
Appendix

A Derivation of Monte Carlo Expectation Maximization (MCEM)

A derivation from (5) to (6) is based on MCEM. We here provide more details of the MCEM.

Let x be the observable data, z be the latent variable and ✓ be the parameters that govern the process.
The goal is to find ✓ that maximizes the log likelihood of the observable data.

✓ = argmax
✓

ln p(x|✓)

The log likelihood of the observable data can be reformulated as follows.
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= L(q, ✓) +KL(q||p) (11)

Since KL divergence is always non-negative value, L(q, ✓) is the lower bound of ln p(x|✓). The
complete data log likelihood ln p(x, z|✓) is easier to handle than the observed data log likelihood
ln p(x|✓). Thus, instead of maximizing ln p(x|✓), we aim to maximize its lower bound L(q, ✓) =R
dz q(z) ln p(x,z|✓)

q(z) .

A.1 E-step

As KL(q||p) gets smaller, we have a tighter lower bound. If KL(q||p) = 0, ln p(x|✓) = L(q, ✓).
KL(q||p) = 0 is satisfied only if q = p. Thus q(z) = p(z|x, ✓) from (10). This is the E-step of the
EM algorithm [63]. Note that in this step, q(z) is a function only of z, which means both x and ✓ are
used as given variables. Thus, we denote ✓old as a fixed parameter that is used to specify q(z). Once
q(z) = p(z|x, ✓old) is used in L(q, ✓) of (11), ln p(x|✓) can be expressed as follows.

ln p(x|✓) = L(q, ✓)

=
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= Q(✓, ✓old) +H(z|x, ✓old) (12)

A.2 M-step

Next, we want to find ✓ that maximizes ln p(x|✓). This is the M-step of the EM algorithm. Since
H(z|x, ✓old) is a constant (i.e., not a function of ✓),

✓ = argmax
✓

ln p(x|✓)

= argmax
✓

Q(✓, ✓old)

= argmax
✓

Z
dz p(z|x, ✓old) ln p(x, z|✓). (13)
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If p(z|x, ✓old) is hard to get analytically, (13) can be approximated by the Monte Carlo approach.
The resultant optimization is called the MCEM algorithm.

✓ = argmax
✓

Z
dz p(z|x, ✓old) ln p(x, z|✓)

⇡ argmax
✓

1

L

LX

l=1

ln p(x, z(l)|✓) (14)

where zl is l-th particle for the latent variable z.

B Hyperparameters

Algorithm 1
Batch size 64 Discount factor 0.99

Replay memory size 106 Actor learning rate 10�4

Critic learning rate 10�3 Optimizer Adam
Number of units per hidden layer 128 Activation function of hidden layer ReLU

Activation function of Actor output layer Tanh Activation function of Critic output layer Linear
Algorithm 2

Length of trajectory (T) 500 Number of samples (L) 50
Optimizer Adam Learning rate 10�3

C Impact of The Number of Trajectories on Parameter Recovery

It is important to investigate the relationship between the number of data points and the accuracy of
the parameter recovery to guide the experimentalists about how much data they need to collect for
recovering a subject’s internal model. The results presented in Figure 4 were from 500 state-action
trajectories (500 fireflies), each with about 5–15 state-action time points. The amount of data is
reasonable since the subjects repeat the task hundreds of times.

As one can easily expect, the recovery accuracy grows with data volume. Figure 5 explains the
reason: the surface of log-likelihood becomes smoother and the peak moves closer to the agent’s true
parameters.
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Figure 5: Log-likelihood surface with different numbers of data points. Red diamonds indicate true
parameter values.
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