A Proof of Lemma 1: Objective Inconsistency in Quadratic Model

Formulation. Consider a simple setting where each local objective function is strongly convex and
defined as follows:

1 1
Fi(x) = 5;z,-TH,-a: —e/x+ ieiTHi_lei >0 (13)

where H; € R%*? is an invertible matrix and e; € R? is an arbitrary vector. It is easy to show that

the optimum of the ¢-th local function is =} = H," Le;. Without loss of generality, we assume the
global objective function to be a weighted average across all local functions, that is:

F(z) = piFi(x) = 5g[;TH:c —e'z+ 5 > pie] hi'e; (14)
i=1 i=1
where H = 3", p,H; and € = Y7 | pse;. As a result, the global minimum is z* = H €. Now,

let us study whether previous federated optimization algorithms can converge to this global minimum.

Local Update Rule. The local update rule of FedProx for the -th device can be written as follows:

wgt,k+1) gtk 0 Hz _ e+ M(ﬂ%(-t’k) _ m(t,o))} (15)

= (I —nuI —nHy)z\"" + ne; + nua ") (16)
where mgt’k) denotes the local model parameters at the k-th local iteration after ¢ communication
rounds, 1 denotes the local learning rate and  is a tunable hyper-parameter in FedProx. When o = 0,

the algorithm will reduce to FedAvg. We omit the device index in 2(+9), since it is synchronized and
the same across all devices.

After minor arranging (16), we obtain
2t el — (1 = nud — nHy) (2 — eV} (17)

where cgt) = (H; + ,uI)_1 (e,; + ua:(“))). Then, after performing 7; steps of local updates, the
local model becomes

2" = (I —nul —nH;)" (w(t’o) - cE”) +c (18)

wgt,n) — 20 = (I — ul — nH,)™ (w(m) _ c§t)) i cgt) _ 20 (19)
= [(I —nuI —nH)™ — 1] (m“‘” - cﬁt)) (20)

= [I — (I —nul —nH)"] (H; + pI) ™! (ei - Hz-w(t’o)) - 21

For the ease of writing, we define K;(n, ) = [I — (I — nu — nH;)™] (H; + pI) ™"

Server Aggregation. For simplicity, we only consider the case when all devices participate in the
each round. In FedProx, the server averages all local models according to the sample size:

2(tT10) _ £ (.0) — Zpi (:Bf;t’ﬂ) - w(t’0)> (22)
=1

=Y piKin.p) (€5 - Hia ). (23)
=1

Accordingly, we get the following update rule for the central model:

2 (tT10) = lI - ZpiKi(mu)Hi] 20+ " pKi(n, pe. (24)
i=1 =1
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It is equivalent to
i=1
where

m -1 m
T = (ZpiKi(U,M)Hi> (ZpiKi(n,,u)el) . (26)
=1 i=1

After T' communication rounds, one can get

. T
0 = [I - ZpiKi(naﬂ)Hi] [aj(w) B %} +a. @7
i=1

Accordingly, when || T — >~ | p;K;(n, 1) Hj|, < 1, the iterates will converge to

m -1 m
Tlgnoow(T,O) == (ZPiKi(mM)Hi) (Z PJQ(%M)%‘) : (28)
i=1

i=1
Recall that K; (1, ) = [T — (I — nud — nH;)™] (H; + pI) ™.
Concrete Example in Lemma 1. Now let us focus on a concrete example where p; = py = --- =

pm=1/m,Hy = Hy=---=H,, =Iand u=0. Then, in this case, K; =1 — (1 —7)™. As a
result, we have

lim ™0 — Z:% 1-(1-n"] i
T—00 Yo = (1 —=mn)7]
Furthermore, when the learning rate is sufficiently small (e.g., can be achieved by gradually decaying
the learning rate), according to L’Hospital’s rule, we obtain

(29)

(T,0) _ Zi:l Ti€i (30)

lim lim =
m M
n=0T—00 D1 Ti

Here, we complete the proof of Lemma 1.

B Detailed Derivations for Various Local Solvers

In this section, we will derive the specific expression of the vector a; when using different local

solvers. Recall that the local change at client i is Al(-t) = —nGZ(-t)ai where Gl(-t) stacks all stochastic
gradients in the current round and a is a non-negative vector.

B.1 SGD with Proximal Updates

In this case, we can write the update rule of local models as follows:

%,(-t’n) _ x(t,Ti—l) — [gi(mgt,Ti—l)) tu ($§t,n—1) . m(t70)>:| ) (31)

7 ?

(,0)

%

207 _ gt g7 _ g0 _y [ (067 V) 1 (28D _gt0)]

=(1—np) (wgt’vl) - w“’o)) —ngi(xT ). (33)

Repeating the above procedure, it follows that

Subtracting on both sides, we obtain

Ti—1

AP =2 — a0 =y 3 (1 =) g (), (34)
k=0
According to the definition, we have a; = [(1 —a)7 71, (1 — )™ 2,..., (1 — «), 1] where a = np.
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B.2 SGD with Local Momentum

Let us firstly write down the update rule of the local models. Suppose that p denotes the local
momentum factor and wu; is the local momentum buffer at client 7. Then, the update rule of local

momentum SGD is:

u(t7Ti) =pugt’n 1)_’_92( (t T — 1))’

7
wgt,n) :wgt,ﬂ 1) —nu Et ‘rl)
One can expand the expression of local momentum buffer as follows:

