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This appendix is organized as follows. Section A-C provide the detailed proofs for all the technical
results in the main paper. Section D provides further discussion on the variance regularization
surrogate result in Proposition 4.2.

A Proofs of Section 2

Proof of Example 2.2. We note that

min
w∈W

EP̂[`λ(X,Y,w)] = min
w∈W

C∑
c=1

p̂c

(
Ψ(λ(w, x̂c))−

〈
EP̂Y |x̂c

[T (Y )], λ(w, x̂c)
〉)

= min
w∈W

C∑
c=1

p̂c

(
Ψ(λ(w, x̂c))−

〈
∇Ψ(θ̂c), λ(w, x̂c)

〉)
.

If θ̂c = (∇Ψ)−1
(
(Nc)

−1
∑
x̂i=x̂c

T (ŷi)
)
, then we have

min
w∈W

EP̂[`λ(X,Y,w)] = min
w∈W

C∑
c=1

p̂c

(
Ψ(λ(w, x̂c))−

〈∑x̂i=x̂c
T (ŷi)

Nc
, λ(w, x̂c

〉
)

)

= min
w∈W

1

N

N∑
i=1

(
Ψ(λ(w, x̂i))−

〈
T (ŷi), λ(w, x̂i)

〉)
,

where we used p̂c = Nc/N . Therefore wMLE solves minw∈W EP̂[`λ(X,Y,w)].

Proof of Example 2.3. We find

min
w∈W

EP̂[`λ(X,Y,w)] = min
w∈W

C∑
c=1

p̂c

(
Ψ
(
λ(w, x̂c)

)
−
〈
EP̂Y |x̂c

[T (Y )], λ(w, x̂c)
〉)

≥
C∑
c=1

p̂c min
wc∈W

(
Ψ
(
λ(wc, x̂c)

)
−
〈
EP̂Y |x̂c

[T (Y )], λ(wc, x̂c)
〉)

=

C∑
c=1

p̂c

(
Ψ
(
λ(wMLE , x̂c)

)
−
〈
EP̂Y |x̂c

[T (Y )], λ(wMLE , x̂c)
〉)
,
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where the first equality follows from the definition of the log-loss function `λ, the inequality follows
because p̂c > 0, and the last equality follows because of the convex conjugate relationship that
implies the optimal solution w?c should satisfy

∇Ψ
(
λ(w?c , x̂c)

)
= EP̂Y |x̂c

[T (Y )] = ∇Ψ
(
λ(wMLE , x̂c)

)
=⇒ w?c = wMLE .

This implies that wMLE solves minw∈W EP̂[`λ(X,Y,w)] and completes the proof.

Proof of Proposition 2.6. Fix any set of conditional radii ρ ∈ RC+. If Bε,ρ(P̂) is empty then it is
trivial that Bε,ρ(P̂) ⊂ Bε(P̂). Suppose that Bε,ρ(P̂) is non-empty and pick any Q ∈ Bε,ρ(P̂).
By definition of the set Bε,ρ(P̂), Q can be decomposed into a marginal QX and a collection of
conditional measures QY |x̂c . Furthermore, because ε is finite, the marginal QX should be absolutely
continuous with respect to P̂X . We have

KL(Q ‖ P̂) = KL(QX ‖ P̂X) + EQX [KL(QY |X ‖ P̂Y |X)]

≤ KL(QX ‖ P̂X) + EQX [

C∑
c=1

ρc1x̂c(X)] ≤ ε,

where the equality is from the chain rule of the conditional relative entropy [10, Lemma 7.9]. The
first inequality follows from the fact that KL(QY |x̂c ‖ P̂Y |x̂c) ≤ ρc for every c. The second inequal-
ity follows from the last constraint defining the set Bε,ρ(P̂). This implies that Q ∈ Bε(P̂), and be-
cause Q was chosen arbitrarily, we have Bε,ρ ⊆ Bε(P̂). As a consequence,

⋃
ρ∈RC+

Bε,ρ(P̂) ⊆ Bε(P̂).

Regarding the reverse relation, pick an arbitrary Q ∈ Bε(P̂) which admits the decomposition into
a marginal QX and conditional measures QY |x̂c . By setting the conditional radii ρ ∈ RC+ with
ρc = KL(QY |x̂c ‖ P̂Y |x̂c) for every c, one can verify using the chain rule of the conditional relative
entropy that Q ∈ Bε,ρ(P̂). This implies that Bε,ρ(P̂) ⊆

⋃
ρ∈RC+

Bε,ρ(P̂).

Concerning the last statement, notice that the condition
∑C
c=1 p̂cρc ≤ ε implies that P̂ ∈ Bε,ρ(P̂)

and thus Bε,ρ(P̂) is non-empty. The proof is complete.

B Proofs of Section 3

The proof of Proposition 3.1 relies on the following preliminary result.
Lemma B.1. Let p̂ ∈ RC++ be a probability vector summing up to one. For any ε ∈ R+ and ρ ∈ RC+
satisfying

∑C
c=1 p̂cρc ≤ ε, the finite dimensional set

Q ,

{
q ∈ RC+ :

C∑
c=1

qc = 1,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε

}
(A.1)

is compact and convex. Moreover, the support function hQ of Q satisfies

∀t ∈ RC : hQ(t) , sup
q∈Q

q>t = inf
α∈R, β∈R++

{
α+ βε+ β

C∑
c=1

p̂c exp
( tc − α

β
− ρc − 1

)}
.

Proof of Lemma B.1. The function RC+ 3 q 7→
∑C
c=1 qc(log qc − log p̂c + ρc) ∈ R+ is continuous

and convex, hence, the set {q ∈ RC+ :
∑C
c=1 qc(log qc − log p̂c + ρc) ≤ ε} is closed and convex.

Consequentially, Q can be written as the intersection between a simplex (thus compact and convex)
and a closed, convex set, so Q is compact and convex.

The proof of the support function of Q proceeds in 2 steps. First, we prove the support function for
the ε-inflated set

Qε =

{
q ∈ RC+ :

C∑
c=1

qc = 1,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε+ ε

}
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with the right-hand side of the last constraint being inflated with ε ∈ R++. In the second step, we
use a limit argument to show that the support function of Q is attained as the limit of the support
function of Qε as ε tends to 0.

