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This appendix is organized as follows. Section A-C provide the detailed proofs for all the technical
results in the main paper. Section D provides further discussion on the variance regularization
surrogate result in Proposition 4.2.

A Proofs of Section 2

Proof of Example 2.2. 'We note that

C
min Eglfy(X, Y,w)] = min :1@, (\I/()\(w,fc)) —(Bs, [T(Y)],A(w,fc»)
C
~ min gp (POw,5) = (VIE), Aw, 7)) )

c N
~ ~ Za,f@ T (yi) ~
i Es[lx(X,Y,w)] = 15%151\}; . (\I/()\(w,xc)) ¢ N, ,)\(w,a:c>))
N
= min ; (T(AMw, 2)) = (T (@), Mw, 7)) ,
where we used p. = N./N. Therefore wys g solves minyeyy BEs[lr (X, Y, w)]. O
Proof of Example 2.3. We find
c
min E5[(A(X, Y, w)] = min gp (v(\w, 7)) = (B, | [T Aw,70)))
c
> pe min, (U (Awe,70)) = (Bs, [T Alwe, 7)) )

C
-5 (q/(A(wMLE@C)) — (Bg, _[T(V)), A(wﬂm,a«c») ,
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where the first equality follows from the definition of the log-loss function ¢, the inequality follows
because p. > 0, and the last equality follows because of the convex conjugate relationship that
implies the optimal solution w; should satisfy

V\I/()\(w;fc)) =I5 [T(Y)] = V\I/(A(’ZU]WLE,EC)) — w: = WMLE-

Py |z,

This implies that w1, solves min,eyy BEg[fx(X, Y, w)] and completes the proof. O

Proof of Proposition 2.6. Fix any set of conditional radii p € ]Rg. If B, p(ﬁ’) is empty then it is
trivial that B. ,(?) C B.(P). Suppose that B. ,(IP) is non-empty and pick any Q € B. ,(P).

By definition of the set B, ,(IP), Q can be decomposed into a marginal Qx and a collection of
conditional measures Qy |z_. Furthermore, because ¢ is finite, the marginal Q x should be absolutely

continuous with respect to Px . We have

KL(Q || P) = KL(Qx || Px) + Eq, [KL(Qy x || Py|x)]
C
< KL(Qx || Px) + Eg, [Y_ pels, (X)] <,

c=1
where the equality is from the chain rule of the conditional relative entropy [10, Lemma 7.9]. The
first inequality follows from the fact that KL(Qy |z, || @y| z.) < p. for every c. The second inequal-
ity follows from the last constraint defining the set B p(@) This implies that Q € B, (@), and be-
cause Q was chosen arbitrarily, we have B, , C B, (]IA”) As a consequence, UpeR?r IB%Eyp(]IAD) C B (]IAD)

Regarding the reverse relation, pick an arbitrary Q € B, (@) which admits the decomposition into
a marginal Qx and conditional measures Qy |z,. By setting the conditional radii p € RE with

pe = KL(Qy 3, || ]@y@c) for every ¢, one can verify using the chain rule of the conditional relative
entropy that Q € B ,(P). This implies that B, ,(P) C Upere B. ,(P).
Concerning the last statement, notice that the condition Zle Pepe < e implies that P € B., p(@)

~

and thus B, ,(IP) is non-empty. The proof is complete. O

B Proofs of Section 3

The proof of Proposition 3.1 relies on the following preliminary result.
LemmaB.1. Letp € Rg - be a probability vector summing up to one. Forany ¢ € R, and p € Rg
satisfying Zle Depe < &, the finite dimensional set

c c
Q= {QGRS:ZQCZL ch(logqc—logﬁc+pc)§€} (A.D)
c=1 c=1
is compact and convex. Moreover, the support function hg of Q satisfies
¢ te — o
VteRY: ho(t)2sup q't= inf o+ Be + De €X (c — ,—1) .
o(t) sup g t= b, B 6;170 p(—p —re

Proof of Lemma B.1. The function Rg Sq+— Zle qc.(log g. —logp. + p.) € Ry is continuous

and convex, hence, the set {g € RY : ZCC:1 qc(log . — logp. + p.) < €} is closed and convex.
Consequentially, Q can be written as the intersection between a simplex (thus compact and convex)
and a closed, convex set, so Q is compact and convex.

The proof of the support function of Q proceeds in 2 steps. First, we prove the support function for
the e-inflated set

C C
Qe = {q eRY: ch =1, ch(logqc—logﬁchpc) < €+e}

c=1 c=1



with the right-hand side of the last constraint being inflated with e € R, . In the second step, we
use a limit argument to show that the support function of Q is attained as the limit of the support
function of Q. as ¢ tends to 0.

Reminding that A is the C-dimensional simplex. For any ¢ € R® and any € € R, by the definition
of the support function, we have for every ¢t € R®

sup th .
he ) =1 (1 qea > qe(log ge —logpe + pc) < e+ e (A.22)
c=1 .
= sup Jnf q"t+Be+e— gqc(log qc — log Pe + pe)
C
— ﬁiean+ Sgg q't+Be+e— ; qc(log e — logpe + pe), (A.2b)

where the interchange of the sup-inf operators in (A.2b) is justified by strong duality [6, Proposi-
tion 5.3.1] because p constitutes a Slater point of the set Q.. By Berge’s maximum theorem [5], the
optimal value of the inner supremum problem is a continuous function in 8 because the simplex A
is compact and the objective function is continuous in the decision variable q. As a consequence,
we can restrict 5 € R, without any loss of optimality. Because A is prescribed using linear
constraints, strong duality implies that