(t,75) (t,mi— )_’_gz( (t Ti— 1))

u, =pu;
t,mi—2 t,mi—2 t,mi—1
=2ul"" 7 4 pgi(@ T V) 4 gi(aPT V)
T, —1
Ti— k
—Z,o Egi (i)

(¢,0)

where the last equation comes from the fact u, = 0. Substituting (39) into (36), we have

Ti—1

t,7i t,Ti— Ti— t,k
2" =2 an gy

Ti— T;,—1
t,7i—2 ri—2— tk —1—k (t,k
=" )—an 2k gy anT gi(z").
k=0
Repeating the above procedure, it follows that
Ti—1 s
t,Ti k (t,k
wl(_f)_ (tO__nZZp ixz )
5=0 k=0
1 (t7k) 1
Then, the coefficient of g;(z; ") is
Ti—1
i ‘ 1— Ti—k
Do =g =

s>k

Thatis, a; = [1 — p™,1 — p7i~L ... 1~ p]/(1 — p). In this case, the ¢; norm of a; is

il = —z ‘ ( Zp )

1ip {”_p(ll_f?)]'
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C Proof of Theorem 1: Convergence of Surrogate Objective

C.1 Preliminaries

For the ease of writing, let us define a surrogate objective function F'(z) = Yot wF;(x), where
Yot w; = 1, and define the following auxiliary variables

Normalized Stochastic Gradient: d, Z al® g, (x("*), (46)
T —
1 i
Normalized Gradient: hl(»t) == Z al(-k)VFi(wl(-t’k)) 47)
Q;
where a( ) > 0is an arbitrary scalar, a; = [a§0)7 ...,a;—1])", and a; = ||a;||,. Besides, one can

show that E[dz@ — h,Ef)] = 0. In addition, since workers are independent to each other, we have
E dl(-t) — hgt), d;t) — h;t)> = 0,Vi # j. Recall that the update rule of the global model can be
written as follows:

w(t+1’0) N ZB(t’O) — _Teffnzwidgt)' (48)
=1

According to the Lipschitz-smooth assumption, it follows that

E {ﬁ(m(tﬂ,o))} — F(z®)

~ s L
< — e E <VF(w<f’0>>, > widf;“> eff” Z d“’ (49)
i=1
T Ty
where the expectation is taken over mini-batches fft’k),W e{1,2,....m}ke{0,1,...,7; —1}.

Before diving into the detailed bounds for T and 75, we would like to firstly introduce several useful
lemmas.

Lemma 2. Suppose {Ak}gzl is a sequence of random matrices and E[A|Ag—_1, Ak—2, ..., A1] =
0,VEk. Then,
T 2 T
Sal [ =Y E [||Ak||ﬂ . (50)
k=1 . k=1
Proof.
T 2 T T T
E||Y A | =S B[] +> > E[m{aT4;}] 1)
k=1 F k=1 i=1 j=1,j#1
T T T
Y [ZNHE Z Z Tr{lE (AT A} (52)
k=1 i=1j=1,j

Assume ¢ < j. Then, using the law of total expectation,

E[A[4;] =E[A/E[4;]4;,...,Al]] =0. (53)
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C.2 Bounding First term in (49)

For the first term on the right hand side (RHS) in (49), we have
Ty =E <Vﬁ(w(t’0)), > wi (dl@ - h§t>)>
i=1

<Vﬁ(ac(t70)), Z wihq(;t) >1 (54)
L )

—E <V}~7(:c(t’0)), Z wih§t>>] (55)
L i=1

2
1 - 2 1 m 1
— (t) - @) _ 2 2t 0 (t)
- ‘VF(a: )H +5E ||;wh SE H Zw A (56)
where the last equation uses the fact: 2 (a, b) = ||a||® + ||b]|* — ||la — b]||.
C.3 Bounding Second term in (49)
For the second term on the right hand side (RHS) in (49), we have
m
T, =E ||| w (d(t —h{" ) Z w;h? (57)
i=1
m 2 m 2
< Zw (a1 =) | +2E Zwihgﬂ (58)
=23 w’E [ d® — p{» } +2E A" (59)
i=1

where (58) follows the fact: ||a +b]|°> < 2|lal|* + 2||b]|* and (59) uses the special property of
dl(-t), hgt), that is, E <dl(-t) — hgt), dg-t) — h(-t)> = 0,Vi # j. Then, let us expand the expression of

J
dz(-t) and hz(-t), we obtain that

2
2
<32 S i) - om0 22 | [Sn| |
m 2 m
<2ty "T{ vom |[$w]| (61)
i= 1 i=1
where (60) is derived using Lemma 2, (61) follows Assumption 2.
C.4 Intermediate Result
Plugging (56) and (61) back into (49), we have
E [ﬁv(x(t+1,0)):| _ ﬁ(w(t,m) Tl HVF (¢, 0) H Tefm (1 — 2run L) E /‘hz(_t)
m 2 » m
2 Loy ‘ |‘T|zz T, |VF (2(0) Zw h“ (62)
i=1 @iy
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When 7oL < 1/2, it follows that

E [ﬁ(m(tﬂ,o))] _ ﬁ(m(t,o))