Reminding that ∆ is theC-dimensional simplex. For any t ∈ RC and any ε ∈ R++, by the definition
of the support function, we have for every t ∈ RC

hQε(t) =


sup q>t

s. t. q ∈ ∆,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε+ ε
(A.2a)

= sup
q∈∆

inf
β∈R+

q>t+ β(ε+ ε−
C∑
c=1

qc
(

log qc − log p̂c + ρc
)

= inf
β∈R+

sup
q∈∆

q>t+ β(ε+ ε−
C∑
c=1

qc
(

log qc − log p̂c + ρc
)
, (A.2b)

where the interchange of the sup-inf operators in (A.2b) is justified by strong duality [6, Proposi-
tion 5.3.1] because p̂ constitutes a Slater point of the set Qε. By Berge’s maximum theorem [5], the
optimal value of the inner supremum problem is a continuous function in β because the simplex ∆
is compact and the objective function is continuous in the decision variable q. As a consequence,
we can restrict β ∈ R++ without any loss of optimality. Because ∆ is prescribed using linear
constraints, strong duality implies that

hQε(t) = inf
α∈R, β∈R++

{
α+ β(ε+ ε) + sup

q∈RC+

C∑
c=1

qc(tc − α+ β log p̂c − βρc − β log qc)

}

= inf
α∈R, β∈R++

{
α+ β(ε+ ε) +

C∑
c=1

sup
qc∈R+

qc(tc − α+ β log p̂c − βρc − β log qc)

}
,

where the last equality holds because the supremum problem is separable in each decision variable
qc. It now follows from the first-order optimality condition that the maximizer q?c is

q?c = exp
( tc − α+ β log p̂c − βρc − β

β

)
> 0,

and by substituting this maximizer into the objective function, the value of the support function
hQε(t) is then equal to the optimal value of the below optimization problem

inf
α∈R, β∈R++

α+ β(ε+ ε) + β

C∑
c=1

p̂c exp
( tc − α

β
− ρc − 1

)
.

We now proceed to the second step. Denote temporarily the objective function of the above problem
as G(ε, γ), where γ = [α;β] combines both dual variables α and β. Define the function

g(ε) = inf
γ∈Γ

G(ε, γ), with Γ , R× R++.

BecauseG is continuous, [11, Lemma 2.7] implies that g is upper-semicontinuous at 0. Furthermore,
G is calm from below at ε = 0 because G(ε, γ)−G(0, γ) = βε ≥ 0, thus [11, Lemma 2.7] implies
that g is lower-semicontinuous at 0. These two facts lead to the continuity of g at 0. From the first
part of the proof, we have g(ε) = hQε(t) for any ε ∈ R+. Moreover, by applying Berge’s maximum
theorem [5] to (A.2a), hQε(t) is a continuous function of ε over R+. Thus we find

hQ(t) = hQ0
(t) = lim

ε↓0
hQε(t) = lim

ε↓0
g(ε) = g(0),

where the chain of equalities follows from the definition of Qε, the continuity of hQε(t) in ε, the
fact that g(ε) = hQε(t) for ε > 0, and the continuity of g at 0 established previously. The proof is
now completed.
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Proof of Proposition 3.1. To facilitate the proof, we define the following ambiguity set over the
marginal distribution of the covariate X as

BX ,

{
QX ∈M(X ) : KL(QX ‖ P̂X) + EQX [

C∑
c=1

ρc1x̂c(X)] ≤ ε

}
.

Given a nominal marginal distribution P̂X supported on a finite set {x̂c}c∈C , the absolute continuity
requirement suggests that KL(QX ‖ P̂X) is finite if and only if QX is absolutely continuous with
respect to P̂X . Thus, any QX of interest should be supported on the same set {x̂c}c=1,...,C , and
QX and be finitely parametrized by a C-dimensional vector {qc}c=1,...,C . Let Q denote the convex
compact feasible set in RC , that is,

Q ,

{
q ∈ RC+ :

C∑
c=1

qc = 1,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε

}
,

and the ambiguity set BX can now be finitely parametrized as

BX =

{
QX ∈M(X ) : ∃q ∈ Q, QX =

C∑
i=1

qcδx̂c

}
.

By coupling BX with the conditional ambiguity sets BY |x̂c , B(P̂) can be re-written as

B(P̂) =

{
Q ∈M(X × Y) :

∃QX ∈ BX , QY |x̂c ∈ BY |x̂c ∀c = 1, . . . , C
Q({x̂c} ×A) = QX({x̂c})QY |x̂c(A) ∀A ∈ F(Y) ∀c = 1, . . . , C

}
The worst-case expected loss becomes

sup
Q∈B(P̂)

EQ[L(X,Y )] = sup
QX∈BX

EQX

[
sup

QY |X∈BY |X

EQY |X [L(X,Y )]

]

= sup
q∈Q

C∑
c=1

qc sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[L(x̂c, Y )] ,

where the first equality follows from the law of total expectation, and the second equality follows
from the finite reparametrization of BX . If we denote by T the epigraph reformulation of the worst-
case conditional expectations

T ,
{
t ∈ RC : sup

QY |x̂c∈BY |x̂c

EQY |x̂c
[L(x̂c, Y )] ≤ tc ∀c = 1, . . . , C

}
,

then the worst-case expected loss can be further re-expressed as

sup
Q∈B(P̂)

EQ[L(X,Y )] = sup
q∈Q

inf
t∈T

q>t (A.3a)

= inf
t∈T

sup
q∈Q

q>t (A.3b)

=

 inf α+ βε+ β

C∑
c=1

p̂c exp

(
tc − α
β
− ρc − 1

)
s. t. t ∈ T , α ∈ R, β ∈ R++,

(A.3c)

where the sup-inf formulation (A.3a) is justified because q is non-negative and we can resort to
the epigraph formulations of the worst-case conditional expected loss. In (A.3b) we applied Sion’s
minimax theorem [13], which is valid because the sup-inf program (A.3a) is a concave-convex
saddle problem, andQ is convex and compact and T is convex. In (A.3c) we have used Lemma B.1
to reformulate the supremum over q. The claim then follows.

Instead of solving the problem in the natural parameters θ coupled with its log-partition function Ψ,
we will use the reparametrization to the mean parameters using the conjugate function of Ψ. More
specifically, let φ be the convex conjugate of Ψ, that is,

φ : µ 7→ sup
θ∈Θ

{〈
µ, θ
〉
−Ψ(θ)

}
4



Before proceeding to the technical proofs, the below lemma collects from the existing literature the
necessary background knowledge about the log-partition function Ψ and its conjugate φ, along with
the relationship between the natural parameter θ and its corresponding expectation parameter µ.
Lemma B.2 (Relevant facts). The following assertions hold for regular exponential family.

(i) The function φ is closed, convex and proper on Rp.

(ii) (Θ,Ψ) and (int(dom(φ)), φ) are convex functions of Legendre type, and they are Legendre
duals of each other.

(iii) The gradient function ∇Ψ is a one-to-one function from the open convex set Θ onto the open
convex set int(dom(φ)).

(iv) The gradient functions∇Ψ and ∇φ are continuous, and∇φ = (∇Ψ)−1.

(v) The function φ is essentially smooth over int(dom(φ)).

Proof of Lemma B.2. Assertion (i) holds since
〈
µ, θ
〉
− Ψ(θ) is convex and closed for each θ, thus

taking supremum, φ is convex and closed. φ is proper since dom(φ) is non-empty. Assertions (ii)
to (iv) follows from [3, Lemma 1] and [3, Theorem 2]. Assertion (v) follows from [3, Lemma 1]
and [12, Theorem 26.3], and the fact that Ψ and φ is a convex conjugate pair.

From Assertion (ii), we have the mappings between the dual spaces int(dom(φ)) and Θ are given
by the Legendre transformation

µ(θ) = ∇Ψ(θ) and θ(µ) = ∇φ(µ).

