
A Proof of Lemma 1: Objective Inconsistency in Quadratic Model

Formulation. Consider a simple setting where each local objective function is strongly convex and
defined as follows:

Fi(x) =
1

2
x>Hix− e>i x+

1

2
e>i H

−1
i ei ≥ 0 (13)

whereHi ∈ Rd×d is an invertible matrix and ei ∈ Rd is an arbitrary vector. It is easy to show that
the optimum of the i-th local function is x∗i = H−1i ei. Without loss of generality, we assume the
global objective function to be a weighted average across all local functions, that is:

F (x) =
m∑

i=1

piFi(x) =
1

2
x>Hx− e>x+

1

2

m∑

i=1

pie
>
i h
−1
i ei (14)

whereH =
∑m
i=1 piHi and e =

∑m
i=1 piei. As a result, the global minimum is x∗ = H

−1
e. Now,

let us study whether previous federated optimization algorithms can converge to this global minimum.

Local Update Rule. The local update rule of FedProx for the i-th device can be written as follows:

x
(t,k+1)
i = x

(t,k)
i − η

[
Hix

(t,k)
i − ei + µ(x

(t,k)
i − x(t,0))

]
(15)

= (I − ηµI − ηHi)x
(t,k)
i + ηei + ηµx(t,0) (16)

where x(t,k)
i denotes the local model parameters at the k-th local iteration after t communication

rounds, η denotes the local learning rate and µ is a tunable hyper-parameter in FedProx. When µ = 0,
the algorithm will reduce to FedAvg. We omit the device index in x(t,0), since it is synchronized and
the same across all devices.

After minor arranging (16), we obtain

x
(t,k+1)
i − c(t)i = (I − ηµI − ηHi)

(
x
(t,k)
i − c(t)i

)
. (17)

where c(t)i = (Hi + µI)
−1 (

ei + µx(t,0)
)
. Then, after performing τi steps of local updates, the

local model becomes

x
(t,τi)
i = (I − ηµI − ηHi)

τi
(
x(t,0) − c(t)i

)
+ c

(t)
i , (18)

x
(t,τi)
i − x(t,0) = (I − ηµI − ηHi)

τi
(
x(t,0) − c(t)i

)
+ c

(t)
i − x(t,0) (19)

= [(I − ηµI − ηHi)
τi − I]

(
x(t,0) − c(t)i

)
(20)

= [I − (I − ηµI − ηHi)
τi] (Hi + µI)

−1
(
ei −Hix

(t,0)
)
. (21)

For the ease of writing, we defineKi(η, µ) = [I − (I − ηµI − ηHi)
τi] (Hi + µI)

−1.

Server Aggregation. For simplicity, we only consider the case when all devices participate in the
each round. In FedProx, the server averages all local models according to the sample size:

x(t+1,0) − x(t,0) =
m∑

i=1

pi

(
x
(t,τi)
i − x(t,0)

)
(22)

=
m∑

i=1

piKi(η, µ)
(
ei −Hix

(t,0)
)
. (23)

Accordingly, we get the following update rule for the central model:

x(t+1,0) =

[
I −

m∑

i=1

piKi(η, µ)Hi

]
x(t,0) +

m∑

i=1

piKi(η, µ)ei. (24)

14

It is equivalent to

x(t+1,0) − x̃ =

[
I −

m∑

i=1

piKi(η, µ)Hi

] [
x(t,0) − x̃

]
. (25)

where

x̃ =

(
m∑

i=1

piKi(η, µ)Hi

)−1(m∑

i=1

piKi(η, µ)ei

)
. (26)

After T communication rounds, one can get

x(T,0) =

[
I −

m∑

i=1

piKi(η, µ)Hi

]T [
x(t,0) − x̃

]
+ x̃. (27)

Accordingly, when ‖I −∑m
i=1 piKi(η, µ)Hi‖2 < 1, the iterates will converge to

lim
T→∞

x(T,0) = x̃ =

(
m∑

i=1

piKi(η, µ)Hi

)−1(m∑

i=1

piKi(η, µ)ei

)
. (28)

Recall thatKi(η, µ) = [I − (I − ηµI − ηHi)
τi] (Hi + µI)

−1.

Concrete Example in Lemma 1. Now let us focus on a concrete example where p1 = p2 = · · · =
pm = 1/m,H1 = H2 = · · · = Hm = I and µ = 0. Then, in this case,Ki = 1− (1− η)τi . As a
result, we have

lim
T→∞

x(T,0) =

∑m
i=1 [1− (1− η)τi] ei∑m
i=1 [1− (1− η)τi]

. (29)

Furthermore, when the learning rate is sufficiently small (e.g., can be achieved by gradually decaying
the learning rate), according to L’Hospital’s rule, we obtain

lim
η→0

lim
T→∞

x(T,0) =

∑m
i=1 τiei∑m
i=1 τi

. (30)

Here, we complete the proof of Lemma 1.

B Detailed Derivations for Various Local Solvers

In this section, we will derive the specific expression of the vector ai when using different local
solvers. Recall that the local change at client i is ∆

(t)
i = −ηG(t)

i ai whereG(t)
i stacks all stochastic

gradients in the current round and a is a non-negative vector.

B.1 SGD with Proximal Updates

In this case, we can write the update rule of local models as follows:

x
(t,τi)
i = x

(t,τi−1)
i − η

[
gi(x

(t,τi−1)
i) + µ

(
x
(t,τi−1)
i − x(t,0)

)]
. (31)

Subtracting x(t,0)
i on both sides, we obtain

x
(t,τi)
i − x(t,0) =x

(t,τi−1)
i − x(t,0) − η

[
gi(x

(t,τi−1)
i) + µ

(
x
(t,τi−1)
i − x(t,0)

)]
(32)

=(1− ηµ)
(
x
(t,τi−1)
i − x(t,0)

)
− ηgi(x(t,τi−1)

i). (33)

Repeating the above procedure, it follows that

∆
(t)
i = x

(t,τi)
i − x(t,0) = −η

τi−1∑

k=0

(1− ηµ)τi−1−kgi(x
(t,k)
i). (34)

According to the definition, we have ai = [(1−α)τi−1, (1−α)τi−2, . . . , (1−α), 1] where α = ηµ.