How 2 o w? a3
< 5 |[TF@)|| + ramLo® Y HI%

T Teff i=1 ”alnf
1 - ’
- 0)y _ @
+ZE ) Zwlhi (63)
2~ w? a3
<-: HVF( ¢, 0>)H tramLo? Y il
= ey
1 — t
+3 2_; wiE [HVFZ-(w(t’O)) — ] (64)
where the last inequality uses the fact f(m) = > w;Fi(x) and Jensen’s Inequality:
I3 wizi ||2 <3 wi |z ||%. Next, we will focus on bounding the last term in (64).
C.5 Bounding the Difference Between Server Gradient and Normalized Gradient
Recall the definition of hl(-t), one can derive that
2 [ ‘rlfl 2
E [HVE(m(t,O))hgt)H :| —F VFZ( (t, O) Za(k)VF( (t k)) (65)
. 1 Ti—1 2
—E || o (VFi(a:(t’O)) VE (2 ’“))) (66)
¥ k=0

1= 2
L5 {a]|vreen) - vaat L o

S w Ik
<= {ai E[Hw(t’o)—wi’ H ]} (68)

where (67) uses Jensen’s Inequality again: ||y .-, wizin < ST w; [|2]|*, and (68) follows
Assumption 1. Now, we turn to bounding the difference between the server model (+:9) and the local
model wgt’k). Plugging into the local update rule and using the fact ||a + b||* < 2|a||> + 2|b]|*,

9 k—1 2
E Mm“»m 2| } = E || aVgi(2!") (69)
s=0
E—1 2
<2n’E a® (gl( (b)) _ VFi(a:Et7S))> (70)
s=0
k-1 2
+20°E ||| 0l VE (=) 71)
s=0
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Applying Lemma 2 to the first term,

o[l —at ] o Et e

k—1

Z ags)VFi(wz(.t’s))

s=0

gl (ts)) VF ts H :|

2
+ 2n°E

k—1
<2n?0? [al(»s)}2 + 21°E [
s=0

k—1

> aVE )

s=

k—1 k—1
<2%0% 3 [0l + 2
s=0

=0

> w

<2102 Z[GES)P + 22

s=0
where (74) follows from Jensen’s Inequality. Furthermore, note that

1 Ti—1 k—1 1 Ti—1 Ti—2 ]
. Z al(_k) [Z[ags)]Q] S; Z al(_k:) lZ[ags)]Q

llaill 1 k=0 s=0 s=0

=Zwvﬂm}m4%
s=0

1 T, —1 k—1 (S) 1 ;i —1 *) T —2 s
el 2 [Z 1 S [Z }]

Ti—2

=3[0\ = Jlaill, — ai
s=0

where a; 1 is the last element in the vector a,. As a result, we have

Ti—1
1 X k & 2
Taill, S aVE U’mu,o) e )H } <on?o? (IlaiHi B [%_1]2)
K3 1 k}:O

Ti—l ) 2
s2? (lad, - o) 3 | 9FGl™) ]

k=0
In addition, we can bound the second term using the following inequality:

e [Jorel ] <o Jlen) -vnaeon]] 2 o]

2 2
<2I°E [Hw“»(’) — a9 } +2F [HVFi(sc@vO))H ] .

Substituting (82) into (75), we get

HZW@WWL#WH
ailk

Ti—1

2
<2 (Jasl} — fas 1) + 4P 2 el — as0) 3 ol [[200) - 2

k=0

Ti

2
+ar lasly — as-0) - o |[VEEE)]

k=0

20

k—1 9
o] Sae oriat|]
s=0

-1 Ti—1 r 2
32| otz orialt ]
s=0 -

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(1)

(82)

(83)



After minor rearranging, it follows that

IS0 [H (+:0) tk)M 220> ( ) )
oPE - < lail3 — lai, 1)
laill, & 1= 2222 ai]ly (Jadll, — @) V02 T

4n? laill; (laill, —ai,—1) { NI
+ ’ E HVFZ-(sc(’ >)H
1= 4n2L? |las||; (llagll; — ai,—1)

(84
Define D = 4n?L? max;{||a;||, (||a;|; — ai,—1)} < 1. We can simplify (84) as follows
L? j k t,k 2772L2 2
2 o) B -t + 2 it ]
k=0
(85)
Taking the average across all workers and applying Assumption 3, one can obtain
n2L20?
3w foret) -] EEE S ot - o)
2
+2(17D);w [V (0 (86)
272 2 ™
n Lo 2 2
S (laill3 = fa:-1?)
L DB g HVﬁ(:B(t’O))HZ LoD e
2(1-D) 2(1-D)’
Now, we are ready to derive the final result.
C.6 Final Results
Plugging (87) back into (64), we have
E[F10)] - F@) 1y g o~ w? llail;
S—fHVF z(t0) H + TegnLo® Y 02
e g |VE@ED]| e ; i
272 2 ™
n Lo 2 2
I p (lail3 = fa:-11?)
LD DB g Hvﬁ(m“@))Hz (88)
21-D) 2(1-D)
1 1—D(1+/52))H ~ 2 L w? a2
= () VR0 H + Lo S L |
(1 N P P
272452 m 9 ) D2
i (llailly — las,— Py 89
+ 1 o (Il = o) + 577 (89)
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IfD < 2ﬁ2+1 , then it follows that ﬁ <1+ 2—/132 and {D_’B; < % These facts can help us further

simplify inequality (89).
E [ﬁ(w(ﬂrl,o))] _ ﬁ(w(t,o)) _

TN Teff

1 ~ 2 " w? ||a; |3
- [vF@0)| +ramlo Y05 S | ”2”2
i=1 @il

+ 772L20'2 <]. + 2ﬁ2> Z (Hal||2 a17_1]2)