For any µ ∈ int(dom(φ)), the conjugate function φ can be expressed as

φ(µ) =
〈
µ, θ(µ)

〉
−Ψ(θ(µ)).

Lemma B.3 (KL divergence between distributions from exponential family). Suppose that Q1 and
Q2 belong to the exponential family of distributions with the same log-partition function Ψ and with
natural parameters θ1 and θ2 respectively. The KL divergence from Q1 to Q2 amounts to

KL(Q1 ‖ Q2) =
〈
θ1 − θ2, µ1

〉
−Ψ(θ1) + Ψ(θ2) = φ(µ1)− φ(µ2)−

〈
µ1 − µ2, θ2

〉
,

where φ is the convex conjugate of Ψ, and µj = ∇Ψ(θj) for any j ∈ {1, 2}.

The result of Lemma B.3 can be found in [3, Appendix A], but the explicit proof is included here
for completeness.

Proof of Lemma B.3. One finds

KL(Q1 ‖ Q2) = EQ1
[log(dQ1/dQ2)]

= EQ1
[
〈
T (Y ), θ1 − θ2

〉
−Ψ(θ1) + Ψ(θ2)] (A.4a)

=
〈
µ1, θ1 − θ2

〉
−Ψ(θ1) + Ψ(θ2), (A.4b)

where equality (A.4a) follows by calculating the logarithm of the Radon-Nikodym derivatives be-
tween two distributions, and equality (A.4b) follows by noting that µ1 = EQ1

[T (Y )].

By [3, Theorem 4], one can also rewrite the density using the mean parameter µ = µ(θ) as

f(y|µ) = h(y) exp
(〈
θ, T (y)

〉
−Ψ(θ)

)
= h(y) exp

(
φ(µ) +

〈
T (y)− µ,∇φ(µ)

〉)
The KL divergence from Q1 to Q2 amounts to

KL(Q1 ‖ Q2) = EQ1 [log(dQ1/dQ2)]

= EQ1 [φ(µ1)− φ(µ2) +
〈
T (Y ),∇φ(µ1)−∇φ(µ2)

〉
−
〈
µ1,∇φ(µ1)

〉
+
〈
µ2,∇φ(µ2)

〉
]

(A.5a)

=
〈
µ2 − µ1, θ2

〉
+ φ(µ1)− φ(µ2). (A.5b)

From Assertion (iv) in Lemma B.2, we notice that θ2 = ∇φ(µ2), which completes the proof.
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Recall that the conditional ambiguity set defined in (8) is

BY |x̂c ,
{
QY |x̂c ∈M(Y) : ∃θ ∈ Θ, QY |x̂c( · ) ∼ f( · |θ), KL(QY |x̂c ‖ P̂Y |x̂c) ≤ ρc

}
for a parametric, nominal conditional measure P̂Y |x̂c ∼ f( · |θ̂c), θ̂c ∈ Θ and a radius ρc ∈ R+. The
uncertainty set Sc of expectation parameters induced by the ambiguity set BY |x̂c is defined as

Sc ,
{
µ ∈ dom(φ) : ∃QY |x̂c ∈ BY |x̂c , µ = EQY |x̂c

[T (Y )]
}
.

Lemma B.4 (Compactness of expectation parameter uncertainty set). The set Sc is compact, and it
has an interior point whenever ρc > 0.

Proof of Lemma B.4. By Lemma B.3 and the definition of the set Sc, we can write Sc as

Sc =
{
µ ∈ dom(φ) : φ(µ)− φ(µ̂c)−

〈
µ− µ̂c, θ̂c

〉
≤ ρc

}
.

Because φ is closed, convex, proper, and that θ̂c ∈ int(Θ) = Θ, the function φ( · ) −
〈
· , θ̂c

〉
is

coercive by [12, Corollary 14.2.2] and [4, Fact 2.11]. As a consequence, Sc is bounded.

Because Ψ is essentially strictly convex on Θ, φ is essentially smooth on int(dom(φ)) by [12,
Theorem 26.3]. [4, Theorem 3.8] now implies that if µ′ is a boundary point of int(dom(φ)) then as
int(dom(φ)) 3 µk

k→∞−−−−→ µ′ then φ(µk)−
〈
µk, θ̂c

〉 k→∞−−−−→ +∞. Moreover, because φ is continuous
over int(dom(φ)), the set Sc is closed. This implies that Sc, being a closed and bounded set of finite
dimension, is compact.

The continuity of φ leads a straightforward manner to the non-empty interior of Sc when ρc > 0.
This observation completes the proof.

Proof of Proposition 3.2. Because λ is a mapping onto the space Θ of natural parameters, we use
the shorthand λc = λ(w, x̂c) ∈ Θ. Moreover, let µ̂c = ∇Ψ(θ̂c). The worst-case conditional
expectation of the log-loss function becomes

sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)] = sup

QY |x̂c∈BY |x̂c

EQY |x̂c

[
Ψ(λ(w, x̂c))−

〈
T (Y ), λ(w, x̂c)

〉]
= sup

QY |x̂c∈BY |x̂c

Ψ(λ(w, x̂c))−
〈
EQY |x̂c

[T (Y )], λ(w, x̂c)
〉

=

{
sup Ψ(λc)−

〈
µ, λc

〉
s. t. φ(µ)− φ(µ̂c)−

〈
µ− µ̂c, θ̂c

〉
≤ ρc,

where the first equality is from the definition of `λ and the second equality follows from the linearity
of the expectation operator. The last equality follows from the definition of the ambiguity set BY |x̂c
using the φ function by Lemma B.3. Because the term Ψ(λc) does not involve the decision variable
µ, it suffices now to consider the optimization problem

sup
{〈
− λc, µ

〉
: φ(µ)−

〈
µ, θ̂c

〉
≤ ρc + φ(µ̂c)−

〈
µ̂c, θ̂c

〉}
. (A.7)

Suppose at this moment that λc 6= 0 and ρc > 0. When ρc > 0, the feasible set of (A.7) satisfies
the Slater condition because φ is a continuous function. Hence, by a strong duality argument, the
convex optimization problem (A.7) is equivalent to

sup
µ

inf
γ≥0

〈
− λc, µ

〉
+ γ(ρ̄c − φ(µ) +

〈
µ, θ̂c

〉
) = inf

γ≥0

{
γρ̄c + sup

µ

〈
µ, γθ̂c − λc

〉
− γφ(µ)

}
,

where ρ̄c , ρc + φ(µ̂c) −
〈
µ̂c, θ̂c

〉
∈ R and the interchange of the supremum and the infimum

operators is justified thanks to [6, Proposition 5.3.1]. Consider now the infimum problem on the
right hand side of the above equation. If γ = 0, then the inner supremum subproblem on the right
hand side is unbounded because λc 6= 0, thus γ = 0 is never an optimal solution to the infimum
problem. By utilizing the definition of the conjugate function, one thus deduce that problem (A.7)
is equivalent to

inf
γ>0

γρ̄c + (γφ)∗(γθ̂c − λc) = inf
γ>0

γρ̄c + γφ∗
(
θ̂c −

λc
γ

)
, (A.8)
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where the equality exploits the fact that (γφ)∗(θ) = γφ∗(θ/γ) for any γ > 0 [7, Table 3.2].