15

B.2 SGD with Local Momentum

Let us firstly write down the update rule of the local models. Suppose that ρ denotes the local
momentum factor and ui is the local momentum buffer at client i. Then, the update rule of local
momentum SGD is:

u
(t,τi)
i =ρu

(t,τi−1)
i + gi(x

(t,τi−1)
i), (35)

x
(t,τi)
i =x

(t,τi−1)
i − ηu(t,τi)

i . (36)

One can expand the expression of local momentum buffer as follows:

u
(t,τi)
i =ρu

(t,τi−1)
i + gi(x

(t,τi−1)
i) (37)

=ρ2u
(t,τi−2)
i + ρgi(x

(t,τi−2)
i) + gi(x

(t,τi−1)
i) (38)

=

τi−1∑

k=0

ρτi−1−kgi(x
(t,k)
i) (39)

where the last equation comes from the fact u(t,0)
i = 0. Substituting (39) into (36), we have

x
(t,τi)
i =x

(t,τi−1)
i − η

τi−1∑

k=0

ρτi−1−kgi(x
(t,k)
i) (40)

=x
(t,τi−2)
i − η

τi−2∑

k=0

ρτi−2−kgi(x
(t,k)
i)− η

τi−1∑

k=0

ρτi−1−kgi(x
(t,k)
i). (41)

Repeating the above procedure, it follows that

x
(t,τi)
i − x(t,0) = −η

τi−1∑

s=0

s∑

k=0

ρs−kgi(x
(t,k)
i) (42)

Then, the coefficient of gi(x
(t,k)
i) is

τi−1∑

s≥k
ρs−k = 1 + ρ+ ρ2 + · · ·+ ρτi−1−k =

1− ρτi−k
1− ρ . (43)

That is, ai = [1− ρτi , 1− ρτi−1, . . . , 1− ρ]/(1− ρ). In this case, the `1 norm of ai is

‖ai‖1 =
1

1− ρ

τi−1∑

k=0

(
1− ρτi−k

)
=

1

1− ρ

(
τi −

τi−1∑

k=0

ρτi−k
)

(44)

=
1

1− ρ

[
τi −

ρ(1− ρτi)
1− ρ

]
. (45)

16

C Proof of Theorem 1: Convergence of Surrogate Objective

C.1 Preliminaries

For the ease of writing, let us define a surrogate objective function F̃ (x) =
∑m
i=1 wiFi(x), where∑m

i=1 wi = 1, and define the following auxiliary variables

Normalized Stochastic Gradient: d
(t)
i =

1

ai

τi−1∑

k=0

a
(k)
i gi(x

(t,k)
i), (46)

Normalized Gradient: h
(t)
i =

1

ai

τi−1∑

k=0

a
(k)
i ∇Fi(x

(t,k)
i) (47)

where a(k)i ≥ 0 is an arbitrary scalar, ai = [a
(0)
i , . . . , ai,−1]>, and ai = ‖ai‖1. Besides, one can

show that E[d
(t)
i − h

(t)
i] = 0. In addition, since workers are independent to each other, we have

E
〈
d
(t)
i − h

(t)
i , d

(t)
j − h

(t)
j

〉
= 0,∀i 6= j. Recall that the update rule of the global model can be

written as follows:

x(t+1,0) − x(t,0) = −τeffη

m∑

i=1

wid
(t)
i . (48)

According to the Lipschitz-smooth assumption, it follows that

E
[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

≤− τeffη E

[〈
∇F̃ (x(t,0)),

m∑

i=1

wid
(t)
i

〉]

︸ ︷︷ ︸
T1

+
τ2effη

2L

2
E



∥∥∥∥∥
m∑

i=1

wid
(t)
i

∥∥∥∥∥

2



︸ ︷︷ ︸
T2

(49)

where the expectation is taken over mini-batches ξ(t,k)i ,∀i ∈ {1, 2, . . . ,m}, k ∈ {0, 1, . . . , τi − 1}.
Before diving into the detailed bounds for T1 and T2, we would like to firstly introduce several useful
lemmas.

Lemma 2. Suppose {Ak}Tk=1 is a sequence of random matrices and E[Ak|Ak−1, Ak−2, . . . , A1] =
0,∀k. Then,

E



∥∥∥∥∥
T∑

k=1

Ak

∥∥∥∥∥

2

F


 =

T∑

k=1

E
[
‖Ak‖2F

]
. (50)

Proof.

E



∥∥∥∥∥
T∑

k=1

Ak

∥∥∥∥∥

2

F


 =

T∑

k=1

E
[
‖Ak‖2F

]
+

T∑

i=1

T∑

j=1,j 6=i
E
[
Tr{A>i Aj}

]
(51)

=
T∑

k=1

E
[
‖Ak‖2F

]
+

T∑

i=1

T∑

j=1,j 6=i
Tr{E

[
A>i Aj

]
} (52)

Assume i < j. Then, using the law of total expectation,

E
[
A>i Aj

]
= E

[
A>i E [Aj |Ai, . . . , A1]

]
= 0. (53)

17

C.2 Bounding First term in (49)

For the first term on the right hand side (RHS) in (49), we have

T1 =E

[〈
∇F̃ (x(t,0)),

m∑

i=1

wi

(
d
(t)
i − h

(t)
i

)〉]
+ E

[〈
∇F̃ (x(t,0)),

m∑

i=1

wih
(t)
i

〉]
(54)

=E

[〈
∇F̃ (x(t,0)),

m∑

i=1

wih
(t)
i

〉]
(55)

=
1

2

∥∥∥∇F̃ (x(t))
∥∥∥
2

+
1

2
E



∥∥∥∥∥
m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

− 1

2
E



∥∥∥∥∥∇F̃ (x(t,0))−

m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (56)

where the last equation uses the fact: 2 〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

C.3 Bounding Second term in (49)

For the second term on the right hand side (RHS) in (49), we have

T2 =E



∥∥∥∥∥
m∑

i=1

wi

(
d
(t)
i − h

(t)
i

)
+

m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (57)

≤2E



∥∥∥∥∥
m∑

i=1

wi

(
d
(t)
i − h

(t)
i

)∥∥∥∥∥

2

+ 2E



∥∥∥∥∥
m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (58)

=2
m∑

i=1

w2
iE
[∥∥∥d(t)i − h

(t)
i

∥∥∥
2
]

+ 2E



∥∥∥∥∥
m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (59)

where (58) follows the fact: ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 and (59) uses the special property of
d
(t)
i ,h

(t)
i , that is, E

〈
d
(t)
i − h

(t)
i , d

(t)
j − h

(t)
j

〉
= 0,∀i 6= j. Then, let us expand the expression of

d
(t)
i and h(t)

i , we obtain that

T2 ≤
m∑

i=1

2w2
i

a2i

τi−1∑

k=0

[a
(k)
i]2E

[∥∥∥gi(x(t,k)
i)−∇Fi(x(t,k)

i)
∥∥∥
2
]

+ 2E



∥∥∥∥∥
m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (60)

≤2σ2
m∑

i=1

w2
i ‖ai‖2

‖ai‖21
+ 2E



∥∥∥∥∥
m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (61)

where (60) is derived using Lemma 2, (61) follows Assumption 2.