C
ho (t)= _ inf {a+ﬁ(€+€)+sup ch(tc—a+ﬁlogﬁc—ﬂpc—ﬂlogqc)}

a€R, BER ¢ 4€RY 1

C
= inf a—+ Be+e€)+ su o(te — a+ Blogp. — — Blo ’
a€R, BER, | { A ) ;qce£+ qe(te Blogpe — Bpe — B qu)}

where the last equality holds because the supremum problem is separable in each decision variable
gc- It now follows from the first-order optimality condition that the maximizer ¢, is

x te —a+ Blogp. — Bp. — B
q(;_exp 6

and by substituting this maximizer into the objective function, the value of the support function
hg, (t) is then equal to the optimal value of the below optimization problem

)>o,

c
. te —«
inf a+ Ble+e)+ ex ( — 4—1).
er il B(e +¢) ﬂ;pc p(—5 Pe

We now proceed to the second step. Denote temporarily the objective function of the above problem
as G (e, ), where v = [a; 8] combines both dual variables « and . Define the function

g(e) = inf G(e, ), withT 2 R x R, .
yel’

Because G is continuous, [11, Lemma 2.7] implies that g is upper-semicontinuous at 0. Furthermore,
G is calm from below at € = 0 because G(¢,v) — G(0,7) = Be > 0, thus [11, Lemma 2.7] implies
that g is lower-semicontinuous at 0. These two facts lead to the continuity of g at 0. From the first
part of the proof, we have g(e) = hg_(¢) for any e € R . Moreover, by applying Berge’s maximum
theorem [5] to (A.2a), hg, (t) is a continuous function of € over R . Thus we find

ho(t) = ho,(t) =limhe. () = lim g(e) = g(0),

where the chain of equalities follows from the definition of Q., the continuity of hg_(t) in €, the
fact that g(e) = hg_(t) for € > 0, and the continuity of g at 0 established previously. The proof is
now completed. O



Proof of Proposition 3.1. To facilitate the proof, we define the following ambiguity set over the
marginal distribution of the covariate X as

c
Bx £ {QX € M(X) : KL(Qx || Bx) + Eqy[Y_ pels (X)) < 5} :
c=1
Given a nominal marginal distribution P x supported on a finite set {Z. }.cc, the absolute continuity
requirement suggests that KL(Qx || Px) is finite if and only if Qx is absolutely continuous with

respect to Px. Thus, any Qx of interest should be supported on the same set {fz:\c}c:l,__.p, and
Qx and be finitely parametrized by a C-dimensional vector {g.}.=1,....c. Let Q denote the convex
compact feasible set in RC, that is,

C C
Q= {q €RY:D> ge=1, qelogge —logpe + pe) < 6},

c=1 c=1

and the ambiguity set B x can now be finitely parametrized as

c
Bx = {QX e M(X):3qe Q, Qx :ch(si’fc}'
i=1

By coupling Bx with the conditional ambiguity sets By|z,, B(P) can be re-written as

=~ ~ 3Qx € Bx, Qyz, €Byjz, Ve=1,...,.C
IB%(IP’):{QEM(XXJ/). (@({Xa?c} XXA) :Y(‘@X({EZL')QYW(A)VAef(y) VC:L...,O}

The worst-case expected loss becomes

sup Eg[L(X,Y)] = sup Eg,
QeB(P) Qx€eBx
c

= sup ch sup  Eg, . [L(Z:Y)],
€ 7 Qviz.Byz.

sup EQY\X [L(X7 Y)]‘|

Qy | x €By | x

where the first equality follows from the law of total expectation, and the second equality follows
from the finite reparametrization of By . If we denote by T the epigraph reformulation of the worst-
case conditional expectations

Té{teRC: sup  Egy . [L(E,Y)] < te chl,...,C}

Qv z.€By )z, ’

then the worst-case expected loss can be further re-expressed as

sup Eg[L(X,Y)] =supinf ¢'t (A.3a)
QeB(P) qeQ te€T
ES f T *
nf 2161;9) q't (A.3b)
¢ te —
_ inf a+55+ﬂzlﬁcexp(cﬁ pcl) (A30)
o

s.t. teT,aeR, BeER,,,

where the sup-inf formulation (A.3a) is justified because ¢ is non-negative and we can resort to
the epigraph formulations of the worst-case conditional expected loss. In (A.3b) we applied Sion’s
minimax theorem [13], which is valid because the sup-inf program (A.3a) is a concave-convex
saddle problem, and Q is convex and compact and 7T is convex. In (A.3c) we have used Lemma B. 1
to reformulate the supremum over g. The claim then follows. O

Instead of solving the problem in the natural parameters 6 coupled with its log-partition function ¥,
we will use the reparametrization to the mean parameters using the conjugate function of . More
specifically, let ¢ be the convex conjugate of W, that is,

¢ Sgg{(u,@ -V (0)}



Before proceeding to the technical proofs, the below lemma collects from the existing literature the
necessary background knowledge about the log-partition function ¥ and its conjugate ¢, along with
the relationship between the natural parameter 6 and its corresponding expectation parameter L.

Lemma B.2 (Relevant facts). The following assertions hold for regular exponential family.
(i) The function ¢ is closed, convex and proper on R?.

(i) (©,%) and (int(dom(¢)), ¢) are convex functions of Legendre type, and they are Legendre
duals of each other.

(iii) The gradient function V¥ is a one-to-one function from the open convex set © onto the open
convex set int(dom(¢)).

(iv) The gradient functions V¥ and V¢ are continuous, and V¢ = (V)7L

(v) The function ¢ is essentially smooth over int(dom(¢)).

