)7)\(k+1)) > q)(g(k),/\(k-i-l)) _ K277k > @(g(k)7)\(k)) _ K277k

> o(0F Y AEY - K2y, 4+ mpq) > 0(OF Y AETDY - K2 (g +mpy)

k
> > (p(g(kfj)7)\(kfj+1)) _ K2 Z T 12)
rk=k—j
and
q)(e(k_j)’)\(k—j"rl)) 2 @(9(]"—])7)\(16—],1)) Z (b(e(k’_j""l)’)\(k—j,i)) _ K2,rlk7j
> ‘I)(Q(kfj+2)7 )\(k*j’i)) _ K2(77k—j + 77k—j+1)
k
> > (R Y \k=a0)y K2 Z -
k=k+1—7j
o k
> e+ \k=id)y _ 2 Z . 0%
r=k—j
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Combining (12) and (13), and setting j = A(k + 1,¢) — 1, we get
k
q)(g(k-&-l)’ )\(k+1)) > <I>(9(k+1)7 )\(jl7i)) _9K?2 Z N (14)
r=k+1—A(k+1,e)
forall j € {k — A(k+1,¢)+1,...,k}and all i € {0,...,m}. By the definition of A(k + 1,¢),
we further have
S(OFHD NFTDY > (gt NGy — 22 (15)

Denote set Syy1 = {A\U") : j/ e {k+1—A(k+1,¢),...,k},i € {0,...,m}}, we have

P ¢(9(k+1)) _ @(g(k-&-l)’)\(k-&-l)) > (2K2 + 1)6} <P ¢(0(k+1)) — max @(Q(k-&-l)’)\) > e} )
L E€Sk+1
(16)
Now, since the A’s in S are drawn i.i.d., we immediately have
P [sb(@(‘“*”) — max BOFTDN) > el < (1—g(e))m A, (17)
AESk+1 ]
and hence we have proven the lemma.
[ |

Lemma 3 implies that, for any fixed m, one can roughly treat the updates of 6’s within the last
A(k, €) iterations as constant when k is large enough, so that the sampled \’s have a larger chance
of hitting the region where the value of ®(6(*) .) is very close to ¢(0*)). When the step size
vanishes, A(k, €) — oo, which directly leads to the following conclusion:

Corollary 4 ([17]). Whenny, — 0 and Y, . = 00, we have ®(0%), \(¥)) converges to ¢(0*))
in probability. B

In the following, we show that Lemma 3 also has non-asymptotic implications: when k is large,
the gradient Vo® (0, \(*)) converges towards the gradient of ¢(6(®)), and hence leads to the
convergence to the stationary point. We develop this idea in more details in the remainder of this
section.

B.2 Proof of (i): Asymptotic Convergence to a Stationary Point

Consider the Moreau envelope of ¢:

. 1
0,(6) = min { 60" + G, () + 510~ ¢}, 13)
where dg,, (0') = 0if ¢’ € O}, and oo otherwise. Let
~ 1
o) = argmin{¢(9)—|— 2|9—9(k)||2}. (19)
€Oy, v

Then,
~ 1 ~
L(OFFDY < () 4 | jgUt1) _ glk) 12
Gu(0%+D) < 6(0) + | [
~ 1 . 2
= 9(0™) + 5 HH (009 = W@ (), XD — 1 [9)] H
1 ~ 2
< 0(0®) + o [0 = B — w0 (6@, A+ |, (20)
v
where the first inequality holds from the definition of the Moreau envelope, and the last inequality
holds from the non-expansiveness of the projection operator. Further expanding the last term in (20),
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we can further upper bound ¢, (*+1)) by
B (0%H) < (00) 4 - 00 T2 4 [ Tp@ (0, A 2
i % L2005 — G (80, A+
= 6060+ o [ To@ (O NEFD)2 4 2190 G, 7y (o), AK+D))

1 1 ~
< du(0W) + onf K+ — (0 — 0, — V@ (90, AEED)), @)

where the first equality holds by the definition of the Moreau envelope and the construction of ok,
and the second inequality holds by upper bounding the gradient norm ||V ®(#*~1) A(F))|2 < K2
Now, by the smoothness of ¢, we have
B(OF)) > (gh) A(F+1)
> @(0%) AR 4 (7,0 (9F) AFHDY glk) _ gk)y £||§(k) —9®)2 (22)
- ) Y ) 2 N
Hence, letting v = 1/2L, and plugging (22) into (21), we immediately have