C.4 Intermediate Result

Plugging (56) and (61) back into (49), we have

E
[
F̃ (x(t+1,0))

]
− F̃ (x(t,0)) ≤− τeffη

2

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

− τeffη

2
(1− 2τeffηL)E



∥∥∥∥∥
m∑

i=1

wih
(t)
i

∥∥∥∥∥

2



+τ2effη
2Lσ2

m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+
τeffη

2
E



∥∥∥∥∥∇F̃ (x(t,0))−

m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (62)

18

When τeffηL ≤ 1/2, it follows that

E
[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

ητeff
≤− 1

2

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ τeffηLσ
2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+
1

2
E



∥∥∥∥∥∇F̃ (x(t,0))−

m∑

i=1

wih
(t)
i

∥∥∥∥∥

2

 (63)

≤− 1

2

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ τeffηLσ
2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+
1

2

m∑

i=1

wiE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]

(64)

where the last inequality uses the fact F̃ (x) =
∑m
i=1 wiFi(x) and Jensen’s Inequality:

‖∑m
i=1 wizi‖

2 ≤∑m
i=1 wi ‖zi‖

2. Next, we will focus on bounding the last term in (64).

C.5 Bounding the Difference Between Server Gradient and Normalized Gradient

Recall the definition of h(t)
i , one can derive that

E
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]

=E



∥∥∥∥∥∇Fi(x

(t,0))− 1

ai

τi−1∑

k=0

a
(k)
i ∇Fi(x

(t,k)
i)

∥∥∥∥∥

2

 (65)

=E



∥∥∥∥∥

1

ai

τi−1∑

k=0

a
(k)
i

(
∇Fi(x(t,0))−∇Fi(x(t,k)

i)
)∥∥∥∥∥

2

 (66)

≤ 1

ai

τi−1∑

k=0

{
a
(k)
i E

[∥∥∥∇Fi(x(t,0))−∇Fi(x(t,k)
i)

∥∥∥
2
]}

(67)

≤L
2

ai

τi−1∑

k=0

{
a
(k)
i E

[∥∥∥x(t,0) − x(t,k)
i

∥∥∥
2
]}

(68)

where (67) uses Jensen’s Inequality again: ‖∑m
i=1 wizi‖

2 ≤ ∑m
i=1 wi ‖zi‖

2, and (68) follows
Assumption 1. Now, we turn to bounding the difference between the server model x(t,0) and the local
model x(t,k)

i . Plugging into the local update rule and using the fact ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2,

E
[∥∥∥x(t,0) − x(t,k)

i

∥∥∥
2
]

=η2 · E



∥∥∥∥∥
k−1∑

s=0

a
(s)
i gi(x

(t,s)
i)

∥∥∥∥∥

2

 (69)

≤2η2E



∥∥∥∥∥
k−1∑

s=0

a
(s)
i

(
gi(x

(t,s)
i)−∇Fi(x(t,s)

i)
)∥∥∥∥∥

2

 (70)

+ 2η2E



∥∥∥∥∥
k−1∑

s=0

a
(s)
i ∇Fi(x

(t,s)
i)

∥∥∥∥∥

2

 (71)

19

Applying Lemma 2 to the first term,

E
[∥∥∥x(t,0) − x(t,k)

i

∥∥∥
2
]

=2η2
k−1∑

s=0

[a
(s)
i]2E

[∥∥∥gi(x(t,s)
i)−∇Fi(x(t,s)

i)
∥∥∥
2
]

+ 2η2E



∥∥∥∥∥
k−1∑

s=0

a
(s)
i ∇Fi(x

(t,s)
i)

∥∥∥∥∥

2

 (72)

≤2η2σ2
k−1∑

s=0

[a
(s)
i]2 + 2η2E



∥∥∥∥∥
k−1∑

s=0

a
(s)
i ∇Fi(x

(t,s)
i)

∥∥∥∥∥

2

 (73)

≤2η2σ2
k−1∑

s=0

[a
(s)
i]2 + 2η2

[
k−1∑

s=0

a
(s)
i

]
k−1∑

s=0

a
(s)
i E

[∥∥∥∇Fi(x(t,s)
i)

∥∥∥
2
]

(74)

≤2η2σ2
k−1∑

s=0

[a
(s)
i]2 + 2η2

[
k−1∑

s=0

a
(s)
i

]
τi−1∑

s=0

a
(s)
i E

[∥∥∥∇Fi(x(t,s)
i)

∥∥∥
2
]

(75)

where (74) follows from Jensen’s Inequality. Furthermore, note that

1

‖ai‖1

τi−1∑

k=0

a
(k)
i

[
k−1∑

s=0

[a
(s)
i]2

]
≤ 1

ai

τi−1∑

k=0

a
(k)
i

[
τi−2∑

s=0

[a
(s)
i]2

]
(76)

=

τi−2∑

s=0

[a
(s)
i]2 = ‖ai‖22 − [ai,−1]2, (77)

1

‖ai‖1

τi−1∑

k=0

a
(k)
i

[
k−1∑

s=0

[a
(s)
i]

]
≤ 1

ai

τi−1∑

k=0

a
(k)
i

[
τi−2∑

s=0

[a
(s)
i]

]
(78)

=

τi−2∑

s=0

[a
(s)
i] = ‖ai‖1 − ai,−1 (79)

where ai,−1 is the last element in the vector ai. As a result, we have

1

‖ai‖1

τi−1∑

k=0

a
(k)
i E

[∥∥∥x(t,0) − x(t,k)
i

∥∥∥
2
]
≤2η2σ2

(
‖ai‖22 − [ai,−1]2

)

+2η2 (‖ai‖1 − ai,−1)

τi−1∑

k=0

a
(s)
i E

[∥∥∥∇Fi(x(t,k)
i)

∥∥∥
2
]

(80)

In addition, we can bound the second term using the following inequality:

E
[∥∥∥∇Fi(x(t,k)

i)
∥∥∥
2
]
≤2E

[∥∥∥∇Fi(x(t,k)
i)−∇Fi(x(t,0))

∥∥∥
2
]

+ 2E
[∥∥∥∇Fi(x(t,0))

∥∥∥
2
]

(81)

≤2L2E
[∥∥∥x(t,0) − x(t,k)

i

∥∥∥
2
]