1
w2 macl ol (ol a0} (14 535 ) @0

1 N 2 m 2 ; 2
< |[VF )|+ namLo® > 71”'1' |‘|‘|2”2
=1 Qilly

3 S 2
+ et 3w (] ~ o)
+ 30?17 max{las |, (las], — ai-1)} o1

Taking the average across all rounds, we get

w(O 0))

Fi " w? ||ag|?
4 ZE [HVF (1.0) H } . | +4Teff77LUQZ il 2||2
TTeft i=1 ”allll

+ 67 L20% 3wy (s} — [ai, 1 ]?)

i=1
+120°L?% max{las |, ([laill, — ai 1)} 92)
For the ease of writing, we define the following auxiliary variables:
m 2
A=mrg Y ”a’HZ 93)
= llailly
B =" w;(lail} - lai1]?)., (94)
i=1
C = max{|aill, (laill, - ai 1)} 95)

It follows that

T—1 - -
1 ~ 2] 4[F(x®9) - F; 4nLo? A
~SE HVF(:cW)H AFED) = Fi] | AnLo 62 L2002 B + 12 L2K2C
T =0 nTeffT m

(96)

Since min E [HVﬁ(:c(t’O))Hﬂ <AyTE [HVﬁ'(ac(t’O))H?] , we have

[F(:E(O’O)) - ﬁinf} n 4T]L0'2A

+60°L%0%B + 120°L?k%C. (97)
nTeffT

min E {HVF (t,0) H ]
te[T)

C.7 Constraint on Local Learning Rate

Here, let us summarize the constraints on local learning rate:

1
nL < (98)
27’err
4P 1 max{laily (laally — i)} < 525 (99)
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For the second constraint, we can further tighten it as follows:
1

a2 L max{ ail, (laill, - as—1)} < 4n?L? max a | < 5 — (100)
i i 2682 +1
That is,
1 1 1
nL < — min ,— . (101)
2 {maxl- lla:ll, v/26%2 +1 Teff}

C.8 Further Optimizing the Bound
By setting = /£ where 7 = %n Z:il T;, we have

= 2 2 2
(t 0 < T/ Teft Ao mBo mCk
trg[l%lEHVF H O(ﬁ) +O< + 0O —r + 0 = . (102)

Here, we complete the proof of Theorem 1.

m71

D Proof of Theorem 2: Including Bias in the Error Bound

Lemma 3. For any model parameter x, the difference between the gradients of F(x) and ﬁ(:c) can
be bounded as follows:

IVF (@)~ V@) < X3y (8 = 1) IVF(@)|” + 2] (103

where X120Hw denotes the chi-square distance between p and w, i.e., Xillw =3 (pi — wi)?/w;.

Proof. According to the definition of F'(z) and F(x), we have

m

VF(x) - VF () :Z(Pi —w;)VFi(x) (104)
i1

= Z(pz —w;) (VFy(z) — VF(z)) (105)

—Z B2 Vw, (VF(x) - VF(x). (106)

Applying Cauchy—Schwarz inequality, 1t follows that

m m
IVF(x) - VF(x)|* < [Z (p: Zw IVFi(z) — VF ()| (107)
=1
St [(52 ~ 1 IVF@)|* + & ] . (108)
where the last inequality uses Assumption 3. O
Note that
IVF(x)|* <2|VF(x) - VF(z)|* + 2| VF ()| (109)
<2 [xf,uw(ﬂ? — 1)+ 1] IVE(@)])? + 2x2 52 (110)
As a result, we obtain
T—
VF (20 H <= HVF 0) H 11
min H )| < ; ) (111)
1 T—1
<2 [\ (8- 1) + 1} HVF (10)) H 0% h2 (112)
t=0
<2 [X21u(87 = 1) + 1] eop + 23 oo (113)

where ¢,,; denotes the optimization error.

23



D.1 Constructing a Lower Bound

In this subsection, we are going to construct a lower bound of E ||VF ()0 ] 2, showing that (10) is
tight and the non-vanishing error term in Theorem 2 is not an artifact of our analysis.

Lemma 4. One can manually construct a strongly convex objective function such that Feddvg with
heterogeneous local updates cannot converge to its global optimum. In particular, the gradient norm
of the objective function does not vanish as learning rate approaches to zero. We have the following
lower bound.:

2
lim IEHVF(a:(T’O))H = Q0 ) (114)

T—o0
where Xf,” w denotes the chi-square divergence between weight vectors and k2 quantifies the dissimi-
larities among local objective functions and is defined in Assumption 3.

Proof. Suppose that there are only two clients with local objectives Fi (z) = 3 (z — a)? and Fy(z) =
1(z + a)?. The global objective is defined as F/(z) = 1Fy(z) + %Zzg(x) For any set of weights
wy, wa, w1 + we = 1, we define the surrogate objective function as F(x) = w1 Fy(x) + wa Fa(x).
As a consequence, we have

3 wi||VE(2) - VF(2)|
=1

=w[(z — a) — [z — (w1 —wa)a]]* + wa[(z + a) — [ — (w1 — ws)a]]? (115)
=wi [2waa]? + wo[2wia)? = 2(wy 4 wy) (wiwaa?) = 2w woa? (116)

Comparing with Assumption 3, we can define x? = 2w, wsa? and 32 = 1 in this case. Furthermore,
according to the derivations in Appendix A, the iterate of FedAvg can be written as follows:
T,0) _ T1a — T20

lim ¢ ) (117)
T—00 T1 + T2
As a results, we have
2 1 1 2
lim ‘VF(Q:(T’O))H = lim [(N’O) —a) + =(&™9 + a) (118)
T—o00 T—oo | 2 2
2
= lim [xm)} (119)
T—o0
— (L 2a2 _(mon) 5 QO3 k) (120)
- 1+ T2 o 21Ty N Xp”w '
where X2, = 2210 (i — wi)?/wi = (w1 —1/2)%/wy + (w2 — 1/2)? /w,. O

E Special Cases of Theorem 1

Here, we provide several instantiations of Theorem 1 and check its consistency with previous results.