We now show that the reformulation problem (A.8) is valid when ρc = 0. Indeed, when ρc = 0,
problem (A.7) has a unique feasible solution µ̂c, thus its optimal value is

〈
− λc, µ̂c

〉
. Moreover, in

this case, problem (A.8) becomes

inf
γ>0

γ

[
φ(µ̂c)−

〈
µ̂c, θ̂c

〉
+ φ∗

(
θ̂c −

λc
γ

)]
=
〈
− λc, µ̂c

〉
+ inf
γ>0

γ

[
φ(µ̂c)−

〈
µ̂c, θ̂c −

λc
γ

〉
+ φ∗

(
θ̂c −

λc
γ

)]
.

Notice that the term in the square bracket of the optimization problem on the right hand side is
non-negative by the definition of the conjugate function. Thus, the infimum problem over γ admits
the optimal value of 0 as γ tends to +∞. As a consequence, when ρc = 0, both problem (A.7) and
(A.8) have the same optimal value and they are equivalent.

Consider now the situation where λc = 0. In this case, problem (A.8) becomes

inf
γ>0

γρc + γ
(
φ(µ̂c)−

〈
µ̂c, θ̂c

〉
+ φ∗(θ̂c)

)
.

By definition of the conjugate function, we have φ∗(θ̂c) ≥
〈
µ̂c, θ̂c

〉
−φ(µ̂c), and thus, by combining

with the fact that ρc ≥ 0, this infimum problem will admit the optimal value of 0. Notice that
when λc = 0, the optimal value of problem (A.7) is also 0. This shows that (A.8) is equivalent
to (A.7) for any possible value of λc. Replacing φ? in (A.8) by its equivalence Ψ and substituting〈
µ̂c, θ̂c

〉
− φ(µ̂c) by its equivalence Ψ(θ̂c) complete the reformulation (10).

Proof of Theorem 3.3. By applying Proposition 3.1, the distributionally robust MLE problem (4)
can be reformulated as

min
w∈W

max
Q∈B(P̂)

EQ

[
`λ(X,Y,w)

]
=


inf α+ βε+ β

C∑
c=1

p̂c exp

(
tc − α
β
− ρc − 1

)
s. t. w ∈ W, t ∈ RC , α ∈ R, β ∈ R++

sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)] ≤ tc ∀c = 1, . . . , C.

Using Proposition 3.2 to reformulate each constraint of the above optimization problem leads to the
desired result.

C Proofs of Section 4

Proof of Proposition 4.1. Let 1 denote the N dimensional vector of all 1’s. Let KL(q ‖ p) =∑N
i=1 qi log(qi/pi), we have

sup
Q:KL(Q‖P̂emp)≤ε

EQ[`λ(X,Y,w)] = sup
q:KL(q‖ 1

N 1)≤ε

N∑
i=1

qi`λ(x̂i, ŷi, w)

= sup
q:KL(q‖ 1

N 1)≤ε

N∑
i=1

qi
(
Ψ(λ(w, x̂i))−

〈
T (ŷi), λ(w, x̂i)

〉)
.

On the other hand, we note

sup
Q∈B(P̂)

EQ
[
`λ(X,Y,w)

]
= sup
q:KL(q‖ 1

N 1)≤ε

N∑
i=1

qiEQY |x̂i
[`λ(x̂i, Y, w)]

= sup
q:KL(q‖ 1

N 1)≤ε

N∑
i=1

qi

(
Ψ(λ(w, x̂i))−

〈
∇Ψ(θ̂i), λ(w, x̂i)

〉)
= sup
q:KL(q‖ 1

N 1)≤ε

N∑
i=1

qi
(
Ψ(λ(w, x̂i))−

〈
T (ŷi), λ(w, x̂i)

〉)
.

Therefore the objective functions are the same and the two problems are equivalent.
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The proof of Proposition 4.2 relies on the following result.
Lemma C.1. Let ∆ ⊂ RC be a simplex and p̂ ∈ int(∆) be a probability vector. For any two vectors
t̂, t? ∈ RC , any vector ρ ∈ RC+ and any scalar ε ≥ p̂>ρ, we have

sup

{
q>t? − p̂>t̂ : q ∈ ∆,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε

}

≤ ‖t? − t̂‖∞ +

√
2ε

minc
√
p̂c

√√√√ C∑
c=1

p̂c(t̂c − t̄)2,

where t̄ = p̂>t̂.

Proof of Lemma C.1. Let 1 denote the C dimensional vector of 1’s, we have
sup q>t? − p̂>t̂

s. t. q ∈ ∆,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε

=


sup q>(t? − t̂) + (q − p̂)>t̂

s. t. q ∈ ∆,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε

≤


sup q>(t? − t̂) + (q − p̂)>t̂

s. t. q ∈ ∆,

C∑
c=1

(qc − p̂c)2 ≤ 2ε

≤ sup
‖q‖1=1

q>(t? − t̂) + sup
{

(q − p̂)>(t̂− t̄1) : ‖q − p̂‖22 ≤ 2ε
}

≤ sup
‖q‖1=1

q>(t? − t̂) + sup

{
C∑
c=1

qc − p̂c√
p̂c

√
p̂c(t̂c − t̄) : ‖q − p̂‖22 ≤ 2ε

}

≤ sup
‖q‖1=1

q>(t? − t̂) +

√
2ε

minc
√
p̂c

√√√√ C∑
c=1

p̂c(t̂c − t̄)2,

where the first inequality follows from Pinsker’s inequality [8, Theorem 4.19] and the fact that
‖q− p̂‖22 ≤ ‖q− p̂‖21 = 4‖q− p̂‖2TV , the second inequality follows from the fact that (q− p̂)>1 = 0
and dropping the constraint q ∈ ∆, and the last inequality is from Cauchy-Schwarz.

In the last step, we have
sup
‖q‖1=1

q>(t? − t̂) = ‖t? − t̂‖∞,

which completes the proof.

We now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Let t? and t̂ be two C-dimensional vectors whose elements are defined as
t?c = sup

QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)] , t̂c = EP̂Y |x̂c

[`λ(x̂c, Y, w)] ∀c.

By Lemma C.1, we find

sup
Q∈B(P̂)

EQ[`λ(X,Y,w)]− EP̂[`λ(X,Y,w)] =


sup q>t? − p̂>t̂

s. t. q ∈ ∆,

C∑
c=1

qc(log qc − log p̂c + ρc) ≤ ε

≤‖t? − t̂‖∞ +

√
2ε

minc
√
p̂c

√√√√ C∑
c=1

p̂c(t̂c − t̄)2,
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where t̄ = p̂>t̂. In the last step, notice that
C∑
c=1

p̂c(t̂c − t̄)2 = VarP̂X

(
EP̂Y |X

[`λ(X,Y,w)]
)
≤ VarP̂ (`λ(X,Y,w)) .