+ 2E
[∥∥∥∇Fi(x(t,0))

∥∥∥
2
]
. (82)

Substituting (82) into (75), we get

1

‖ai‖1

τi−1∑

k=0

a
(k)
i E

[∥∥∥x(t,0) − x(t,k)
i

∥∥∥
2
]

≤2η2σ2
(
‖ai‖22 − [ai,−1]2

)
+ 4η2L2 (‖ai‖1 − ai,−1)

τi−1∑

k=0

a
(k)
i E

[∥∥∥x(t,0) − x(t,k)
i

∥∥∥
2
]

+ 4η2 (‖ai‖1 − ai,−1)

τi−1∑

k=0

a
(k)
i E

[∥∥∥∇Fi(x(t,0)
i)

∥∥∥
2
]

(83)

20

After minor rearranging, it follows that

1

‖ai‖1

τi−1∑

k=0

a
(k)
i E

[∥∥∥x(t,0) − x(t,k)
i

∥∥∥
2
]
≤ 2η2σ2

1− 4η2L2 ‖ai‖1 (‖ai‖1 − ai,−1)

(
‖ai‖22 − [ai,−1]2

)

+
4η2 ‖ai‖1 (‖ai‖1 − ai,−1)

1− 4η2L2 ‖ai‖1 (‖ai‖1 − ai,−1)
E
[∥∥∥∇Fi(x(t,0))

∥∥∥
2
]

(84)

Define D = 4η2L2 maxi{‖ai‖1 (‖ai‖1 − ai,−1)} < 1. We can simplify (84) as follows

L2

ai

τi−1∑

k=0

a
(k)
i E

[∥∥∥x(t,0) − x(t,k)
i

∥∥∥
2
]
≤2η2L2σ2

1−D
(
‖ai‖22 − [ai,−1]2

)
+

D

1−DE
[∥∥∥∇Fi(x(t,0))

∥∥∥
2
]
.

(85)

Taking the average across all workers and applying Assumption 3, one can obtain

1

2

m∑

i=1

wiE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]
≤η

2L2σ2

1−D
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)

+
D

2(1−D)

m∑

i=1

wiE
[∥∥∥∇Fi(x(t,0))

∥∥∥
2
]

(86)

≤η
2L2σ2

1−D
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)

+
Dβ2

2(1−D)
E
[∥∥∥∇F̃ (x(t,0))

∥∥∥
2
]

+
Dκ2

2(1−D)
. (87)

Now, we are ready to derive the final result.

C.6 Final Results

Plugging (87) back into (64), we have

E
[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

ητeff
≤− 1

2

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ τeffηLσ
2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+
η2L2σ2

1−D
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)

+
Dκ2

2(1−D)
+

Dβ2

2(1−D)
E
[∥∥∥∇F̃ (x(t,0))

∥∥∥
2
]

(88)

=− 1

2

(
1−D(1 + β2)

1−D

)∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ τeffηLσ
2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+

+
η2L2σ2

1−D
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)
+

Dκ2

2(1−D)
. (89)

21

If D ≤ 1
2β2+1 , then it follows that 1

1−D ≤ 1 + 1
2β2 and Dβ2

1−D ≤ 1
2 . These facts can help us further

simplify inequality (89).

E
[
F̃ (x(t+1,0))

]
− F̃ (x(t,0))

ητeff
≤− 1

4

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ τeffηLσ
2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+ η2L2σ2

(
1 +

1

2β2

) m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)

+ 2η2L2 max
i
{‖ai‖1 (‖ai‖1 − ai,−1)}κ2

(
1 +

1

2β2

)
(90)

≤− 1

4

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ τeffηLσ
2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+
3

2
η2L2σ2

m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)

+ 3η2L2κ2 max
i
{‖ai‖1 (‖ai‖1 − ai,−1)} (91)

Taking the average across all rounds, we get

1

T

T−1∑

t=0

E
[∥∥∥∇F̃ (x(t,0))

∥∥∥
2
]
≤4
[
F̃ (x(0,0))− F̃ inf

]

ητeffT
+ 4τeffηLσ

2
m∑

i=1

w2
i ‖ai‖22
‖ai‖21

+ 6η2L2σ2
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)

+ 12η2L2κ2 max
i
{‖ai‖1 (‖ai‖1 − ai,−1)}. (92)

For the ease of writing, we define the following auxiliary variables:

A = mτeff

m∑

i=1

w2
i ‖ai‖22
‖ai‖21

, (93)

B =
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)
, (94)

C = max
i
{‖ai‖1 (‖ai‖1 − ai,−1)}. (95)

It follows that

1

T

T−1∑

t=0

E
[∥∥∥∇F̃ (x(t,0))

∥∥∥
2
]
≤4
[
F̃ (x(0,0))− F̃ inf

]

ητeffT
+

4ηLσ2A

m
+ 6η2L2σ2B + 12η2L2κ2C

(96)

Since minE
[∥∥∇F̃ (x(t,0))

∥∥2
]
≤ 1

T

∑T−1
t=0 E

[∥∥∇F̃ (x(t,0))
∥∥2
]
, we have

min
t∈[T]

E
[∥∥∥∇F̃ (x(t,0))

∥∥∥
2
]
≤4
[
F̃ (x(0,0))− F̃ inf

]

ητeffT
+

4ηLσ2A

m
+ 6η2L2σ2B + 12η2L2κ2C. (97)

C.7 Constraint on Local Learning Rate

Here, let us summarize the constraints on local learning rate:

ηL ≤ 1

2τeff
, (98)

4η2L2 max
i
{‖ai‖1 (‖ai‖1 − ai,−1)} ≤ 1

2β2 + 1
. (99)

22

For the second constraint, we can further tighten it as follows:

4η2L2 max
i
{‖ai‖1 (‖ai‖1 − ai,−1)} ≤ 4η2L2 max

i
‖ai‖21 ≤

1

2β2 + 1
(100)

That is,

ηL ≤ 1

2
min

{
1

maxi ‖ai‖1
√

2β2 + 1
,

1

τeff

}
. (101)

C.8 Further Optimizing the Bound

By setting η =
√

m
τT where τ = 1

m

∑m
i=1 τi, we have

min
t∈[T]

E
∥∥∥∇F̃ (x(t,0))

∥∥∥
2

≤O
(
τ/τeff√
mτT

)
+O

(
Aσ2

√
mτT

)
+O

(
mBσ2

τT

)
+O

(
mCκ2

τT

)
. (102)

Here, we complete the proof of Theorem 1.