Proof of Lemma B.2. Assertion (i) holds since <u, 9> — U(0) is convex and closed for each 6, thus
taking supremum, ¢ is convex and closed. ¢ is proper since dom(¢) is non-empty. Assertions (ii)
to (iv) follows from [3, Lemma 1] and [3, Theorem 2]. Assertion (v) follows from [3, Lemma 1]
and [12, Theorem 26.3], and the fact that ¥ and ¢ is a convex conjugate pair. O

From Assertion (ii), we have the mappings between the dual spaces int(dom(¢)) and © are given
by the Legendre transformation

n(0) =V¥(O) and O(u) = Vo(u).
For any p € int(dom(¢)), the conjugate function ¢ can be expressed as

o) = (1, 0(p)) — W (0(p))-

Lemma B.3 (KL divergence between distributions from exponential family). Suppose that Q; and
Q- belong to the exponential family of distributions with the same log-partition function ¥ and with
natural parameters 6, and 6, respectively. The KL divergence from @Q; to Q2 amounts to

KL(Qy || Q2) = (01 — 02, pu1) — W(01) + V() = ¢(p1) — (p2) — (g1 — p2,602),
where ¢ is the convex conjugate of ¥, and p; = V¥(6,) for any j € {1, 2}.

The result of Lemma B.3 can be found in [3, Appendix A], but the explicit proof is included here
for completeness.

Proof of Lemma B.3. One finds
KL(Q: [| Q2) = Eq, [log(dQ1/dQ:)]
= Eq,[(T(Y),01 — 02) — W(01) + U (62)] (A.4a)
= (1,01 — 02) — V(1) + U (62), (A.4b)

where equality (A.4a) follows by calculating the logarithm of the Radon-Nikodym derivatives be-
tween two distributions, and equality (A.4b) follows by noting that u; = Eg, [T(Y)].

By [3, Theorem 4], one can also rewrite the density using the mean parameter u = p(6) as
F(ylu) = h(y) exp ({6, T(y)) — (0))
= h(y) exp (6(n) + (T(y) — 1, Vo(n)))
The KL divergence from QQ; to Q2 amounts to
KL(Q: || Q2) = Eq, [log(dQ:/dQ2)]

= Eq, [¢(p1) — ¢(p2) + (T(Y), V(1) — Vo(ua)) — (p1, V(1)) + (2, Vo(ua))]
(A.5a)

= (2 — p1,02) + ¢(p1) — Ap2). (A.5b)

From Assertion (iv) in Lemma B.2, we notice that 83 = V¢(u2), which completes the proof. O



Recall that the conditional ambiguity set defined in (8) is
By|z, £ {Qym EM(Y):30 €0, Qyiz. ()~ f(-10), KL(Qyz, | ﬁ’Ym) < Pc}

for a parametric, nominal conditional measure }IADym ~ f(-18.). 6, € © and a radius p, € R, The
uncertainty set S, of expectation parameters induced by the ambiguity set By |z, is defined as

S. & {p € dom(¢) : IQyz, € By, p = Eq, s, [T(Y)]}.

Lemma B.4 (Compactness of expectation parameter uncertainty set). The set S, is compact, and it
has an interior point whenever p. > 0.

Proof of Lemma B.4. By Lemma B.3 and the definition of the set S., we can write S, as
8. = {u e dom(9) : () — dfic) — (11— fies0e) < pe } -

Because ¢ is closed, convex, proper, and that 5,: € int(0) = O, the function ¢(-) — <-,§C> is
coercive by [12, Corollary 14.2.2] and [4, Fact 2.11]. As a consequence, S, is bounded.

Because U is essentially strictly convex on O, ¢ is essentially smooth on int(dom(¢)) by [12,
Theorem 26.3]. [4, Theorem 3.8] now implies that if 4’ is a boundary point of int(dom(¢)) then as

int(dom(¢)) 3 s, 2= 4/ then & (pre) — (o §c> 709, 1 5. Moreover, because ¢ is continuous
over int(dom(¢)), the set S, is closed. This implies that S, being a closed and bounded set of finite
dimension, is compact.

The continuity of ¢ leads a straightforward manner to the non-empty interior of S, when p. > 0.
This observation completes the proof.

Proof of Proposition 3.2. Because A is a mapping onto the space © of natural parameters, we use

~

the shorthand A\, = A(w,Z.) € ©. Moreover, let i, = V¥(0.). The worst-case conditional
expectation of the log-loss function becomes

sup  Bg, . [0\(Z,Y,w)]= sup  Eg,. [T\w,Z)) = (T(Y),Mw,Z.))]
QY\ECEBY\EC QY"I‘CEBY‘EC
= Q Slé% \I]()‘(wv /l‘\c)) - <E@y|§c [T(Y)L )‘(w? EC)>
y|z. €By |z,

_ { sup (o) — (1, Ac) R
s. t. ¢(M) - (b(ﬁc) - <:U’ - ﬁCa 91:> < Pes

where the first equality is from the definition of £, and the second equality follows from the linearity
of the expectation operator. The last equality follows from the definition of the ambiguity set By |z,
using the ¢ function by Lemma B.3. Because the term W()\.) does not involve the decision variable
L, it suffices now to consider the optimization problem

SUP{< Xy i) () — {p,0c) < pe+ B(fic) — <ﬁc,§c>}. (A7)