It now remains to provide the bounds for ‖t? − t̂‖∞. For any c, let λc = λ(w, x̂c), we have

t?c − t̂c =

{
sup

〈
µ− µ̂c, λc

〉
s. t. φ(µ)− φ(µ̂c)−

〈
µ− µ̂c, θ̂c

〉
≤ ρc.

Because Ψ has locally Lipschitz continuous gradients, φ is locally strongly convex [9, Theorem 4.1].
Moreover, the feasible set Sc of the above problem is compact by Lemma B.4, hence there exists a
constant 0 < mc such that

mc

2
‖µ− µ̂c‖22 ≤ φ(µ)− φ(µ̂c)−

〈
µ− µ̂c, θ̂c

〉
∀µ ∈ Sc.

Notice that the constants mc depends only on Ψ and θ̂c. Thus, we find

t?c − t̂c ≤ sup
{〈
µ− µ̂c, λc

〉
: mc‖µ− µ̂c‖22 ≤ 2ρc

}
=
√

2ρc/mc‖λ(w, x̂c)‖2.
By setting m = mincmc, we have

‖t? − t̂‖∞ ≤
√

2 maxc ρc
m

‖λ(w, x̂c)‖2.

Combining terms leads to the postulated results.

For any θ̂c ∈ Θ, ρc ∈ R+, letRθ̂c,ρc(w) denote the value of the worst-case expected log-loss

Rθ̂c,ρc(w) = sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)] .

Lemma C.2. Suppose that the log-partition function Ψ has locally Lipschitz continuous gradients,
that Θ = Rp and that Θc ⊂ Θ is a compact set. For any fixed ρc ∈ R++, there exist constants
0 < m < M < +∞ that depend only on Ψ, Θc and ρc such that for any value λ(w, x̂c) ∈ Rp and
any radius ρc ≥ ρc ≥ 0√

2ρc/M‖λ(w, x̂c)‖2 ≤ Rθ̂c,ρc(w)−Rθ̂c,0(w) ≤
√

2ρc/m‖λ(w, x̂c)‖2 ∀θ̂c ∈ Θc.

Proof of Lemma C.2. Consider the set

D , {µ̂c : ∃θ̂c ∈ Θc such that µ̂c = ∇Ψ(θ̂c)}
and its ρc-inflated set

Dρc , {µ : ∃µ̂c ∈ D such that φ(µ)− φ(µ̂c)−
〈
µ− µ̂c, θ̂c

〉
≤ ρc}.

Because Θc is compact and ∇Ψ is a continuous function, D is compact [1, Theorem 2.34]. Note
that we can rewrite Dρc as

Dρc = {µ : ∃µ̂c ∈ D such that φ(µ) +
〈
µ,−θ̂c

〉
≤ ρc + φ(µ̂c)−

〈
µ̂c, θ̂c

〉
}.

Let S be temporarily the set

S =

{
µ : φ(µ) + inf

θ̂c∈Θc

〈
µ,−θ̂c

〉
≤ ρc + sup

θ̂c∈Θc

φ(µ̂c)−
〈
µ̂c, θ̂c

〉
<∞

}
.

We have that Dρc ⊆ S. Recall the definition of φ:

φ : µ 7→ sup
θ∈Θ

{〈
µ, θ
〉
−Ψ(θ)

}
.

Therefore φ( · ) is closed, convex and proper. Therefore by [4, Proposition 2.16], Θ = Rp implies
that φ( · ) is super-coercive, i.e., lim‖µ‖2→∞ φ(µ)/‖µ‖2 →∞. Thus

lim
‖µ‖2→∞

φ(µ) + inf
θ̂c∈Θc

〈
µ,−θ̂c

〉
→∞.
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Therefore S is bounded, which implies that Dρc is also bounded.

Since Θc is compact, there exists a subsequence {θ̂knc }n≥1 such that θ̂knc → θ̂∞c ∈ Θc as n → ∞.
Since Dρc is bounded, it suffices to show that Dρc is closed. Choose any sequence {µk}k≥1 ∈ Dρc
such that µk → µ∞ as k → ∞, we want to show that µ∞ ∈ Dρc . For each k, since µk ∈ Dρc ,
there exists µ̂kc ∈ D and θ̂kc ∈ Θc such that φ(µk) − φ(µ̂kc ) −

〈
µk − µ̂kc , θ̂kc

〉
≤ ρc. Since D and

Θc are compact, there exists a subsequence {kn}n≥1 such that µ̂knc → µ̂∞c and θ̂knc → θ̂∞c for some
µ̂∞c ∈ D and θ̂∞c ∈ Θc. Since µ̂knc = ∇Ψ(θ̂knc ), by continuity we have µ̂∞c = ∇Ψ(θ̂∞c ). Note that

φ(µkn)− φ(µ̂knc )−
〈
µkn − µ̂knc , θ̂knc

〉
≤ ρc,

by continuity of φ, we have

φ(µ∞)− φ(µ̂∞c )−
〈
µ∞ − µ̂∞c , θ̂∞c

〉
≤ ρc.

Therefore µ∞ ∈ Dρc and hence Dρc is closed.

The finite dimensional set Dρc is closed and bounded, thus it is compact, and moreover D ⊆ Dρc .
The convex hull Dρc of Dρc is also compact [1, Corollary 5.33]. Because Ψ has locally Lipschitz
continuous gradients, φ is locally strongly convex [9, Theorem 4.1]. Moreover, φ is also essentially
smooth by Lemma B.2(v). Thus over the set Dρc , there exist constants 0 < m ≤ M < +∞ such
that
m

2
‖µ− µ′‖22 ≤ φ(µ)− φ(µ′)−

〈
µ− µ′, θ′

〉
≤ M

2
‖µ− µ′‖22 ∀µ, µ′ ∈ Dρc , µ

′ = ∇Ψ(θ′).

Notice that the constants m and M depend only on φ, and thus on Ψ, ρc and Θc

Denote temporarily the shorthand λc = λ(w, x̂c). We haveRθ̂c,0(w) = Ψ(λc)−
〈
µ̂c, λc

〉
, and so

Rθ̂c,ρc(w)−Rθ̂c,0(w) =

{
sup

〈
µ− µ̂c, λc

〉
s. t. φ(µ)− φ(µ̂c)−

〈
µ− µ̂c, θ̂c

〉
≤ ρc.

Because µ and µ̂c are both in Dρc , we have

m

2
‖µ− µ̂c‖22 ≤ φ(µ)− φ(µ̂c)−

〈
µ− µ̂c, θ̂c

〉
≤ M

2
‖µ− µ̂c‖22.

We now have

Rθ̂c,ρc(w)−Rθ̂c,0(w) ≤ sup
{〈
µ− µ̂c, λc

〉
: ‖µ− µ̂c‖22 ≤ 2ρc/m

}
=
√

2ρc/m‖λc‖2.

A similar argument leads to the lower bound. This observation completes the proof.

Proof of Theorem 4.3. Without loss of generality consider W ⊆ Rq . For notational simplicity,
denote

Rθ̂,ε,ρ(w) = sup
Q∈B(P̂)

EQ [`λ(X,Y,w)] .