D Proof of Theorem 2: Including Bias in the Error Bound

Lemma 3. For any model parameter x, the difference between the gradients of F (x) and F̃ (x) can
be bounded as follows:

‖∇F (x)−∇F̃ (x)‖2 ≤ χ2
p‖w

[
(β2 − 1) ‖∇F̃ (x)‖2 + κ2

]
(103)

where χ2
p‖w denotes the chi-square distance between p and w, i.e., χ2

p‖w =
∑m
i=1(pi − wi)2/wi.

Proof. According to the definition of F (x) and F̃ (x), we have

∇F (x)−∇F̃ (x) =
m∑

i=1

(pi − wi)∇Fi(x) (104)

=
m∑

i=1

(pi − wi) (∇Fi(x)−∇F̃ (x)) (105)

=
m∑

i=1

pi − wi√
wi

· √wi (∇Fi(x)−∇F̃ (x)) . (106)

Applying Cauchy–Schwarz inequality, it follows that

‖∇F (x)−∇F̃ (x)‖2 ≤
[
m∑

i=1

(pi − wi)2
wi

][
m∑

i=1

wi ‖∇Fi(x)−∇F̃ (x)‖2
]

(107)

≤χ2
p‖w

[
(β2 − 1) ‖∇F̃ (x)‖2 + κ2

]
. (108)

where the last inequality uses Assumption 3.

Note that
‖∇F (x)‖2 ≤2 ‖∇F (x)−∇F̃ (x)‖2 + 2 ‖∇F̃ (x)‖2 (109)

≤2
[
χ2
p‖w(β2 − 1) + 1

]
‖∇F̃ (x)‖2 + 2χ2

p‖wκ
2. (110)

As a result, we obtain

min
t∈[T]

∥∥∥∇F (x(t,0))
∥∥∥
2

≤ 1

T

T−1∑

t=0

∥∥∥∇F (x(t,0))
∥∥∥
2

(111)

≤2
[
χ2
p‖w(β2 − 1) + 1

] 1

T

T−1∑

t=0

∥∥∥∇F̃ (x(t,0))
∥∥∥
2

+ 2χ2
p‖wκ

2 (112)

≤2
[
χ2
p‖w(β2 − 1) + 1

]
εopt + 2χ2

p‖wκ
2 (113)

where εopt denotes the optimization error.

23

D.1 Constructing a Lower Bound

In this subsection, we are going to construct a lower bound of E
∥∥∇F (x)(t,0)

∥∥2, showing that (10) is
tight and the non-vanishing error term in Theorem 2 is not an artifact of our analysis.
Lemma 4. One can manually construct a strongly convex objective function such that FedAvg with
heterogeneous local updates cannot converge to its global optimum. In particular, the gradient norm
of the objective function does not vanish as learning rate approaches to zero. We have the following
lower bound:

lim
T→∞

E
∥∥∥∇F (x(T,0))

∥∥∥
2

= Ω(χ2
p‖wκ

2) (114)

where χ2
p‖w denotes the chi-square divergence between weight vectors and κ2 quantifies the dissimi-

larities among local objective functions and is defined in Assumption 3.

Proof. Suppose that there are only two clients with local objectives F1(x) = 1
2 (x−a)2 and F2(x) =

1
2 (x + a)2. The global objective is defined as F (x) = 1

2F1(x) + 1
2F2(x). For any set of weights

w1, w2, w1 + w2 = 1, we define the surrogate objective function as F̃ (x) = w1F1(x) + w2F2(x).
As a consequence, we have

m∑

i=1

wi ‖∇Fi(x)−∇F̃ (x)‖2

=w1[(x− a)− [x− (w1 − w2)a]]2 + w2[(x+ a)− [x− (w1 − w2)a]]2 (115)

=w1[2w2a]2 + w2[2w1a]2 = 2(w1 + w2)(w1w2a
2) = 2w1w2a

2 (116)
Comparing with Assumption 3, we can define κ2 = 2w1w2a

2 and β2 = 1 in this case. Furthermore,
according to the derivations in Appendix A, the iterate of FedAvg can be written as follows:

lim
T→∞

x(T,0) =
τ1a− τ2a
τ1 + τ2

. (117)

As a results, we have

lim
T→∞

∥∥∥∇F (x(T,0))
∥∥∥
2

= lim
T→∞

[
1

2
(x(T,0) − a) +

1

2
(x(T,0) + a)

]2
(118)

= lim
T→∞

[
x(T,0)

]2
(119)

=

(
τ1 − τ2
τ1 + τ2

)2

a2 =
(τ2 − τ1)2

2τ1τ2
κ2 = Ω(χ2

p‖wκ
2). (120)

where χ2
p‖w =

∑m
i=1(pi − wi)2/wi = (w1 − 1/2)2/w1 + (w2 − 1/2)2/w2.

E Special Cases of Theorem 1

Here, we provide several instantiations of Theorem 1 and check its consistency with previous results.

E.1 FedAvg

In FedAvg, ai = [1, 1, . . . , 1]> ∈ Rτi , ‖ai‖22 = τi, and ‖ai‖1 = τi. In addition, we have
wi = piτi/(

∑m
i=1 piτi). Accordingly, we get the closed-form expressions of the following quantities:

τeff =
m∑

i=1

piτi = Ep[τ], (121)

AFedAvg = mτeff

m∑

i=1

w2
i ‖ai‖22
‖ai‖21

=
m
∑m
i=1 p

2
i τi∑m

i=1 piτi
, (122)

BFedAvg =
m∑

i=1

wi

(
‖ai‖22 − [ai,−1]2

)
=

∑m
i=1 piτi(τi − 1)∑m

i=1 piτi
= Ep[τ]− 1 +

varp[τ]

Ep[τ]
, (123)

CFedAvg = max
i
{‖ai‖1 (‖ai‖1 − ai,−1)} = τmax(τmax − 1). (124)

24

In the case where all clients have the same local dataset size, i.e., pi = 1/m, ∀i. It follows that

τeff = τ , AFedAvg = 1, BFedAvg = τ − 1 +
var[τ]

τ
, CFedAvg = τmax(τmax − 1). (125)

Substituting (125) into Theorem 1, we get the convergence guarantee for FedAvg. We formally state
it in the following corollary.
Corollary 1 (Convergence of FedAvg). Under the same conditions as Theorem 1, if pi = 1/m,
then FedAvg algorithm (vanilla SGD with fixed local learning rate as local solver) will converge
to the stationary point of a surrogate objective F̃ (x) =

∑m
i=1 τiFi(x)/

∑m
i=1 τi. The optimization

error will be bounded as follows:

min
t∈[T]

E ‖∇F̃ (x)‖2 ≤O
(

1 + σ2

√
mτT

)
+O

(
mσ2(τ − 1 + var[τ]/τ)

τT

)
+O

(
mκ2τmax(τmax − 1)

τT

)

(126)

where O swallows all constants (including L), and var[τ] =
∑m
i=1 τ

2
i /m− τ2 denotes the variance

of local steps.