E.1 FedAvg
In FedAvg, a; = [1,1,...,1]T € R™, ||az||§ = 7, and ||a;||; = 7. In addition, we have
w; = pi7i/ (> i, piTi). Accordingly, we get the closed-form expressions of the following quantities:
Teir = Y piTi = Bp[7], (121)
i=1
S w? flaslly _ my, i
AFedAvg = MTeff Z : D) 2 = 'ni:l . y (122)
= lail; 2 i1 PiTi
e S pimi(n — 1) vary|7]
Broawg = Y wi (llasll} — [ai,-1)%) = ==L =Epfr] -1+ . a23)
¢ ; 2 i1 PiTi ? Epl7]
Creanvg = miaX{||ai||1 (llaill; = ai—1)} = Tmax(Tmax — 1) (124)
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In the case where all clients have the same local dataset size, i.e., p; = 1/m, Vi. It follows that

&[T]v C'FeclAvg = Tmax(Tmax - ]-) (125)

Substituting (125) into Theorem 1, we get the convergence guarantee for FedAvg. We formally state
it in the following corollary.

Corollary 1 (Convergence of FedAvg). Under the same conditions as Theorem 1, if p; = 1/m,
then FedAvg algorithm (vanilla SGD with fixed local learning rate as local solver) will converge

to the stationary point of a surrogate objective F(x) = S TiF(z)/ Y it 7. The optimization
error will be bounded as follows:

1 2 27—1 T 2max mwc_1
mmEHVF( 2 <0 (—M) +O(ma (T +var[T]/T)) Lo (m/f i 7(7' ))
te[T) 7T 7T

(126)

where O swallows all constants (including L), and var[t] = >""" | 72 /m — T2 denotes the variance
of local steps.

Teff = T, AFedAvg - 1 BFedAvg =7-1+

mT

Consistent with Previous Results. When all clients perform the same local steps, i.e., 7; = 7, then
var[7] = 0 and the above error bound (126) recovers previous results [8, 24, 20]. When 7; = 1, then

FedAvg reduces to fully synchronous SGD and the error bound (126) becomes 1/+/mT, which is the
same as standard SGD convergence rate [51].

E.2 FedProx

In FedProx, we have a; = [(1 — )™ 1 ..., (1 —a),1]" € R™. Accordingly, the norms of a; can
be written as:
2 1—(1—a)m 1-(1—a)™ pill — (1 —a)™]
laills = —+F—5 llaili=——— vi=m— 77 (12D
1-(1-a) «Q i pill = (1= a)m]
As a consequence, we can derive the closed-form expression of 7.g, A, B, C' as follows:
1 & v
Teir =— iji[l —(1—a)7], (128)
A - i 21 - 1 _O‘)zﬂ (129)
FedProx—E 1]91(1— 1—0{7—1 P 05)2 9
pi[l = (1 — )™ 17(1—04)2'”
Bredprox —11, 130
Zz Tl - (-] [ T-(—ap (130
1 _ 1 — Tmax 1 _ 1 — Tmax
Cragproy —— L) < (L=a)™ 1> . (131)
o o

Substituting Aregprox, Bredproxs Credprox Dack into Theorem 1, one can obtain the convergence
guarantee for FedProx. Again, it will converge to the stationary points of a surrogate objective due

to W; # Di-

Consistency with FedAvg. From the update rule of FedProx, we know that when y4 = 0 (or
a = 0), FedProx is equivalent to FedProx. This can also be validated from the expressions of
AFedproxs Bredprox, Credprox. Using L’Hospital law, it is easy to show that

111}1’1 AFedProx - AFedAvga hm BFedProx - BFedAvg7 hm CFedProx - CFedAvg (132)
a

Best value of « in FedProx. Given the expressions of 7. and A, B, C', we can further select a best
value of « that optimizes the error bound of FedProx, as stated in the following corollary.
Corollary 2. Under the same conditions as Theorem 1 and suppose p; = 1/m and 7; > 1, then

a = O(m2 /7378 )) minimizes the optimization error bound of FedProg in terms of converging to
the stationary points of the surrogate objective. In particular, we have

) 1 1
i B[ VF(2)| SO(W)W(T) (133)
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where O swallows all other constants. Furthermore, if we define K = 71 the average gradient
evaluations at clients and let T < O(Kim™1) (which is equivalent to T > O(Kim?)), then it
follows that min,c [ E ||V F(x) I < O(1/vVmK).

Discussion: Corollary 2 shows that there exists a non-zero value of « that optimizes the error upper
bound of FedProx. That is to say, FedProx (a > 0) is better than FedAvg (av = 0) by a constant
in terms of error upper bound. However, on the other hand, it is worth noting that the minimal
communication rounds of FedProx to achieve 1/v/mK rate, given by Corollary 2, is exactly the
same as FedAvg [24]. In this sense, FedProx has the same convergence rate as FedAvg and cannot
further reduce the communication overhead.