Suppose at this moment that A\. # 0 and p. > 0. When p. > 0, the feasible set of (A.7) satisfies
the Slater condition because ¢ is a continuous function. Hence, by a strong duality argument, the
convex optimization problem (A.7) is equivalent to

sup inf (= e, 1) +7(pe = (1) + (. 0.)) = inf {vﬁc +sup (11,70 — Ae) — 7¢(u)} ,
uw 20 ~v>0 m

where p. £ pe + ¢(fic) — (fic,0:) € R and the interchange of the supremum and the infimum
operators is justified thanks to [6, Proposition 5.3.1]. Consider now the infimum problem on the
right hand side of the above equation. If v = 0, then the inner supremum subproblem on the right
hand side is unbounded because A. # 0, thus v = 0 is never an optimal solution to the infimum
problem. By utilizing the definition of the conjugate function, one thus deduce that problem (A.7)
is equivalent to

. _ /. N . _ (7 )\c
inf ype + (v0)" (v0e — Ae) = inf ype +7¢ (Gc - 7), (A.8)



where the equality exploits the fact that (y¢)*(0) = v¢*(6/) for any v > 0 [7, Table 3.2].

We now show that the reformulation problem (A.8) is valid when p. = 0. Indeed, when p. = 0,
problem (A.7) has a unique feasible solution fi., thus its optimal value is < — A, ﬁc>. Moreover, in
this case, problem (A.8) becomes

~ ~ A
f Ac - Acaec * 90_7
ngov{ﬂu) (fic,0c) + ¢ ( 7)}
:<_)\cvﬁc>+inf v ¢(ﬁc)_<ﬁcaé\c_£>+¢* é\c_ﬁ .
>0 Y Y
Notice that the term in the square bracket of the optimization problem on the right hand side is
non-negative by the definition of the conjugate function. Thus, the infimum problem over v admits
the optimal value of 0 as ~ tends to +oc0. As a consequence, when p. = 0, both problem (A.7) and
(A.8) have the same optimal value and they are equivalent.

Consider now the situation where A\, = 0. In this case, problem (A.8) becomes
inf ype+7 (O — (fie, 0) + 0" (0.)) -

By definition of the conjugate function, we have ¢*(6.) > (Jic, f.) — ¢(fic), and thus, by combining
with the fact that p. > 0, this infimum problem will admit the optimal value of 0. Notice that
when A\, = 0, the optimal value of problem (A.7) is also 0. This shows that (A.8) is equivalent
to (A.7) for any possible value of A\.. Replacing ¢* in (A.8) by its equivalence ¥ and substituting

(He, §c> — ¢(Ji.) by its equivalence W¥(6,.) complete the reformulation (10). O

Proof of Theorem 3.3. By applying Proposition 3.1, the distributionally robust MLE problem (4)
can be reformulated as

c
~ tc_
inf a+55+52pcexp( ,Ba _pc_1>
c=1
s.t. weW, tcRY acR, BcRy,
sup  Eg, . [I\(Z,Y,w)] <t. Ve=1,...,C.
Qv 3. EBy |z,

min max [E [ﬁ,\ XYw} =
“’GWQGIB(]P‘) Q ( )

Using Proposition 3.2 to reformulate each constraint of the above optimization problem leads to the
desired result. O

C Proofs of Section 4

Proof of Proposition 4.1. Let 1 denote the N dimensional vector of all 1’s. Let KL(¢q || p) =
Ziil qi log(qi/p:), we have

sup  Eg[li(X,Y,w)]=  sup Zqu,\ i, i w
QKL (Q|Fm)<e ¢ KL(qll F1)<e 12

N

su i (TN w, Z3)) — (T@), Mw, ;) .
q:KL(q”ngE;q( (Mw, 72)) — (T(@), Aw, 7:)))

On the other hand, we note
N
sup B[y (X, Y,w)] = sup D qiBg, ., [0A(Zi, Y, w)]

QeB(B) ¢KL(g|| y1)<e ;=1

N o~

sup Zqi (W(A(w,m )) — (V(6;), )\(w,@)>)

¢:KL(q|| #1)<e ;—
N

sup Y qi (T(A(w, ) — (T(@), Mw, 7)) -
¢:KL(qll 1) <e ;=1

Therefore the objective functions are the same and the two problems are equivalent. O



The proof of Proposition 4.2 relies on the following result.
Lemma C.1. Let A C R be asimplex and p € int(A) be a probability vector. For any two vectors
t,t* € RC, any vector p € RE and any scalar e > p ' p, we have

C
sup {th* —p't:qe A ge(logge —logpe + pe) < 5}
c=1
/=
oo + ——=
min. Pec

<" =

where £ = p ' t.

Proof of Lemma C.1. Let 1 denote the C' dimensional vector of 1’s, we have

sup ¢ t*—p't
c

s.t. g€A, ch(log qe —logpe +pe) < ¢

c=1

sup ¢ (t" —t)+(q—p) 't
C

s.t. q€A, ZQC(IOgQC —logpe+pe) e

c=1
sup ¢ (t* — A)+(q Pt

<
— ] s.t. g€A, Z 2<%
<Hb”up q"(t" - )+sup{ (q—p)"(E—1t1): [lq—pl3 < 2¢}

qll1=1

e — P,

< sup ¢ (t*—1) +sup Z = VPelte —1) ¢ llg—P3 < 2¢

anl 1 c=1 \/pc

R V2

< sup q'(t* t)Jr.isA

lalls =1 min, v/

where the first inequality follows from Pinsker’s inequality [8, Theorem 4.19] and the fact that
llg—Dpl3 < |lg—D||7 = 4|/g — Dl|%, the second inequality follows from the fact that (g —p) "1 = 0
and dropping the constraint ¢ € A, and the last inequality is from Cauchy-Schwarz.