Since ε ≥
∑C
c=1 p̂cρc with probability going to 1, following the same argument as in the proof of

Proposition 4.2, we have that with probability going to 1, for any w ∈ W ,

Rθ̂,ε,ρ(w)−Rθ̂,0,0(w) ≤ ‖t? − t̂‖1 +
√

2ε‖t̂‖1,

where

‖t̂‖1 =

C∑
c=1

|EP̂Y |x̂c
[`λ(x̂c, Y, w)] | and ‖t? − t̂‖1 =

C∑
c=1

|Rθ̂c,ρc(w)−Rθ̂c,0(w)|.

For eachw, since θ̂c → λ(w0, x̂c) in probability, we have P(‖θ̂c−λ(w0, x̂c)‖2 > 1)→ 0. Therefore
there exists compact set Θc for each c such that θ̂c is contained in Θc with probability going to 1.
Choose ρc = 1, since ρc → 0, we have ρc ≥ ρc eventually. Therefore, by Lemma C.2, for each c
with probability going to 1

|Rθ̂c,ρc(w)−Rθ̂c,0(w)| ≤
√

2ρc/m‖λ(w, x̂c)‖2,
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where the above constant m can be chosen independent of c due to the finite cardinality assumption
of X . Since the function λ(w, x̂c) is continuous in w for any x̂c, we have ‖λ(w, x̂c)‖2 is bounded
for all w ranging over a compact set W ⊂ W . Thus for each c with probability going to 1, we have

sup
w∈W

|Rθ̂c,ρc(w)−Rθ̂c,0(w)| ≤
√

2ρc/m sup
w∈W

‖λ(w, x̂c)‖2.

Since ρc → 0, we have for each c

sup
w∈W

|Rθ̂c,ρc(w)−Rθ̂c,0(w)| = oP(1).

Thus supw∈W ‖t? − t̂‖1 = oP(1). On the other hand, since supw∈W Rθ̂c,0(w) is OP(1), we have
supw∈W ‖t̂‖1 = OP(1). Therefore as ε→ 0, ρc → 0,

sup
w∈W

|Rθ̂,ε,ρ(w)−Rθ̂,0,0(w)| = oP(1)

for any compact set W . Next, since θ̂c → λ(w0, x̂c) in probability, we have by continuous mapping
theorem

∇Ψ(θ̂c)→ ∇Ψ(λ(w0, x̂c)) in probability.
Besides, by the strong law of large number,

p̂c → P(X = x̂c) almost surely.

Recall that

Rθ̂,0,0(w) = EP̂[`λ(X,Y,w)] =

C∑
c=1

p̂cEP̂Y |x̂c
[`λ(x̂c, Y, w)]

=

C∑
c=1

p̂c

(
Ψ(λ(w, x̂c))− 〈∇Ψ(θ̂c), λ(w, x̂c)〉

)
.

Therefore, for each w, we have

Rθ̂,0,0(w)→ R(w) in probability,

where

R(w) = EP[`λ(X,Y,w)] =

C∑
c=1

P(X = x̂c)
(
Ψ(λ(w, x̂c))−

〈
∇Ψ(λ(w0, x̂c)), λ(w, x̂c)

〉)
.

Since for each c,
w0 = min

w∈W
Ψ(λ(w, x̂c))−

〈
∇Ψ(λ(w0, x̂c)), λ(w, x̂c)

〉
Therefore w0 solves minw∈W R(w). If R(w) admits an unique solution, then clearly w0 is such a
solution. Since Rθ̂,0,0( · ) is convex, by [2, Theorem II.1],

sup
w∈W

|Rθ̂,0,0(w)−R(w)| = oP(1)

for any compact set W . Thus by triangle inequality

sup
w∈W

|Rθ̂,ε,ρ(w)−R(w)| = oP(1)

for any compact set W . Let B denote the unit closed ball in Rq , then w0 + ηB is compact for any
η > 0. Thus Rθ̂,ε,ρ(w)−R(w) = oP(1) uniformly over w0 + ηB. Since R(w) is convex and w0 is
its unique optimal solution, we have

inf
w∈w0+ηB\ η2B

R(w) > R(w0).

Therefore, with probability going to 1,

inf
w∈w0+ η

2B
Rθ̂,ε,ρ(w) < inf

w∈w0+ηB\ η2B
Rθ̂,ε,ρ(w).
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Thus by convexity of Rθ̂,ε,ρ, also

inf
w∈w0+ η

2B
Rθ̂,ε,ρ(w) < inf

w/∈w0+ηB
Rθ̂,ε,ρ(w).

Thus the solution w∗ that solves infw∈W Rθ̂,ε,ρ(w) satisfies

P(‖w∗ − w0‖2 ≤
η

2
)→ 1.

Since η is chosen arbitrarily, we conclude that w∗ → w0 in probability.

Proof of Lemma 4.4. Denote

Wc =
√
Nc

(∑
x̂i=x̂c

T (ŷi)

Nc
− Ef( · |θc)[T (Y )]

)
.

W.l.o.g. we can assume that Ef( · |θc)[T (Y )] = 0. We first show the joint convergence

(W>1 , . . . ,W
>
C )>

d.−→ N (0, G) as N →∞,
where G is a block-diagonal matrix with diagonal blocks given by Gc = Covf( · |θc)(T (Y )), c =
1, . . . , C. Note that

Nc/N → P(X = x̂c) > 0 a.s. for each c.
For convenience denote rc = P(X = x̂c). We let

W̃c =
√
brcNc ·

∑
x̂i=x̂c

T (ŷi)

brcNc
=

∑
x̂i=x̂c

T (ŷi)√
brcNc

.

Let
[∑

x̂i=x̂c
T (ŷi)

]
brcNc

be the sum of the first brcNc samples of T (ŷi) such that x̂i = x̂c. If
Nc < brcNc, we add additional brcNc − Nc independent copies of T (Y ) where Y ∼ f( · |θc) to
the sum

∑
x̂i=x̂c

T (ŷi), and denote it by
[∑

x̂i=x̂c
T (ŷi)

]
brcNc

as well. Denote

W̄c =

[∑
x̂i=x̂c

T (ŷi)
]
brcNc√

brcNc
.

Note that W̄1, . . . , W̄C are independent, by i.i.d central limit theorem(
W̄>1 , . . . , W̄

>
C

)> d.−→ N (0, G) as N →∞,

where G is a block-diagonal matrix with Gc = Covf( · |θc)(T (Y )). We next show that

W̃c − W̄c = oP(1).

Note that

W̃c − W̄c =

[∑
x̂i=x̂c

T (ŷi)
]
brcNc

−
∑
x̂i=x̂c

T (ŷi)√
brcNc

.

By Chebyshev inequality

P(‖W̃c − W̄c‖2 > ε) ≤
E

[∥∥∥[∑x̂i=x̂c
T (ŷi)

]
brcNc

−
∑
x̂i=x̂c

T (ŷi)
∥∥∥2

2

]
ε2brcNc

=

E

[
E

[∥∥∥[∑x̂i=x̂c
T (ŷi)

]
brcNc

−
∑
x̂i=x̂c

T (ŷi)
∥∥∥2

2

] ∣∣∣∣Nc]
ε2brcNc

=
E[‖T (ŷi)‖22]

ε2
E[|brcNc −Nc|]

brcNc
.