N I ~
G120 (OFTDY < by jop () — 2Ly, [¢(9(k)) — (O™ — §||9(k) - 6’(k)||2] +

2L, {qb(e(k)) — (e, A(k“))} + Li?K2. 23)

By the smoothness assumption on ¢, it is also a weakly convex function. In particular, ¢(6)+ L||6 —
6(%)||2 is L-strongly convex. Hence,

HOW) — 6(F) — 2180 — 6092 = (5(0®) + L6 — 9|7 -
~ ~ L~
= (0@W) + LIF® — 00 |2) 1+ S84 — o®|2

~1 1
> L9 = 6|2 = (V2 (07)]. (24)
Hence, plugging (24) into (23) immediately leads to
G120 (0% D) < ¢y o, (0P — 77?k||V<Z51/2L(9(k))||2+

2L, [a;(e(k)) — oW, M’““))} + LiK2. 25)

Finally, upon telescoping over k from kg to co, we have

> BlIV6120 (0| < b1/00,(8*) — min 6172 (6)+
k=ko "

+2L 3 e [6(0W) = @(6® N £ LE2 S 2 6)
k=ko k=kq

With simple algebraic manipulations, we have

1 & Mk E)y (2
- —||Ve¢ ok <
P

¢1/2r,(0%F0)) — mingeo, ¢1/21,(0) .
ZZo:ko Mk

S Me[0(0F)) — (6™ A+ L]
Z;O:ko Mk

2 chzko 771%

ZZ‘;ko Mk
By the assumption on the step size 7y, the first and third terms on the right-hand side vanish as
k — oo. By Lemma 3, we have ®(9(*), \(k+1)) — 4(9(¥)) in probability, which implies that for
any e > 0, P[p(0%)) — &(0F) AF+1)) > ] — 0as k — oo. Invoking Cesaro’s lemma, we further
have, for any € > 0, the probability that the second term in (27) being greater than € is asymptotically

+2L +

+ LK Q27)
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0. Since the left-hand side of (27) is lower-bounded by infy>, || V1 /27 (0))[|%, we further have
liminfy o0 Vo1 /21 (6%))|| = 0 in probability.

B.3 Proof of (ii): Vanishing Gradient in the Sense of Mean Square

We start from taking unconditional expectations on (27) over k € {1, ..., T}, which leads to
T-1 .
1 E M) — min 0
QE[Z 19612 (09 2] < ¢1/20(0)) — mingeo, ¢1/21( )+
k=1 t 1 77t Zk 1 Mk
E[p(0%) (k) \(k+1)
4 o Aot mEIB(O®) — B(EM A1)
Zk 1 Mk
+ LK” Z’; Lim Tk (28)
—1 Nk

When 7, = ©(1/Vk), the combination of the first and the third terms is upper bounded by
O(LK?log(T —1)/+/T — 1). We now bound the second term.

First notice that we always have

G(O™)) > (6%, AFFD), (29)
Secondly, by Lemma 3 and applying one more round of sampling, we have
P(g(0™) — (0%, A\FHD) > (2K + 1)e| < (1 — g(e))™AEIHY. (30)

Since O}, and ©,, are compact and convex regions, we can assume that there exists a constant D
such that

6(0) — (0.)) < D. G1)
Hence, we can upper bound E[p(0*)) — &(9*) \++1)] with
E[¢(0%) - 2(0M AFHD)] < e W(M — (6%, AFD) < ¢+
+D-Plp(0®)) — (0" AFHD) > ¢
<e+D(1—qle ))m(A(k e/(2K2+1))+1) (32)
Notice that the second term in the right-hand side of (32) is vanishing as &k — oo. Hence, we can

also choose a vanishing ¢ to minimize the upper bound for E[¢(8(*)) — ®(9F) \(F+1))],

Finding the optimal e. We let € be dependent on &, denoted by ¢;. By the design of the step size,
there exist constants C'; and C5 such that

CreVk < Ak, ex/(2K? + 1)) < CoeVE. (33)

In order to balance €, and D(1 — g(e;))™A(kex/QE*+1)+1) e can fix C and Cy to be two
positive constants and desire

Cser < D(1 — g(eg))™C2xVE+D) < D(1 — g(gy))™(CreeVF+D < Oy, (34)
Focusing on the right-hand portion of (34), we require
D
log 7— < —m(CrepVk + 1) log(1 — g(er)) (35)
4€k
for it to hold. Since log(1 — q(ex)) < —q(ex), (35) holds true if
D
log < 2m(Clek\/% + Dg(er). (36)
Caeg
Reparameterizing €5 by i/ V'k, we see that (36) holds if
DVk
log 7~ < 2m(Cyye + a(w/ V), (37)
4k
or equivalently
log DVE
SB < g/ V). (38)