In the last step, we have
sup qT(t - t = ||t* — moo,
llgll=1
which completes the proof. O

We now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Let t* and t be two C-dimensional vectors whose elements are defined as

ty= sup Eg,, [(\(E.Y,w)], t =B, [0(@c,Y,w)] Ve.
Qv 7. EBy |z, <
By Lemma C.1, we find
sup q't*—p't
c
sup Egllx(X,Y,w)] — Es[\(X,Y,w)] = ~
QeB(P) ol = Eella ) st €A, qe(logg. —logh. + pc) <€
c=1
2e
< — B +




where t = ﬁTtA. In the last step, notice that
c
> belle D% = Vars (Bs, [0 (X, Y, w)]) < Varg (2(X, Y, w)).
c=1

It now remains to provide the bounds for ||t* — #|s. For any ¢, let Ao = A(w, Z..), we have
t* o %‘ — { sup <M - .Hca )‘(‘> N
¢ s. t. qf)(:“’) - (b(ﬂc) - <:u - ﬁca00> < Pe-

Because V¥ has locally Lipschitz continuous gradients, ¢ is locally strongly convex [9, Theorem 4.1].
Moreover, the feasible set S, of the above problem is compact by Lemma B.4, hence there exists a
constant 0 < m,. such that

me e —~ P
7”# - Hc“% < ¢(N) - @b(.uc) - <:U' - /’LC79C> Vu € S..

Notice that the constants m,. depends only on ¥ and 56. Thus, we find

t; _%\c < sup {<M - ﬂca)\c> : mc”’u - ﬁcH% < 2pc} =V 2pc/mcll)‘(w7§7\0)”2'
By setting m = min, m,, we have

N 2max, p ~
I = Ao < 4/ 2 A0, Zo)lo

Combining terms leads to the postulated results. O

For any é\c €0, p. € Ry, let R(;C e (w) denote the value of the worst-case expected log-loss

Rj. . (w) = sup  Eq, . [(\(Tc,Y,w)].
e Qv |z, €By |z,

Lemma C.2. Suppose that the log-partition function ¥ has locally Lipschitz continuous gradients,
that © = RP and that ©, C © is a compact set. For any fixed p, € Ry, there exist constants
0 < m < M < +oo that depend only on ¥, ©,. and p, such that for any value A(w, Z.) € RP and
any radius p, > p. > 0

V2o M, Bl < Ry, (w) = Ry o(w) < v/2oc/mlAw, 32 VB, € ©..

Proof of Lemma C.2. Consider the set
D 2 {fi, : 36, € O, such that i, = VI¥(8,)}
and its p,-inflated set

D;. 2 {u: 3, € D such that ¢(u) — ¢(fie) — (it — Fie, 0c) < P}

Because O, is compact and V'V is a continuous function, D is compact [1, Theorem 2.34]. Note
that we can rewrite D5_ as

D5, = {p: Jfic € D such that ¢(y) + <Na *0c> <P+ o(Hc) — <ﬁ6a GC>}'
Let S be temporarily the set
S = {/J t () + _inf <Ma *9c> <P+ sup ¢(Hc) — <ﬁc»96> < OO} .
0.€Oe 0.0,
We have that D; C S. Recall the definition of ¢:

¢ : p > sup {<,u,9> — \11(0)}
6co

Therefore ¢( - ) is closed, convex and proper. Therefore by [4, Proposition 2.16], © = R? implies
that ¢( - ) is super-coercive, i.e., lim |, 00 #(1t) /|| ft|l2 — 00. Thus

o(p) + inf (p, 75C> — 00.
9.€0.

c€0¢

1
llpll2—o00



Therefore .S is bounded, which implies that Dﬁc is also bounded.

Since O, is compact, there exists a subsequence {@gn}nzl such that @jn — 9\30 € O, asn — oo.
Since D, is bounded, it suffices to show that D,,_ is closed. Choose any sequence {1*},>1 € D,
such that % — p> as k —> oo, we want to show that u> € D, . For each k, since uk e D,.,
there exists i € D and 6% € ©, such that ¢(u*) — (k) — (¥ — 7%, 6%) < p.. Since D and

C

@ are compact, there exists a subsequence {k;, },>1 such that 7i¥» — 7i%° and GC’n — 530 for some
o €D and 9°° € ©.. Since ik = V\I/(@j"), by continuity we have 12° = V¥(02°). Note that
O) = 6 = (b = it B < pe.
by continuity of ¢, we have
Therefore > € D, and hence D,, is closed.

The finite dimensional set D5_ is closed and bounded, thus it is compact, and moreover D C D,

The convex hull Dp of Dp is also compact [1, Corollary 5.33]. Because ¥ has locally Llpschltz
continuous gradients, ¢ is locally strongly convex [9, Theorem 4.1]. Moreover, ¢ is also essentially

smooth by Lemma B.2(v). Thus over the set Dpc’ there exist constants 0 < m < M < +4oo such
that

m —
Sl = w15 < 6(u) = d(u') = (u—p',0') < *Hu W5 Y, €Dp ' = V().
Notice that the constants m and M depend only on ¢, and thus on ¥, 5. and ©,
Denote temporarily the shorthand . = A(w, Z.). We have R ,(w) = ¥(X:) — (fic, Ac ), and so
sup <l‘ — He, /\C>
Ry —Ry (w)= { bt o~
00 () = R0 = 56 b) = 6(he) — (= e Be) < e

Because x and fi,. are both in Eﬁc’ we have

m N - - A M ~
Sl = 7cll3 < ép) = @) = (i = fie, Oe) < -l = Fell3-
We now have
Rj. . (w) =Ry o(w) <sup {{p = fie; Ae) = |l = T3 < 2pc/m} = v/2pc/ml|Ac]|2-
A similar argument leads to the lower bound. This observation completes the proof. O
Proof of Theorem 4.3. Without loss of generality consider W C R?. For notational simplicity,
denote

(w) = sup Eq [(y(X,Y,w)].