Since Nc/brcNc → 1 almost surely, by dominated convergence theorem

E[|brcNc −Nc|]
brcNc

→ 0.
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Thus
P(‖W̃c − W̄c‖2 > ε)→ 0 as N →∞,

which means that W̃c − W̄c = oP(1). Thus by Slutsky’s lemma(
W̃>1 , . . . , W̃

>
C

)> d.−→ N (0, G) as N →∞.

Finally, since Wc = (1 + oP(1))W̃c, by Slutsky’s lemma,(
W>1 , . . . ,W

>
C

)> d.−→ N (0, G) as N →∞.

Now note that

θ̂c = (∇Ψ)−1

(Nc)
−1

∑
x̂i=x̂c

T (ŷi)


and

θc = (∇Ψ)−1
(
Ef( · |θc)[T (Y )]

)
.

Also note that the vector-valued function (∇Ψ)−1( · ) is continuously differentiable at
Ef( · |θc)[T (Y )], therefore, by the delta method(√

N1(θ̂1 − θ1)>, . . . ,
√
NC(θ̂C − θC)>

)> d.−→ D · N (0, G),

where D is a block-diagonal matrix with diagonal elements given by

Dc = J(∇Ψ)−1(Ef( · |θc)[T (Y )])

the Jacobian matrix of (∇Ψ)−1 evaluated at Ef( · |θc)[T (Y )]. Thus

Vc = DcCovf( · |θc)(T (Y ))D>c .

Note that by Lemma B.3, we find

KL(f( · |θc) ‖ f( · |θ̂c)) =
〈
θc − θ̂c, µc

〉
+ Ψ(θ̂c)−Ψ(θc).

Note that Ψ is infinitely-many differentiable, we have the follow Taylor expansion

Ψ(θ̂c)−Ψ(θc) =
〈
θ̂c − θc, µc

〉
+

1

2

〈
θ̂c − θc,∇2Ψ

(
θc + η(θ̂c − θc)

)
(θ̂c − θc)

〉
,

where η is a random variable with values between 0 and 1. Therefore

KL(f( · |θc) ‖ f( · |θ̂c)) =
1

2

〈
θ̂c − θc,∇2Ψ

(
θc + η(θ̂c − θc)

)
(θ̂c − θc)

〉
.

Because
√
Nc(θ̂c − θc)

d.−→ N (0, Vc), and ∇2Ψ( · ) is continuous, we have

∇2Ψ
(
θc + η(θ̂c − θc)

)
= ∇2Ψ (θc) + oP(1).

Moreover, since we have the joint convergence(√
N1(θ̂1 − θ1)>, . . . ,

√
NC(θ̂C − θC)>

)> d.−→ N (0, V ),

by continuous mapping theorem(
N1 ×KL(f( · |θ1) ‖ f( · |θ̂1)), . . . , NC ×KL(f( · |θC) ‖ f( · |θ̂C))

)> d.−→ Z as N →∞,

where Z = (Z1, . . . , ZC)> with Zc = 1
2R
>
c ∇2Ψ(θc)Rc, Rc ∼ N (0, Vc) and are independent for

c = 1, . . . , C.

Before proving the result on the worst-case distribution in Theorem 4.5, we first prove the worst-case
conditional measure that maximize problem (9).
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Proposition C.3 (Worst-case conditional distribution). For any w ∈ W and ρc ∈ R++, then the
supremum problem (9) is attained by Q?Y |x̂c ∼ f( · |θ?c ) with θ?c = θ̂c− λ(w, x̂c)/γ

?
c , where γ?c > 0

is the solution of the nonlinear algebraic equation

Ψ
(
θ̂c − γ−1λ(w, x̂c)

)
+ γ−1

〈
∇Ψ

(
θ̂c − γ−1λ(w, x̂c)

)
, λ(w, x̂c)

〉
= Ψ(θ̂c)− ρc. (A.9)

Proof of Proposition C.3. Reminding that problem (9) is written as

sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)] .

In the first step, we show that Q?Y |x̂c is feasible in problem (9), which means that Q?Y |x̂c ∈ BY |x̂c .
Indeed, we find that

KL(Q?Y |x̂c ‖ P̂Y |x̂c) = −Ψ
(
θ̂c−

λ(w, x̂c)

γ?c

)
− 1

γ?c

〈
∇Ψ

(
θ̂c−

λ(w, x̂c)

γ?c

)
, λ(w, x̂c)

〉
+ Ψ(θ̂c) = ρc,

where the first equality exploits the expression of the KL divergence between two distributions from
the same family in Lemma B.3, and the second equality follows from the fact that γ?c solves (A.9).

Proposition 3.2 asserts that the worst-case conditional expected log-loss problem (9) is equivalent to
the convex program (10). Noticing that (A.9) is the first-order optimality condition of problem (10),
thus, by definition, γ?c is the minimizer of (10). The objective value of Q?Y |x̂c in (9) amounts to

EQ?
Y |x̂c

[`λ(x̂c, Y, w)] = Ψ(λ(w, x̂c))−
〈
EQ?

Y |x̂c
[T (Y )], λ(w, x̂c)

〉
= Ψ(λ(w, x̂c))−

〈
∇Ψ

(
θ̂c −

λ(w, x̂c
γ?c

)
, λ(w, x̂c)

〉
= γ?c

(
ρc −Ψ(θ̂c)

)
+ γ?cΨ

(
θ̂c −

λ(w, x̂c)

γ?c

)
+ Ψ(λ(w, x̂c)),

where the first equality follows by substituting the expression of `λ and the linearity of the expec-
tation operator, the second equality follows from the convex conjugate relationship between the ex-
pectation parameters and the log-partition function Ψ, and the last equality follows from the fact that
γ?c solves (A.9). Notice that the last expression coincide with the objective value of (10) evaluated
at the optimal solution γ?c . This observation implies that Q?Y |x̂c attains the optimal value in (9).

Next, we establish the following result on the optimal solution of the support function hQ of the set
Q defined as in Lemma B.1.
Lemma C.4 (Support point of Q). Let Q be defined as in (A.1). For any t ∈ RC , if there exist
α? ∈ R and β? ∈ R++ that solve the following system of nonlinear algebraic equation

C∑
c=1

p̂c exp
( tc − α

β
− ρc − 1

)
− 1 = 0 (A.10a)

C∑
c=1

p̂c(tc − α) exp
( tc − α

β
− ρc − 1

)
− (ε+ 1)β = 0 (A.10b)

then the optimal solution q? ∈ Q that attains t>q? = hQ(t) is

q?c = p̂c exp
( tc − α?

β?
− ρc − 1

)
∀c = 1, . . . , C. (A.10c)

Proof of Lemma C.4. By definition of q? in (A.10c), one can verify that q? ≥ 0 and that
∑C
c= q

?
c =

1, where the equality follows from (A.10a). Moreover,
C∑
c=1

q?c (log q?c − log p̂c + ρc) =

C∑
c=1

p̂c

( tc − α?
β?