Consistent with Previous Results. When all clients perform the same local steps, i.e., τi = τ , then
var[τ] = 0 and the above error bound (126) recovers previous results [8, 24, 20]. When τi = 1, then
FedAvg reduces to fully synchronous SGD and the error bound (126) becomes 1/

√
mT , which is the

same as standard SGD convergence rate [51].

E.2 FedProx

In FedProx, we have ai = [(1− α)τi−1, . . . , (1− α), 1]> ∈ Rτi . Accordingly, the norms of ai can
be written as:

‖ai‖22 =
1− (1− α)2τi

1− (1− α)2
, ‖ai‖1 =

1− (1− α)τi

α
, wi =

pi[1− (1− α)τi]∑m
i=1 pi[1− (1− α)τi]

. (127)

As a consequence, we can derive the closed-form expression of τeff, A,B,C as follows:

τeff =
1

α

m∑

i=1

pi[1− (1− α)τi], (128)

AFedProx =
mα∑m

i=1 pi(1− (1− α)τi)

m∑

i=1

p2i
1− (1− α)2τi

1− (1− α)2
, (129)

BFedProx =
m∑

i=1

pi[1− (1− α)τi]∑m
i=1 pi[1− (1− α)τi]

[
1− (1− α)2τi

1− (1− α)2
− 1

]
, (130)

CFedProx =
1− (1− α)τmax

α

(
1− (1− α)τmax

α
− 1

)
. (131)

Substituting AFedProx, BFedProx, CFedProx back into Theorem 1, one can obtain the convergence
guarantee for FedProx. Again, it will converge to the stationary points of a surrogate objective due
to wi 6= pi.

Consistency with FedAvg. From the update rule of FedProx, we know that when µ = 0 (or
α = 0), FedProx is equivalent to FedProx. This can also be validated from the expressions of
AFedProx, BFedProx, CFedProx. Using L’Hospital law, it is easy to show that

lim
α→0

AFedProx = AFedAvg, lim
α→0

BFedProx = BFedAvg, lim
α→0

CFedProx = CFedAvg. (132)

Best value of α in FedProx. Given the expressions of τeff and A,B,C, we can further select a best
value of α that optimizes the error bound of FedProx, as stated in the following corollary.
Corollary 2. Under the same conditions as Theorem 1 and suppose pi = 1/m and τi � 1, then
α = O(m

1
2/τ

1
2 T

1
6)) minimizes the optimization error bound of FedProx in terms of converging to

the stationary points of the surrogate objective. In particular, we have

min
t∈[T]

E ‖∇F̃ (x)‖2 ≤O
(

1√
mτT

)
+O

(
1

T
2
3

)
(133)

25

where O swallows all other constants. Furthermore, if we define K = τT the average gradient
evaluations at clients and let τ ≤ O(K

1
4m−

3
4) (which is equivalent to T ≥ O(K

3
4m

3
4)), then it

follows that mint∈[T] E ‖∇F̃ (x)‖2 ≤ O(1/
√
mK).

Discussion: Corollary 2 shows that there exists a non-zero value of α that optimizes the error upper
bound of FedProx. That is to say, FedProx (α > 0) is better than FedAvg (α = 0) by a constant
in terms of error upper bound. However, on the other hand, it is worth noting that the minimal
communication rounds of FedProx to achieve 1/

√
mK rate, given by Corollary 2, is exactly the

same as FedAvg [24]. In this sense, FedProx has the same convergence rate as FedAvg and cannot
further reduce the communication overhead.

Proof. First of all, let us relax the error terms of FedProx. Under the assumption of τi � 1, the
quantities A,B,C can be bounded or approximated as follows:

τeff '
1

α
, (134)

AFedProx 'mα
m∑

i=1

p2i
(2− α)α

=
m
∑m
i=1 p

2
i

2− α ≤ m
m∑

i=1

p2i = 1, (135)

BFedProx ≤
1− (1− α)2τi

1− (1− α)2
− 1 ≤ 1

α(2− α)
≤ 1

α
≤ 1

α2
, (136)

CFedProx ≤
1

α2
. (137)

Accordingly, the error upper bound of FedProx can be rewritten as follows:

min
t∈[T]

E ‖∇F̃ (x)‖2 ≤O
(

ατ√
mτT

)
+O

(
1√
mτT

)
+O

(m

α2τT

)
. (138)

In order to optimize the above bound, we can simply take the derivative with respect to α. When the
derivative equals to zero, we get

τ√
mτT

=
m

α3τT
=⇒ α = O

(
m

1
2

τ
1
2T

1
6

)
. (139)

Plugging the expression of best α into (138), we have

min
t∈[T]

E ‖∇F̃ (x)‖2 ≤ O
(

1√
mτT

)
+O

(
1

T
2
3

)
= O

(
1√
mK

)
+O

(
τ

2
3

K
2
3

)
(140)

where K = τT denotes the average total gradient steps at clients. In order to let the first term
dominates the convergence rate, it requires that

1√
mK

≥ τ
2
3

K
2
3

=⇒ τ ≤ O
(
K

1
4m−

3
4

)
. (141)

As a results, the total communication rounds T = K/τ should be greater than O(K
3
4m

3
4).