R, A
QeB(P)

Since € > Zle Depe With probability going to 1, following the same argument as in the proof of
Proposition 4.2, we have that with probability going to 1, for any w € W,

Ry, (W) = Ry o(w) < [[t" — i1 + V2el[t],

where
£l = Z s, .. [Ox(Ze,Y,w)]| and " — 1l = Z R, . (w) = Ry, o(w)]-

For each w, since 6, — A(wy, %) in probability, we have P(||6. — A(wo, Zc)||2 > 1) — 0. Therefore

there exists compact set O, for each c such that 6, is contained in ©. with probability going to 1.
Choose p. = 1, since p. — 0, we have p. > p. eventually. Therefore, by Lemma C.2, for each c
with probability going to 1

|RAC,pL(w) - Ré\c,o(w” < v 2Pc/m||/\(w’fc)||27
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where the above constant m can be chosen independent of ¢ due to the finite cardinality assumption
of X. Since the function A(w, Z.) is continuous in w for any Z., we have || A(w, Z.)||2 is bounded
for all w ranging over a compact set W C W. Thus for each ¢ with probability going to 1, we have

sup [Ry, . (w) = Ry, o(w)] < V2pe/m sup |A(w, 7o)z
weWw weWw

Since p. — 0, we have for each ¢

sup [Rg  (w) =Ry ,(w)] = op(1).
weWw

Thus sup,,cyy ||t* — |1 = op(1). On the other hand, since sup,, .y R o(w)is Op(1), we have
sup,ew [IEli = Op(1). Therefore as € — 0, p. — 0,

sup |Rz w) — R~ w)| = op(1
sup |By (1) = Ry ()] = 02()

for any compact set W. Next, since 50 — A(wp, Z..) in probability, we have by continuous mapping
theorem

~

V¥ (6.) = VU (A(wo, Z.)) in probability.
Besides, by the strong law of large number,
Pe — P(X = Z,.) almost surely.

Recall that
c

Ry o(w) = Bs[A(X, Y, w)] = > peBp__ [0(Ze, Y, w)]

Pyiz,
c=1

C
= Zﬁc (\IJ()\(U),ZL'\C)) - <V\I](§C)7 )‘(wv/x\c») .

Therefore, for each w, we have
Ry o(w) = R(w) in probability,

where

C
R<w) = E]P’[ek(Xa KU))] = ZP(X = i:\c) (lIJ()‘(wv/x\c)) - <V\IJ()‘(wO; i':\c))v )\(U}, §0)>) .
Since for each c,
wy = wm6119v U(\Nw,Ze)) — (VI (A wo, Te)), A(w, Ze) )

Therefore wg solves miny, ey R(w). If R(w) admits an unique solution, then clearly wy is such a

solution. Since Ry 0( -) is convex, by [2, Theorem II.1],

sup |Ry g o(w) — R(w)] = op(1)
weWw

for any compact set W. Thus by triangle inequality

sup [R5 ., () = R(w)| = op(1)
weWw

for any compact set W. Let B denote the unit closed ball in R?, then wy + nB is compact for any
n > 0. Thus Ry _ (w) — R(w) = op(1) uniformly over wo + 7B. Since R(w) is convex and wy is
its unique optimal solution, we have

inf R >R .
wEw()}i-nnB\gB (w) (wO)

Therefore, with probability going to 1,
inf R; (w)< inf Ry (w).
weEwo+4 B 0,€,p< ) wewo+nB\ 4B O’E’p( )
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Thus by convexity of Ry _ e also

inf = Ry (w)< inf (w).

R~
wEwo+4 B w¢wo+nB b.e.p

Thus the solution w* that solves inf,cyy Ry p(w) satisfies

B([lw* —wolls < 3) = 1.

Since 7 is chosen arbitrarily, we conclude that w* — wq in probability. [

Proof of Lemma 4.4. Denote
2 z,=a, L (%)
We = VA (S22 By 7))
W.lo.g. we can assume that Iz (. g )[T'(Y")] = 0. We first show the joint convergence

Wy, WHT & N0,G)  as N — oo,

where G is a block-diagonal matrix with diagonal blocks given by G. = Cov (.9 )(T(Y)),c =
1,...,C. Note that
N./N -P(X =2.) >0 a.s. for each c.

For convenience denote r. = P(X = Z..). We let

- Yaiew. L) gz TW)
We= VN =0 N = v

Let [Z@:ac ()] reN | be the sum of the first |r.N | samples of T'(y;) such that T; = Z.. If
N. < |rcN], we add additional |r.N | — N, independent copies of T'(Y') where Y ~ f(-|6.) to

the sum » - _~ T'(¥;), and denote it by [ZEFQC T(y;)] ron) 3 well. Denote
— [Z&,:Ec T(@\Z)] [reN|
‘ [NV ] .
Note that W7y, ..., W are independent, by i.i.d central limit theorem

(V_V;w--,WCT)Ti>N(O,G) as N — oo,
where G is a block-diagonal matrix with G. = Cov (. s.)(T(Y')). We next show that

W, — W, = op(1).
Note that

~ _ [Z@:ﬁc\c T(@\l)] 7N ] - Zﬁfi:’x\c T(@\l)
' [reV] '
By Chebyshev inequality

2
E [H ei=a. T@], n) — Laima. T 2]
€2|reN|

B[E || (S, TG .y, - Srce. 7@
N e2|r.N|
_ E[T@)IE] ElllreN] — Nel]
€2 [reN | '
Since N./|r.N| — 1 almost surely, by dominated convergence theorem
Eff[reN | = Nel]
[reN]

IN

P(|We = Well2 > €)

)

v

— 0.
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Thus 3 )
P([|[We = Well2 >€) =0 as N = oo,

which means that Wc —-W. = op(1). Thus by Slutsky’s lemma
(VNI/F7...,W5)T£>N(O,G) as N — .