− 1
)

exp
( tc − α?

β?
− ρc − 1

)
=

C∑
c=1

p̂c

( tc − α?
β?

)
exp

( tc − α?
β?

− ρc − 1
)
− 1 = ε,
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where the equalities follow from the definition of q? in (A.10c), and the equations (A.10a)
and (A.10b), respectively. This implies that q? ∈ Q.

It now remains to show that t>q? = hQ(t). By Lemma B.1, we have

hQ(t) =

{
inf α+ εβ + β

∑C
c=1 p̂c exp

(
tc−α
β − ρc − 1

)
s. t. α ∈ R, β ∈ R++.

If (α?, β?) ∈ R × R++ is the solution of (A.10a)-(A.10b), then (α?, β?) satisfy the Karush-Kuhn-
Tucker condition of the above infimum optimization problem, and thus we have

hQ(t) = α? + εβ? + β?
C∑
c=1

p̂c exp
( tc − α?

β?
− ρc − 1

)
.

Moreover, we find

C∑
c=1

tcq
?
c =

C∑
c=1

tcp̂c exp
( tc − α?

β?
− ρc − 1

)
= (ε+ 1)β? + α?

C∑
c=1

p̂c exp
( tc − α?

β?
− ρc − 1

)
= α? + εβ? + β?

C∑
c=1

p̂c exp
( tc − α?

β?
− ρc − 1

)
= hQ(t),

where the first equality follows from the definition of q?, the second equality follows from (A.10b)
and the third equality follows from (A.10a). This observation completes the proof.

Proof of Theorem 4.5. It is easy to verify that Q? is a probability measure because each δx̂c and
Q?Y |x̂c is a probability measure, and

∑C
c=1 p̂c exp

(
(t?c −α?)/β? − ρc − 1

)
= 1 since α?, β? solves

C∑
c=1

p̂c exp
(
β−1(t?c − α)− ρc − 1

)
− 1 = 0 (A.11)

C∑
c=1

p̂c(t
?
c − α) exp

(
β−1(t?c − α)− ρc − 1

)
− (ε+ 1)β = 0, (A.12)

If we set Q?X =
∑C
c=1 p̂c exp

(
(t?c − α?)/β? − ρc − 1

)
δx̂c , then we have

Q?({x̂c} ×A) = Q?X({x̂c})Q?Y |x̂c(A) ∀A ∈ F(Y), ∀c.

Moreover, because Q?Y |x̂c is constructed using Proposition C.3, we have KL(QY |x̂c ‖ P̂Y |x̂c) ≤ ρc
for all c. Furthermore, we also have

KL(Q?X ‖ P̂X) + EQ?X [

C∑
c=1

ρc1x̂c(X)] =

C∑
c=1

p̂c

( t?c − α?
β?

− 1
)

exp
( t?c − α?

β?
− ρc − 1

)
=

C∑
c=1

p̂c

( t?c − α?
β?

)
exp

( t?c − α?
β?

− ρc − 1
)
− 1 = ε,

where the equalities follow from the construction of Q?X and the equations (A.11) and (A.12), re-
spectively. This implies that Q? ∈ B(P̂).

It now remains to show that Q? is optimal. For any weight w, by the definition of t?c , we have

t?c = EQ?
Y |x̂c

[`λ(x̂c, Y, w)] = sup
QY |x̂c∈BY |x̂c

EQY |x̂c
[`λ(x̂c, Y, w)]
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We thus find

max
Q∈B(P̂)

EQ

[
`λ(X,Y,w)

]
= sup

QX∈BX
EQX

[
sup

QY |X∈BY |X

EQY |X [`λ(X,Y,w)]

]

= sup
QX∈BX

EQX

[
C∑
c=1

t?c1x̂c(X)

]
= sup
q∈Q

q>t? (A.13)

=

C∑
c=1

p̂ct
?
c exp

( t?c − α?
β?

− ρc − 1
)

(A.14)

= EQ?X

[
C∑
c=1

t?c1x̂c(X)

]
(A.15)

= EQ?X

[
EQ?

Y |X
[`λ(X,Y,w)]

]
= EQ?

[
`λ(X,Y,w)

]
.

where the setQ in (A.13) is defined as in (A.1). Equality (A.14) follows from Lemma C.4 and from
the definition of α? and β? that solve (A.11)-(A.12). Equality (A.15) follows from the definition
of Q?X . The proof is completed.

D Auxiliary Results

Lemma D.1 (Locally strongly convex parameter). If Ψ is locally strongly smooth, and at θ̂, the
smoothness parameter is σ, then φ is locally strongly convex at µ̂ = ∇Ψ(θ̂) with strongly convex
parameter 1/σ in a sufficiently small neighbourhood of µ̂.

Proof of Lemma D.1. The proof follows directly from the proof of [9, Theorem 4.1]. By the defini-
tion of locally strongly smooth, for some Θ

′ ⊆ Θ neighborhood of θ̂, we have for θ ∈ Θ
′

Ψ(θ) ≤ Ψ(θ̂) +
〈
∇Ψ(θ̂), θ − θ̂

〉
+
σ

2
‖θ − θ̂‖22.

Since µ̂ = ∇Ψ(θ̂) and φ(µ̂) =
〈
µ̂, θ̂
〉
−Ψ(θ̂), we have

φ(µ) = sup
θ∈Θ

(〈
µ, θ
〉
−Ψ(θ)

)
≥ sup
θ∈Θ′

(〈
µ, θ
〉
−Ψ(θ̂)−

〈
µ̂, θ − θ̂

〉
− σ

2
‖θ − θ̂‖22

)
=
〈
µ̂, θ̂
〉
−Ψ(θ̂) + sup

θ∈Θ′

(〈
µ, θ
〉
−
〈
µ̂, θ
〉
− σ

2
‖θ − θ̂‖22

)
= φ(µ̂) +

〈
θ̂, µ− µ̂

〉
+ sup
θ∈Θ′

(〈
µ− µ̂, θ − θ̂

〉
− σ

2
‖θ − θ̂‖22

)
.

In the last step, note that θ̂ = ∇φ(µ̂). Taking θ− θ̂ = α(µ− µ̂) where α = 1/σ. θ ∈ Θ
′

if µ− µ̂ is
sufficiently small. We have

sup
θ∈Θ′

(〈
µ− µ̂, θ − θ̂

〉
− σ

2
‖θ − θ̂‖22

)
≥ (α− σ

2
α2)‖µ− µ̂‖22 =

1

2σ
‖µ− µ̂‖22.

Therefore φ is locally strongly convex at µ̂ with strongly convex parameter 1/σ.

In Proposition 4.2, since Ψ is locally Lipschitz continuous, we have that Ψ is locally strongly smooth
with smoothness parameter σc at θ̂c, where σc can be chosen as the local Lipschitz constant for a
neighborhood around θ̂c. By Lemma D.1 and the proof of Proposition 4.2, for sufficiently small
ρc, c = 1, . . . , C, we can choose m explicitly as m = minc 1/σc, thus κ2 =

√
2 maxc ρc · maxc σc.
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