26

F Proof of Theorem 3

In the case of FedNova, the aggregated weights wi equals to pi. Therefore, the surrogate objective
F̃ (x) =

∑m
i=1 wiFi(x) is the same as the original objective function F (x) =

∑m
i=1 piFi(x). We

can directly reuse the intermediate results in the proof of Theorem 1. According to (91), we have

E[F (x(t+1,0))]− F (x(t,0))

ητeff
≤− 1

4

∥∥∥∇F (x(t,0))
∥∥∥
2

+
ηLσ2A(t)

m
+

3

2
η2L2σ2B(t) + 3η2L2κ2C(t)

(142)

where quantities A(t), B(t), C(t) are defined as follows:

A(t) = mτeff

m∑

i=1

w2
i

∥∥∥a(t)
i

∥∥∥
2

2∥∥∥a(t)
i

∥∥∥
2

1

, (143)

B(t) =

m∑

i=1

pi

(∥∥∥a(t)
i

∥∥∥
2

2
− [a

(t)
i,−1]2

)
, (144)

C(t) = max
i

{∥∥∥a(t)
i

∥∥∥
1

(∥∥∥a(t)
i

∥∥∥
1
− a(t)i,−1

)}
. (145)

Taking the total expectation and averaging over all rounds, it follows that

E[F (x(T,0))]− F (x(0,0))

ητeffT
≤− 1

4T

T−1∑

t=0

E
∥∥∥∇F (x(t,0))

∥∥∥
2

+
ηLσ2Ã

m

+
3

2
η2L2σ2B̃ + 3η2L2κ2C̃ (146)

where Ã =
∑T−1
t=0 A(t)/T, B̃ =

∑T−1
t=0 B(t)/T , and C̃ =

∑T−1
t=0 C(t)/T . After minor rearranging,

we have

1

T

T−1∑

t=0

E
[∥∥∥∇F (x(t,0))

∥∥∥
2
]
≤4
[
F (x(0,0))− Finf

]

ητeffT
+

4ηLσ2Ã

m
+ 6η2L2σ2B̃ + 12η2L2κ2C̃.

(147)

Bt setting η =
√

m
τ̃T where τ̃ =

∑T−1
t=0 τ (t)/T , the above upper bound can be further optimized as

follows:

min
t∈[T]

E
[∥∥∥∇F (x(t,0))

∥∥∥
2
]
≤ 1

T

T−1∑

t=0

E
[∥∥∥∇F (x(t,0))

∥∥∥
2
]

(148)

≤4τ̃ /τeff ·
[
F (x(0,0))− Finf

]
√
mτ̃T

+
4Lσ2Ã√
mτ̃T

+
6mL2σ2B̃

τ̃T
+

12mL2κ2C̃

τ̃T
(149)

=O
(
τ̃ /τeff√
mτ̃T

)
+O

(
Ãσ2

√
mτ̃T

)
+O

(
mB̃σ2

τ̃T

)
+O

(
mC̃κ2

τ̃T

)
.

(150)
Here, we complete the proof of Theorem 3.

Moreover, it is worth mentioning the constraints on the local learning rate. Recall that, at the t-th
round, we have the following constraint:

ηL ≤ 1

2
min





1

maxi

∥∥∥a(t)
i

∥∥∥
1

√
2β2 + 1

,
1

τeff



 . (151)

In order to guarantee the convergence, the above inequality should hold in every round. That is to say,

ηL ≤ 1

2
min





1

maxi∈[m],t∈[T]

∥∥∥a(t)
i

∥∥∥
1

√
2β2 + 1

,
1

τeff



 . (152)

27

G Extension: Incorporating Client Sampling

In this section, we extend the convergence guarantee of FedNova to the case of client sampling.
Following previous works [38, 12, 20, 15], we assume the sampling scheme guarantees that the
update rule (11) hold in expectation. This can be achieved by sampling with replacement from
{1, 2, . . . ,m} with probabilities {pi}, and averaging local updates from selected clients with equal
weights. Specifically, we have

x(t+1,0) − x(t,0) = −τeff

q∑

j=1

1

q
· ηd(t)lj where d(t)lj = G

(t)
lj
alj/‖alj‖1 (153)

where q is the number of selected clients per round, and lj is a random index sampled from
{1, 2, · · · ,m} satisfying P(lj = i) = pi. Recall that pi = ni/n is the relative sample size at
client i. For the ease of presentation, let ai to be fixed across rounds. One can directly validate that

ES


1

q

q∑

j=1

d
(t)
lj


 =

1

q

q∑

j=1

ES
[
d
(t)
lj

]
= ES

[
d
(t)
lj

]
=

m∑

i=1

pid
(t)
i (154)

where ES represents the expectation over random indices at current round.
Corollary 3. Under the same condition as Theorem 1, suppose at each round, the server randomly
selects q(≤ m) clients with replacement to perform local computation. The probability of choosing
the i-th client is pi = ni/n. In this case, FedNova will converge to the stationary points of the global
objective F (x). If we set η =

√
q/τ̃T where τ̃ is the average local updates across all rounds, then

the expected gradient norm is bounded as follows:

min
t∈[T]

E
∥∥∥∇F (x(t,0))

∥∥∥
2

≤O
(
τ̃ /τeff√
qτ̃T

)
+O

(
τeff/τ̃√
qτ̃T

)
+O

(
q(B + C)

τ̃T

)
(155)

where O swallows all other constants (including L, σ2, κ2).

Proof. According to the Lipschitz-smooth assumption, it follows that

E
[
F (x(t+1,0))

]
− F (x(t,0)) ≤− τeffη E



〈
∇F (x(t,0)),

q∑

j=1

d
(t)
lj

q

〉


︸ ︷︷ ︸
T3

+
τ2effη

2L

2
E




∥∥∥∥∥∥

q∑

j=1

d
(t)
lj

q

∥∥∥∥∥∥

2



︸ ︷︷ ︸
T4

(156)

where the expectation is taken over randomly selected indices {lj} as well as mini-batches ξ(t,k)i ,∀i ∈
{1, 2, . . . ,m}, k ∈ {0, 1, . . . , τi − 1}.
For the first term in (156), we can first take the expectation over indices and obtain

T3 =E



〈
∇F (x(t,0)), ES




q∑

j=1

d
(t)
lj

q



〉
 (157)

=E

[〈
∇F (x(t,0)),

m∑

i=1

pid
(t)
i

〉]
. (158)

This term is exactly the same as the first term in (49). We can directly reuse previous results in the
proof of Theorem 1. Comparing with (56), we have

T3 =
1

2

∥∥∥∇F (x(t))
∥∥∥
2

+
1

2
E



∥∥∥∥∥
m∑

i=1

pih
(t)
i

∥∥∥∥∥

2

− 1

2
E



∥∥∥∥∥∇F (x(t,0))−

m∑

i=1

pih
(t)
i

∥∥∥∥∥

2

 (159)

≥1

2

∥∥∥∇F (x(t))
∥∥∥
2

+
1

2
E



∥∥∥∥∥
m∑

i=1

pih
(t)
i

∥∥∥∥∥

2

− 1

2

m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]
. (160)

28

For the second term in (156),

T4 ≤2E




∥∥∥∥∥∥
1

q

q∑

j=1

(d
(t)
lj
− h(t)

lJ
)

∥∥∥∥∥∥

2

+ 2E




∥∥∥∥∥∥
1

q

q∑

j=1

h
(t)
lj

∥∥∥∥∥∥

2

 (161)

=
1

q

m∑

i=1

piE
[∥∥∥d(t)i − h

(t)
i

∥∥∥
2
]

+ 2E




∥∥∥∥∥∥
1

q

q∑

j=1

h
(t)
lj

∥∥∥∥∥∥

2

 (162)

≤2σ2

q

m∑

i=1

pi
‖ai‖22
‖ai‖21

+ 2E




∥∥∥∥∥∥
1

q

q∑

j=1

h
(t)
lj

∥∥∥∥∥∥

2

 (163)

≤2σ2

q

m∑

i=1

pi
‖ai‖22
‖ai‖21

+ 6
m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]

+
6

q

(
β2‖∇F (x(t,0))‖2 + κ2

)

+ 6
∥∥∥∇F (x(t,0))

∥∥∥
2

(164)

where the last inequality comes from Lemma 5, stated below.