2m(Ciy, + 1)
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By assumption, there exists a constant C5 such that

dq
Vk) > C <7’<> . 39
q(ve/VEk) > Cs NG (39)
Hence, (38) holds true if
log C ’Yk < Yk ) ¢
! 40
m(Ciye + 1) “0)

which holds if )
S (m VERT logTi k) ,

log k e
=0 ) 41
‘ ((m\/E) ) @

_1
Hence choosing € = © (( log & ) 6Q+1> yields

or equivalently

mVk
log k ree
E[¢p(0™)) — @(9®) AE+DY) = 0 ( ) : 42
[6(6™) — &( )] ;s (42)
Noticing that 7, = ©(1/v/k), we further have
T-1 log k 5q1+1
S Bl — e Aty (T gy ()
Ek 1 Mk r-1
1

ST

Meanwhile, if we choose m = log;_,e€, then the right-hand side of (32) can be further

which completes the proof.

upper bounded by (1 + D)e. Hence, the convergence rate of mini<y<r ||V /27 (07))] is

O(e +1og T/VT).

C GDRS for Stochastic Objective and its Convergence Rate

We consider when ® in Algorithm 1 can only be estimated via ) N,.» an average of Nj, noisy obser-
vations of ® at the k-th iteration. In particular, we define

B(0,)) = B(0,\) + w9, N), (44)
to be a random observation, with w being the noise component and define

Dy, (6,)) 1Z‘D (45)

where ®()°s are i.i.d. observations of ®. In this settlng, we have the following results.

Theorem 5 (Convergence of GDRS under noisy observations of ®). Under Assumption 1, suppose
Ellw(0,\)|* < 0 < co. Assume suppee, rco, |Vo@(0,)|> = K < oo, E[w(0,\)] = 0, and
E[Ve®(0,\)] = Vo®(6, A). Let {Ni}k>1 be an increasing and diverging sequence, and set m = 1
in Algorithm 1. Then,

® ifd sk =tooand Y, n? < 0o, we have imr_,o [|Vy /o1, (00)|| = 0 in proba-
bility, and almost surely if 36 > 1 such that k° /N, — 0.
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la43 )

log%atT k

log T\ ¥ logT
min E||V¢1/2L(9(k))220<(0g ) + 22 ) (46)

1<k<T m\T VT

Remark 6. Similar to Theorem 2, Theorem 5(i) provides asymptotic convergence of GDRS under
stochastic observations of the objective, while Theorem 5(ii) provides convergence rate. Interest-
ingly, one does not need too many samples in order to accurately evaluate ®. In particular, the
larger the 04, the less samples one needs at each iteration. This is because the random search proce-
dure eventually dominates the speed of convergence. As a direct consequence, setting Ni, = Q(k?)
suffices to guarantee the same rate as if we are observing noiseless P.

To prove the theorem, we require the following lemma originally derived in [17].

Lemma 7 ([17]). Let A, £ Ay (€) — oo be any diverging sequence satisfying Ai(€)/Nx_n,(e) —
0 and Zf:_klfAk(e) n; < €. Then, forall € > 0,

320’2Ak

€Ni_n,

Furthermore, when there exists § > 1 such that k° /Ny — 0, one can construct a sequence Ay, such
that for any b € [0,1), >, <, b < coand Y, <, Ay/Ny < <.

Plp(0™) — @6, AW) > ] < (1 - q(e/2))> +

Lemma 7 shows that as long as the observation noise is asymptotically mitigated, then one can
guarantee convergence of ®(0%) \(¥)) to ¢(0*)). When n, = ©(1/Vk), we have Ay, = O(Vk).
Below, we invoke Lemma 7 to prove our conclusion.

C.1 Proof of (i): Asymptotic Convergence to a Stationary Point

Similar to the proof of Theorem 2, we have
o 1 ~
0 (0%+D) < G(F0) + -9+ )2

= ¢(0M) + % HH [Q(k) VB, (0, )\(k+1)):| I {5(’“)} Hz

1 —~ ~
< 6(0W) + o He(k) 9 Vb, (g(k)7)\(k+1))’ (47)

where the first inequality holds from the definition of the Moreau envelope, and the last inequality
holds from the non-expansiveness of the projection operator. Further expanding the last term in (47),
we can further upper bound ¢, (*+1)) by