Proof. First of all, let us relax the error terms of FedProx. Under the assumption of 7; > 1, the
quantities A, B, C' can be bounded or approximated as follows:

1
Teff =~—, (134)
o
bi my iy p; 2
A edProx —~ = C < i — 1, 135
FedP ma;(?—a)a 27— o mi_zlpl (135)
1—(1—a)?m 1 1 1
Bredprox <775 — 1< —— < — < —;, 136
Fed? 1-—(1-a)? al2—a) T a T a? (136)
1
CvFedProx Siz (137)
o
Accordingly, the error upper bound of FedProx can be rewritten as follows:
~ aT 1 m
min E |VF(x 2<(’)< >—|—O< >+O<>. 138
te[T] IVE@ mT Vm7T 7T (139

In order to optimize the above bound, we can simply take the derivative with respect to . When the
derivative equals to zero, we get

T o _m :>a:(9<m2>. (139)

mT1 37T

Plugging the expression of best « into (138), we have

~ 1 1 1 3
min E |V F(z 2<o( )w()—o()w al 140
IV = o\ o) 1 o\r ) =0\ ) PO\ ) 0
where K = 77T denotes the average total gradient steps at clients. In order to let the first term
dominates the convergence rate, it requires that

ol

1 T 1 3
> FSO(KZm_Z>. (141)
vmK K3
As a results, the total communication rounds T’ = K /7 should be greater than O(K im?). O
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F Proof of Theorem 3

In the case of FedNova, the aggregated weights w; equals to p;. Therefore, the surrogate objective
F(x) = >"", w;F;(x) is the same as the original objective function F(z) = >""" | p; Fi(x). We
can directly reuse the intermediate results in the proof of Theorem 1. According to (91), we have

E[F(z(t+19)] — F(z®0) - 1 HVF(m(t’O))H2 N nLo?A®)
- 4 m

+ gnzLQJQB(t) + 37}2L2n20(t)

TTeft
(142)
where quantities A®, B® C®) are defined as fOIIOWS'
)
A®) — 143
mTeffZ H © 2, (143)
B® = Zp (‘ —la ft)_l]2> , (144)
o = max{Hag d (’ al’|| —a,)} (145)
i 1 1 ’
Taking the total expectation and averaging over all rounds, it follows that
E[F(zT)] — F(z(©9) 1 = 2 pLo%A
<- = ]EHVF 2 (10) H + 22
NTei ]’ Z ( ) m
+ gn%%ﬁé + 32 L%Kk%C (146)

where A ="' AW /T, B =S "B® /T, and C = 3/} C®) /T After minor rearranging,
we have

T—1 ~
1 2 4 [F (200 _ & AnLo2 A - -
- Z E HVF(SU(EO))H < [ (@™%) mf] + nLo 1 6n2L202B + 1202 L2K2C.
T =0 nTeffT m

(147)

Bt setting ) = /= where 7 = Z;T:_Ol 7 /T, the above upper bound can be further optimized as
follows:

min E [HVF (.0)) H ] < Z_:E [HVF(N’O))H? (148)
t:0

te[T)

AT [ Tegr - [F(sc(o’o)) — me} + ALo2A n 6mL202B n 12mL2k2C

a mtT vmtT T T
(149)
A2 2
_ (T/ijf)H’) A0 ) Lo (mB) | o (mlx
mT mtT T T
(150)

Here, we complete the proof of Theorem 3.

Moreover, it is worth mentioning the constraints on the local learning rate. Recall that, at the ¢-th
round, we have the following constraint:

1 1
o7, v
1

In order to guarantee the convergence, the above inequality should hold in every round. That is to say,

1
nL < §min (151)

max;

1 1 1

nL < — min ,—
() H V232 41 Teft

3 (152)

maxie[m],te[T) ‘

27



G Extension: Incorporating Client Sampling

In this section, we extend the convergence guarantee of FedNova to the case of client sampling.
Following previous works [38, 12, 20, 15], we assume the sampling scheme guarantees that the
update rule (11) hold in expectation. This can be achieved by sampling with replacement from
{1,2,...,m} with probabilities {p; }, and averaging local updates from selected clients with equal
weights. Specifically, we have

q
1
2t+10) _ (60 — _TeffZ§ -ndl(j) where dl(:) = Gl(:)alj/Halj In (153)

where ¢ is the number of selected clients per round, and /; is a random index sampled from
{1,2,--- ,m} satisfying P(; = i) = p;. Recall that p; = n;/n is the relative sample size at
client ¢. For the ease of presentation, let a; to be fixed across rounds. One can directly validate that

1< 1<
gza‘zg) =D Es ] =Es @] = Zp d” (154)
j=1 j=1

where Eg represents the expectation over random indices at current round.

Corollary 3. Under the same condition as Theorem 1, suppose at each round, the server randomly
selects q(< m) clients with replacement to perform local computation. The probability of choosing
the i-th client is p; = n;/n. In this case, FedNova will converge to the stationary points of the global

objective F(x). If we set ) = \/q/TT where T is the average local updates across all rounds, then
the expected gradient norm is bounded as follows:

(£,0) 7/ Tefr e/ T q(B + C))
trg{l;lIEHVF )H <0 ( T?T> o ( T?T> o <?T (155)

where O swallows all other constants (including L, 02, k2).