Finally, since W, = (1 + op(1))WL, by Slutsky’s lemma,
(W;7...,W5)T$N(O7G) as N — cc.

Now note that

and
O = (V) (B0 [T(Y)]) -

Also note that the vector-valued function (VW¥)~!(.) is continuously differentiable at
Ef(.10.)[T(Y)], therefore, by the delta method

~ ~ T
<\/ Nl(aliel)TW"a VNC(GC'*eC)T> E_)DN(()?G)’
where D is a block-diagonal matrix with diagonal elements given by
De=J(VO) N Ey. o) [T(Y)])
the Jacobian matrix of (V¥)~! evaluated at E4(.|g,)[T(Y)]. Thus
Ve = D.Covy(. o) (T(Y))D/ .
Note that by Lemma B.3, we find
KL(f( ! |ec) H f( ‘00)) = <Hc - 0c>ﬂc> + \Il(ac) - \IJ(QC)
Note that W is infinitely-many differentiable, we have the follow Taylor expansion
~ —~ 1 ,~ ~ ~
\II(HC) - \IJ(QC) = <ec - 957 Mc> + §<90 - 907 qul(ec + 77(90 - 90))(90 - 90)>7

where 7) is a random variable with values between 0 and 1. Therefore

KL(f( ' |96) H f( ‘é\c)) = %<§c - 967 VZ\I/(QC + 77(55 - 00))(50 - 90)>

Because \/Nc(é\c —0.) LN N(0,V,), and V2¥( ) is continuous, we have
V20 (6, + 00 — 0.)) = V2T (6,) + 0s(1).
Moreover, since we have the joint convergence
~ ~ T
(VM@ =007, ... VNl —00)T) 5 N0, V),

by continuous mapping theorem

~ ~ T

(M X KL(FC-100) 1| £ 18D), - No < KLU [00) 1| £(-100))) - 25 2 as N = ox,

where Z = (Zy,...,Z¢)" with Z, = 1R V?¥(0,)R., R. ~ N(0,V,) and are independent for
c=1,...,C. O

Before proving the result on the worst-case distribution in Theorem 4.5, we first prove the worst-case
conditional measure that maximize problem (9).
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Proposition C.3 (Worst-case conditional distribution). For any w € W and p. € R4, then the
supremum problem (9) is attained by Q3. ~ f(-|0) with 07 = 0. — A(w, Zc) /e, where 7z > 0
is the solution of the nonlinear algebraic equation

\I/(é\C — v Aw, EC)) + 7_1<V‘Il(§c — 'y_l)\(w,fc)),)\(w,@» = \If(é\c) — Pe- (A.9)

Proof of Proposition C.3. Reminding that problem (9) is written as

sup EQY\:EC [€>\ (57\07 Y, w)] .
Qv |z, €By |z,

In the first step, we show that Q;IEC is feasible in problem (9), which means that Q;IEC € Byz..
Indeed, we find that

N ~ ~  ANw, T, 1 ~  Mw, T, N ~
KLz, | Byia) = —0 (8- 222 - = (9w (0, 22200 a2+ 0(E) = oo
where the first equality exploits the expression of the KL divergence between two distributions from
the same family in Lemma B.3, and the second equality follows from the fact that v solves (A.9).

Proposition 3.2 asserts that the worst-case conditional expected log-loss problem (9) is equivalent to
the convex program (10). Noticing that (A.9) is the first-order optimality condition of problem (10),
thus, by definition, v is the minimizer of (10). The objective value of Q;m in (9) amounts to

Egy . (@, Y, w)] = ¥(Mw,Z.)) — (Boy , [T(Y)], Mw, )

Y|z Y|zc
= W(\(w, 7)) — (VO (0 - Aw, Z.))

AMw, T, )
Ve
N ~ er [~ Mw,Z, N
— i (pe— WD) + %‘1’(9c - (V*)> + VU (A(w, 7)),
where the first equality follows by substituting the expression of ¢, and the linearity of the expec-
tation operator, the second equality follows from the convex conjugate relationship between the ex-
pectation parameters and the log-partition function ¥, and the last equality follows from the fact that
~X solves (A.9). Notice that the last expression coincide with the objective value of (10) evaluated
at the optimal solution ;. This observation implies that Q;m attains the optimal value in (9). [

Next, we establish the following result on the optimal solution of the support function h g of the set
Q defined as in Lemma B.1.

