
Thanks for your careful reading and positive feedback! We address major comments here (and the rest in the revision).1

Further discussion/interpretation, and implications for ML (R1 and R2) The 9th content page allows us to greatly2

expand our discussion throughout the paper, and to add a conclusion section highlighting the following implications:3

(a) An increasingly large body of literature studies generalization in random features regression models derived from the4

CK or NTK, and associated multiple-descent phenomena. In the linear-width regime, these results rely on asymptotic5

approximations for the Stieltjes transforms and resolvents of these kernels. Such studies have largely been limited to6

single-layer networks, and our results and techniques may enable their extension to deep networks with many layers.7

(b) The linear-width asymptotic regime may provide a theoretically tractable setting for studying feature learning8

and “non-lazy” network training, and it is arguably closer to the operating regimes of neural networks in practical9

applications. Our experiments suggest an interesting possible mechanism of training in this regime, and our theoretical10

analysis of the spectra for random weights may provide a first step towards understanding this phenomenon.11

Assumption of pairwise orthogonality (R2 and R4) Thanks very much for these comments. As R2 points out, we12

believe this assumption is significantly more general than white noise. In the revision, we will add a discussion that the13

assumption encompasses many settings of independent samples with input dimension d0 � n, including:14

(a) Non-white Gaussian inputs xα ∼ N (0,Σ), for any Σ satisfying Tr Σ = 1 and ‖Σ‖ ≤ C/d0. Note that such data15

can have spectral distribution very different from xα with i.i.d. entries (which would be the Marcenko-Pastur law).16

(b) More generally, inputs that may be expressed as xα = f(zα)/
√
d0, where zα ∈ Rm has independent entries17

satisfying a log-Sobolev inequality, and f : Rm → Rd0 is any Lipschitz function.18

(c) Inputs xα drawn from certain multi-class Gaussian mixture models, satisfying the high-dimensional asymptotic19

assumptions of [CBG ’16], [LLC ’18], [LC ’18]. The mixture components can differ in both mean and covariance.20

Derivation of Theorem 3.7 from Lemma 3.5 (R3) We believe this derivation is the main point of theoretical novelty21

in our work, and is not standard. Each X` in z−1 Id +z0X
>
0 X0 + . . .+ zLX

>
LXL has a complicated dependence on22

X0, . . . , X`−1, so this is not a classical RMT model. We develop the new idea of analyzing the extended matrix model23

(z−1 Id +z0X
>
0 X0 + . . .+ zLX

>
LXL)−1(w−1 Id +w0X

>
0 X0 + . . .+wLX

>
LXL) in order to recursively characterize24

the spectrum by induction on depth. The resulting fixed-point equations are also non-standard, and led to new challenges25

in inductively showing uniqueness of their fixed points and providing a numerical algorithm for solving these equations.26

27

Removal of 10 leading PCs (R2 and R4) This figure shows the NTK spectrum after mean-centering each CIFAR-1028

class, rather than removing 10 PCs. The fit is OK but not perfect. Also shown are example images before (left) / after29

(right) removing the 10 PCs. Differences are hard to discern, and we will add a page of such images to the appendix.30

Outliers and Adam optimizer (R2) We agree that the role of Adam is unclear, and we will make our code publicly31

available for further exploration. Training using full-batch gradient descent is slow—we tried based on R2’s feedback,32

but had difficulty producing results with comparable generalization in a short time. In our Adam experiments, we tested33

various network depths, widths, and learning rates: Outlier eigenvalues emerged only in experiments that yielded good34

generalization, and not in those where the learned function generalized poorly. Also, these phenomena for the CK are35

perhaps more fundamental, and this then does not relate to the specific gradient flow derivation of the NTK.36

NTK remains constant over training (R2) Our apologies for this confusion, and we will clarify in the revision: We37

do not claim the NTK remains approximately constant in this regime. The training dynamics described in Section 2.138

hold regardless of whether KNTK(t) evolves or is fixed, and the eigenvalue λα(t) always determines the instantaneous39

decay of the training error along vα(t) at the instant t. “Training occurs most rapidly along the eigenvectors of the40

largest eigenvalues” is just an informal statement of this, with the understanding that the eigenvectors also evolve over41

training. We will also clarify in the intro that our theory pertains only to random weights and not to this evolution.42

Miscellaneous Scaling by 1/
√
d` is specifically important for the NTK as it affects the scaling of the derivative in43

deriving the NTK (R2). bσ = 0 indeed has implications for classification and training, and we will add discussion44

and references to [CBG ’16], [PW ’17] (R2). The NTK spectrum here has two non-point-mass bulk components (R2).45

Convergence in Thm 3.4 holds marginally for each ` (R4). d0 →∞ is necessary to ensure the approximate pairwise46

orthogonality, but is not otherwise used in the proof (R4). Thanks very much for the missing references! (R1, R2, R4)47