Proof. According to the Lipschitz-smooth assumption, it follows that

q 27 ¢ g
E |F@+0)| - F@®9) < - 7 B < (10 Z > eff” E|Y -

j=1

Ts Ty

(156)

where the expectation is taken over randomly selected indices {/; } as well as mini-batches £§t’k) Vi e
{1,2,...,m},ke{0,1,...,7; — 1}.

For the first term in (156), we can first take the expectation over indices and obtain

q d(t)
Ty =E <VF(:c(t’0)),]ES ZL > (157)
q

Jj=1

<VF (x0)) sz >] (158)

This term is exactly the same as the first term in (49). We can directly reuse previous results in the
proof of Theorem 1. Comparing with (56), we have

2
1 2 1 m 1 m
== ) H = ) _Z £,0)y _ R
T3 2 HVF(CC ) + 2E Zplh ZE ) ;pzhz (159)
L R | R B |
=3 HVF(‘”(t))H +5E Zpihi — 52 _PiE [HVFZ-(SC“’“) — h! ] _(160)
=1 i=1
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For the second term in (156),

2 B 2
1< 1
7y <2E |- (@ — )| | +2E |- A
i 153
2
1 — 2 1
S| I Rt | 15 ol
7= j=1
202 aill3 1q~, 0 2
— > i +2E (=D h
4 = llaglly et

(161)

(162)

(163)

m 2
2y 2 s0 3 g |[vREe) a0 ] + 2 (#19FEOE 4 )
A lla:ll} i=1 q
2
+6 VF(:L'(t’O))H

where the last inequality comes from Lemma 5, stated below.

 Zm,x € Randletly, 1y, . ..
m} satisfying P(l = i)

Lemma 5. Suppose we are given z1, zs, . . .
a multinomial distribution D supported on {1,2,. ..,

We have
q m
B Y 2] =Y piz
j=1 i=1

q
E[IlgzzzJHQ] §3Zpini—Vﬂ(w)ll2+3HVF( z)||* + = (f)’QIIVF( )|? +52).

Proof. First, we have

1 q
Efll= >,
9=

2

(164)

,lg be ii.d. sampled from
= p; and Z:’ll p; = 1.

(165)

(166)

(167)

1 < 1< 1<
=E [|[{ =Dz, — =) VF,(z) =Y VF, (z) - VF(z) | + VF(=)
q = q4= q =
J J J
<3E[ II*Zzz —fZVFz )|1?] + 3E[ ||§ZVFl — VF(@)|’] + 3[|VF ()|
j=1

For the first term, by Cauchy-Schwarz inequality, we have

E[Hfz 21 _*ZVF szsz VEi(

qZEz ~plllzi, = VF,(

j=1

The second term can be bounded as following

[ 3" VF, (@) = VF(@)IF] = (B,-nlIVF, (@) - VF@))
= o3 pIVA@) - VFE)?
<< [B - DIVF@ + 7]
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(169)

(170)

(171)

(172)



where the first identity follows from E;.p[F; ()] = VF () and the independence between l1, . . ., g,
and the last inequality is a direct application of Assumption 3.

Substituting (169) and (170) into (167) completes the proof. O]

Substituting (160) and (164) into (156), we have
E [F(x2({tH10Y] — F(gt0) 2
T Teft 2

+< —|—3Teff77L) sz {HVF m(t 0) t)H }

L i 37ern L 2
n TeffT; o’ Zp :a ”g n Te;fn (32 HVF(;I;(tVO))H -‘rKQ)
i= @il

(173)

’VF(:B(t’O))HQ

1 LB?
:_<1_6%me_6%&775>’
2 q

m 2
n Teri?) Lo Z lailly

q i=1 HaiHl

1 m
+ <2 + 2Teff7]L) ZPiE [HVFi(w(t’o)) —n®
i=1

2:| + 3’7}ff77Ll€2 )
q
(174)
When nL < 1/(27) and 67egen L + 67 L B2 /q < %, it follows that
E [F(zt+10)] - F(z*0) 1 2 ranlo? o= llaill;
<~ forun] e & Lol
N Teft 4 ( ) q 2 a;|?

3 2] 3rgnLr?
+°Y pE HVFi(sc(t’O)) — A H y OTMIERT (475
2 i=1 q
Recall that the third term in (175) can be bounded as follows (see (87)):

*sz vt -nf|| < "L“ipz(nazng a1

I HVF(:E(W))H + D7/<;2 (176)
2(1 — D) 2(1-D)
where D = 4772L2 max;{|la;ll, (laill, —ai—1)} < 1. If D < {5557, then it follows that
2
1 5 <1+ 33 52 < 2and 3112 % < %. These facts can help us further simplify inequality (176). One
can obtaln

3 m 9 m 1 2
23 08 | [VR@) - h0[ ] <0220 Y (1all - ) + § [ V7|
i=1 i=1

+120°L?% max{las |, (la:ll, — a;,-1) 177

1 2
=60’ LB + HVF(w(t’O))H F120202:2C (178)
Substituting (178) into (175), we have

B [F(w(t—’_l’O))] - F(=9) < _ 1 HVF(:I:(t,O))H2 + Teitn Lo” Z ||a2||2 Besrn L
- 8

NTetf q || z||1 q
+60°L*0%B + 12n°L?K%C (179)
<_1 va(a,l.(t,o))H2 i Test) Lo n 3Tern L
-8 q q
+60°L%0%B + 1202 L2K2C (180)
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where the last inequality uses the fact that ||a||, < ||a/||;, for any vector a. Taking the total expectation
and averaging all rounds, one can obtain

T-1
E [F(z™9)] — F(z(©9) o 1 . |:HVF((L'(t’O))H2:| N e L(0? + 3k2)
NTee L’ T 8T = q
+60°L%c%B + 12°L?K*C. (181)

After minor rearranging, the above inequality is equivalent to

ryeflvee]

t=0
<8 [F(2®0) — Fy L 87 L(0? + 3K?)