Lemma C.4 (Support point of Q). Let Q be defined as in (A.1). For any ¢ € R, if there exist
a* € Rand * € Ry that solve the following system of nonlinear algebraic equation

¢ te —
Zﬁcexp( = —pc—l)—le (A.10a)
c=1 ﬁ

¢ te —

Zﬁc(tc—a)exp( cﬂ —pc—l) —(e+1)B=0 (A.10b)

c=1

then the optimal solution ¢* € Q that attains t ' ¢* = ho () is
.~ te — a*
qc:pcexp( 5 —,00—1) Ve=1,...,C. (A.10c)

Proof of Lemma C.4. By definition of ¢* in (A.10c), one can verify that ¢* > 0 and that chz Q@ =
1, where the equality follows from (A.10a). Moreover,

< < te —a* te — a*
> qi(logqs —logpe + pe) = ﬁc( e 1) exp( Cﬁ* — pe— 1)
c=1 c=1
—iA(tC_a*)exp(tC_a*—p —1)—1—5
c=1 ‘ ﬂ* 6* ¢ ’



where the equalities follow from the definition of ¢* in (A.10c), and the equations (A.10a)
and (A.10b), respectively. This implies that ¢* € Q.

It now remains to show that t ' ¢* = ho(t). By Lemma B.1, we have
. o -
hQ(t): inf oz—!—Eﬁ—F/BZC:lpcexp (tCTO{—pC_l)
s.t. aeR, feR,y.

If (o*, 5*) € R x Ry is the solution of (A.10a)-(A.10b), then (a*, 5*) satisfy the Karush-Kuhn-
Tucker condition of the above infimum optimization problem, and thus we have

hQ()_a +56*+ﬁ*zpceXp( B*a*_pc_l)-

Moreover, we find

¢ ¢ te —a*

-~ (&
ZthZZZtcpceXp( 5 —pc—l)
c=1 c=1

< te —a*
:(5+1)B*+a*2ﬁcexp< Cﬂ* —pc—l)
a*

/B*

=a* +55*+ﬁ*2pcexp( —pc—l):hg(t),

where the first equality follows from the definition of ¢*, the second equality follows from (A.10b)
and the third equality follows from (A.10a). This observation completes the proof. O

Proof of Theorem 4.5. 1t is easy to verify that Q* is a probability measure because each J;, and
QY |5, is a probability measure, and S Peexp ((t5 —a*)/B* — p. — 1) = 1since a*, B* solves

chexp Ytr—a)—p.—1)—1=0 (A.11)

C
> be(ts —a)exp (BNt —a) —pe— 1) — (e + 1) =0, (A.12)

If we set Q% = Zle peexp ((t5 — o*)/B* — pe — 1)z, then we have
Q*({ze} x 4) = Qx ({Z})Qy . (4) VA e F(Y), Ve

Moreover, because Q3 is constructed using Proposition C.3, we have KL(Qyz. | @y‘gc) < pe
for all c. Furthermore, we also have

C C
=~ tr—a*
KL(Q | Bx) + g [} pele.(X)] = 35 ( 2 1) ( G 1)
c=1 c=1
C
N * t*_a*
=35 e (5 ) =
2 g

where the equalities follow from the construction of Q% and the equations (A.11) and (A.12), re-
spectively. This implies that Q* € B(P).

It now remains to show that Q* is optimal. For any weight w, by the definition of ¢}, we have

tr =Eq _ [0\, Y,w)]= sup  Eg, . [(\(ZY,w)
e Qv |z, €By |z,
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‘We thus find

max Eg [KA(X, Y,w)} = sup Eg, sup  Eg,  [OA(X, Y, w)]

QeB(P) Qx€Bx Qy | x €By|x
C

= sup IEg tilz, (X)
Qx€Bx " ;

=sup ¢ t* (A.13)
q€eQ
¢ th—aor

= Pethexp ( e 1) (A.14)
c=1

(A.15)

= EQ;{ {E@;‘X [f)\(X, Y, w)]} = EQ* V,\(X, }/, w)} .
where the set Q in (A.13) is defined as in (A.1). Equality (A.14) follows from Lemma C.4 and from

the definition of a* and * that solve (A.11)-(A.12). Equality (A.15) follows from the definition
of Q% The proof is completed. O

D Auxiliary Results

Lemma D.1 (Locally strongly convex parameter). If U is locally strongly smooth, and at é\ the

smoothness parameter is o, then ¢ is locally strongly convex at i = V\IJ@) with strongly convex
parameter 1/ in a sufficiently small neighbourhood of .

Proof of Lemma D. 1. The proof follows directly from the proof of [9, Theorem 4.1]. By the defini-
tion of locally strongly smooth, for some o' ce neighborhood of 6, we have for § € e

U(6) < U(0) + (VE(H),0 - 8) + 26— b3

Since 7i = VU(6) and ¢(i 3 ¥(H), we have
= 0
o) = sup (</~L, )= ¥(9))
> sup (<M,9> —(0) — (7,0 - 9) — %H@ - §||§)
9cO

= (7.0) = (@) + sup ((,0) — (.6) — ZIlo 0113

0€e’

= 0(a) + (B~ 1) + sup ((u—71.0-0) 7110 I3).
coe’

In the last step, note that 0= V¢(ji). Taking 6 — f = a(p—f) wherea=1/0.0 € O if u — i is
sufficiently small. We have

sup (= 7,6~ 8) — 210~ 813) > (0~ Za)lln — il = 5 In — 7l
0co’
Therefore ¢ is locally strongly convex at fi with strongly convex parameter 1/c. O

In Proposition 4.2, since W is locally Lipschitz continuous, we have that W is locally strongly smooth
with smoothness parameter o, at 6., where o, can be chosen as the local Lipschitz constant for a

neighborhood around @\C. By Lemma D.1 and the proof of Proposition 4.2, for sufficiently small
pe,c=1,...,C, we can choose m explicitly as m = min. 1/o,, thus ko = /2 max,. p. - max, o.
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