1 ~ 1 ~
B (0D < 9(0%) + —10%) = T2 + Vi, (009, A1) |24
1 —~ ~
5 200 = 0P, — V@, (01, AFH))

v

’ 2

1 ~ i X 1 ~ ~ . .
= ¢V(9(k)) + 5||77kV0‘I)Nk (9(1@)7 /\(k+1))||2 + ;<9(k) - H(k)a —nkve@Nk (9(1@)7 >‘(k+1)>>

1 ~ 1 —~ ~
< du(0W) + K+ — (0 — 00, - T, (6, AFTD)), (48)

where the first equality holds by the definition of the Moreau envelope and the construction of 5(’“),
and the second inequality holds by upper bounding the gradient norm ||Vy®y, (0~ A(R))||2 <
K?2. Now, by the smoothness of ¢, we have

¢(§(k)) > q,(g(k)7>\(k+1))

> @(0F)  AFHDY 4 (7,0 (9" AEHD gk) _ glR)y gng(k) — o)), (49)
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Hence, letting v = 1/2L, and plugging (49) into the unconditional expected version of (48), we
immediately have

E[¢1/21,(0"F)] < B[ 2(0")] — 2L [gb(e(“) — p(F) — 2 6% - 0<’“>||2} +

4 2LE [¢(0<’€>) —a(eW, /\<k+1>)] + L2R2. (50)

By the smoothness assumption on ¢, it is also a weakly convex function. In particular, ¢(6)+ L||0 —
0(%)||2 is L strongly convex. Hence,

~ L~ . .
B(0) — (@) = S18® — 6B = ((6™) + L]j6®) — 6®|?) -
~ ~ L ~
— (60 + LJF® = 9D2) + Z 60 — o)

~ 1
> LI0W = 0V = (V20 (07)]. (51)
Hence, plugging (51) into (50) immediately leads to
E[¢1 /o1, (0] < E[gy /o1, (0M)] — %EHV%/M(@(M)HQ*‘

+2Ln,E {qﬁ(ﬁ(k)) — (0" AFHY| 4 Lp2R2. (52)

Finally, upon telescoping over k from kg to oo, and performing simple algebraic manipulations, we
have

(ko))] — mingeceo, ¢1/21(0)
= v (k) 2] El¢1/21.(0 = <o 2/

Zzozko nkE[¢(9(k)) — (I)(Q(k)7 /\(k+1))]
ZZO:kD Nk

+ LK2 Zk ko 77k (53)
Py ko M
By the assumption on the step size 7, the first and third terms on the right-hand side vanish. By
Lemma 3, we have ®(0(), \(*+1)) — $(9(*)) in probability, and since Oy, and ©,, are compact
and convex, ¢(A*)) — ®(9*) A\(*+1)) is bounded. In this case, convergence in probability implies
convergence in expectation. Hence, by Cesaro’s lemma, the second term on the right-hand side
converges to the limit of E[p(8*)) — &(9F) A(++1)] which is 0 as well.

Meanwhile, the left-hand side of (53) is lower bounded by 2 infysp, E[[Véy /on(00)]2,

which is further lower bounded by iEinfisp,||Vé1/2r(0%))|>, which converges to

+ 2L +

AElminfy o0 V12 (0%))||? as kg — oco. Hence, we have
liminf |V 27 (0%))]| = 0 (54)
k— o0
in the mean square sense, and hence also in probability. Finally, when there exists 6 > 1 such that
k% /Ny — 0, we have ¢(0)) — ®(9F) A(F+1)) — 0 almost surely by invoking Lemma 7 together
with union bound. In (53), this means that for any realization such that ¢(#(*)) — ®(9F) A(F+1))

0, (54) holds true. Since such realizations happens with probability 1, (54) holds true almost surely.
Thus, we have reached the conclusion for the convergence of ||V 21, (6)].

We hence conclude the proof.

C.2  Convergence Rate of GDRS for Stochastic Objective

Similar to the proof of Theorem 2, we have
3202A
E[p(0®)) — @0 AETDY] < D | (1 g(e/2)™ + S0 =F | 1. (55)
Nk,
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Since 7, = O(1/Vk), we have A;, = O(V/k). By the analysis of Theorem 2, we immediately see

_1
that the right-hand side of (55) is upper bounded by (1‘3%“) *"' When

eAq@<(%¥)%H>. (56)

Notice that the second term on the right-hand side of (55) can be made arbitrarily small by increasing
Nj_a, for any given k. With simple manipulations, we see that the right-hand side of (55) is
dominated by €, when we set

JZk%(H'é‘q%) >

logﬁ k

Nhﬁ_9< (57)

The remainder of the proof follows from (43).
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