+ 481n° L2602 B + 961 L2K2C. (182)
NTeted’

If we set the learning rate to be small enough, i.e., n = /== where T = ZtT;()l 7 /T, then we get

el o (G o (G o (57) - o
t=0

where O swallows all other constants. O
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H Pseudo-code of FedNova

Here we provide a pseudo-code of FedNova (see Algorithm 1) as a general algorithmic framework.
Then, as an example, we show the pseudo-code of a special case of FedNova, where the local solver
is specified as momentum SGD with cross-client variance reduction [21, 20] (see Algorithm 2).
Note that when the server updates the global model, we set 7.¢ to be the same as FedAvg, i.e.,

Teff = D ic s, Di ||a§t) |1 where S; denotes the randomly selected subset of clients. Alternatively, the
server can also choose other values of 7.¢.

Algorithm 1: FedNova Framework
Input: Client learning rate n; Client momentum factor p.

fort € {0,1,...,7 — 1} do
Randomly sample a subset of clients S;
Communication: Broadcast global model (%) to selected clients
Clients perform local updates
Communication: Receive ||aZ(-t) |l1 and dl(-t) from clients
Nt ®
p(tF1,0) o (t,0) _ Zies, Pillai Il npid
Update global model: x =z S D ics, S o
end

Algorithm 2: FedNova with Client-side Momentum SGD + Cross-client Variance Reduction
Input: Client learning rate n; Client momentum factor p.

fort € {0,1,...,7 — 1} at cleint ¢ in parallel do
Zero client optimizer buffers ul(-t"o) =0
Communication: Receive 0 = z(=1.0 — (Y7 pia)n 7 pid'" ™Y from server
Communication: Receive ;" | p; dgt_l) from server
Update gradient correction term: cz(-t) = —dgt_l) +3 " i dl(.t_l)
for k € {0,1,..., — 1} do
Compute: §; (@) = g;(z*0) + ¢V
Update momentum buffer: ugt’k) = pugt’k_l) + gi(xHR)
Update local model: xgt’k) = a;z(-t’k_l) - nugt’k)
end
Compute: a; = [r; — p(1 — p™)/(1 = p)]/(1 = p)
Compute normalized gradient: d\” = (20 — £ /(na,)
Communication: Send p;a; and p; dl(-t) to the server
end

I More Experiments Details

Platform. All experiments in this paper are conducted on a cluster of 16 machines, each of which is
equipped with one NVIDIA TitanX GPU. The machines communicate (i.e., transfer model parameters)
with each other via Ethernet. We treat each machine as one client in the federated learning setting.
The algorithms are implemented by PyTorch. We run each experiments for 3 times with different
random seeds.

Hyper-parameter Choices. On non-IID CIFAR10 dataset, we fix the mini-batch size per client as
32. When clients use momentum SGD as the local solver, the momentum factor is 0.9; when clients
use proximal SGD, the proximal parameter 4 is selected from {0.0005, 0.001, 0.005,0.01}. It turns
out that when E; = 2, i = 0.005 is the best and when E;(t) ~ U(2,5), u = 0.001 is the best. The
client learning rate # is tuned from {0.005,0.01, 0.02, 0.05, 0.08} for FedAvg with each local solver
separately. When using the same local solver, FedNova uses the same client learning rate as FedAvg.
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Specifically, if the local solver is momentum SGD, then we set 7 = 0.02. In other cases, n = 0.05
consistently performs the best. On the synthetic dataset, the mini-batch size per client is 20 and the
client learning rate is 0.02.

Training Curves on Non-IID CIFAR10. The training curves of FedAvg and FedNova are presented
in Figure 6. Observe that FedNova (red curve) outperforms FedAvg (blue curve) by a large margin.
FedNova only requires about half of the total rounds to achieve the same test accuracy as FedAvg.
Besides, note that in [54], the test accuracy of FedAvg is higher than ours. This is because the authors
of [54] let clients to perform 20 local epochs per round, which is 10 times more than our setting. In
[54], after 100 communication rounds, FedAvg equivalently runs 100 x 20 = 2000 epochs.
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Figure 6: Training curves on non-IID partitioned CIFAR10 dataset. In these curves, the only
difference between FedAvg and FedNova is the weights when aggregating normalized gradients.
‘LM’ represents for local momentum. First row: All clients perform E; = 2 local epochs; Second
row: All clients perform random and time-varying local epochs F;(t) ~ U(2,5).
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Figure 7: Left: Comparison of different momentum schemes in FedNova. ‘Hybrid momentum’
corresponds to the combination of server momentum and client momentum. Right: How FedNova-
prox outperform vanilla FedProx (blue curve). By setting 7o = ZZL p;7; instead of its default
value, the accuracy of FedProx can be improved by 5% (see the green curve). By further correcting
the aggregated weights, FedNova-prox (red curves) achieves around 10% higher accuracy than
FedProx.
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