Lemma 5. Suppose we are given z1, z2, . . . ,zm,x ∈ Rd and let l1, l2, . . . , lq be i.i.d. sampled from
a multinomial distribution D supported on {1, 2, . . . ,m} satisfying P(l = i) = pi and

∑m
i=1 pi = 1.

We have

E[
1

q

q∑

j=1

zlj] =

m∑

i=1

pizi, (165)

E[‖1

q

q∑

j=1

zlj‖2] ≤3
m∑

i=1

pi‖zi −∇Fi(x)‖2 + 3 ‖∇F (x)‖2 +
3

q

(
β2‖∇F (x)‖2 + κ2

)
. (166)

Proof. First, we have

E[‖1

q

q∑

j=1

zlj‖2]

=E




∥∥∥∥∥∥


1

q

q∑

j=1

zlj −
1

q

q∑

j=1

∇Flj (x)


+


1

q

q∑

j=1

∇Flj (x)−∇F (x)


+∇F (x)

∥∥∥∥∥∥

2

 (167)

≤3E[‖1

q

q∑

j=1

zlj −
1

q

q∑

j=1

∇Flj (x)‖2] + 3E[‖1

q

q∑

j=1

∇Flj (x)−∇F (x)‖2] + 3 ‖∇F (x)‖2 .

(168)
For the first term, by Cauchy-Schwarz inequality, we have

E[‖1

q

q∑

j=1

zlj −
1

q

q∑

j=1

∇Flj (x)‖2] ≤ 1

q

q∑

j=1

Elj∼D[‖zlj −∇Flj (x)‖2] =

m∑

i=1

pi‖zi −∇Fi(x)‖2.

(169)
The second term can be bounded as following

E[‖1

q

q∑

j=1

∇Flj (x)−∇F (x)‖2] =
1

q
Elj∼D[‖∇Flj (x)−∇F (x)‖2] (170)

=
1

q

m∑

i=1

pi‖∇Fi(x)−∇F (x)‖2 (171)

≤ 1

q

[
(β2 − 1)‖∇F (x)‖2 + κ2

]
. (172)

29

where the first identity follows from Ei∼D[Fi(x)] = ∇F (x) and the independence between l1, . . . , lq ,
and the last inequality is a direct application of Assumption 3.

Substituting (169) and (170) into (167) completes the proof.

Substituting (160) and (164) into (156), we have
E
[
F (x(t+1,0))

]
− F (x(t,0))

ητeff
≤− 1

2
(1− 6τeffηL)

∥∥∥∇F (x(t,0))
∥∥∥
2

+

(
1

2
+ 3τeffηL

) m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]

+
τeffηLσ

2

q

m∑

i=1

pi
‖ai‖22
‖ai‖21

+
3τeffηL

q

(
β2
∥∥∥∇F (x(t,0))

∥∥∥
2

+ κ2
)

(173)

=− 1

2

(
1− 6τeffηL−

6τeffηLβ
2

q

)∥∥∥∇F (x(t,0))
∥∥∥
2

+
τeffηLσ

2

q

m∑

i=1

pi
‖ai‖22
‖ai‖21

+

(
1

2
+ 2τeffηL

) m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]

+
3τeffηLκ

2

q
.

(174)
When ηL ≤ 1/(2τeff) and 6τeffηL+ 6τeffηLβ

2/q ≤ 1
2 , it follows that

E
[
F (x(t+1,0))

]
− F (x(t,0))

ητeff
≤− 1

4

∥∥∥∇F (x(t,0))
∥∥∥
2

+
τeffηLσ

2

q

m∑

i=1

pi
‖ai‖22
‖ai‖21

+
3

2

m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]

+
3τeffηLκ

2

q
. (175)

Recall that the third term in (175) can be bounded as follows (see (87)):
1

2

m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]
≤η

2L2σ2

1−D
m∑

i=1

pi

(
‖ai‖22 − [ai,−1]2

)

+
Dβ2

2(1−D)

∥∥∥∇F (x(t,0))
∥∥∥
2

+
Dκ2

2(1−D)
(176)

where D = 4η2L2 maxi{‖ai‖1 (‖ai‖1 − ai,−1)} < 1. If D ≤ 1
12β2+1 , then it follows that

1
1−D ≤ 1 + 1

12β2 ≤ 2 and 3Dβ2

1−D ≤ 1
4 . These facts can help us further simplify inequality (176). One

can obtain
3

2

m∑

i=1

piE
[∥∥∥∇Fi(x(t,0))− h(t)

i

∥∥∥
2
]
≤6η2L2σ2

m∑

i=1

pi

(
‖ai‖22 − [ai,−1]2

)
+

1

8

∥∥∥∇F (x(t,0))
∥∥∥
2

+ 12η2L2κ2 max
i
{‖ai‖1 (‖ai‖1 − ai,−1) (177)

=6η2L2σ2B +
1

8

∥∥∥∇F (x(t,0))
∥∥∥
2

+ 12η2L2κ2C (178)

Substituting (178) into (175), we have
E
[
F (x(t+1,0))

]
− F (x(t,0))

ητeff
≤− 1

8

∥∥∥∇F (x(t,0))
∥∥∥
2

+
τeffηLσ

2

q

m∑

i=1

pi
‖ai‖22
‖ai‖21

+
3τeffηLκ

2

q

+ 6η2L2σ2B + 12η2L2κ2C (179)

≤− 1

8

∥∥∥∇F (x(t,0))
∥∥∥
2

+
τeffηLσ

2

q
+

3τeffηLκ
2

q

+ 6η2L2σ2B + 12η2L2κ2C (180)

30

where the last inequality uses the fact that ‖a‖2 ≤ ‖a‖1, for any vector a. Taking the total expectation
and averaging all rounds, one can obtain

E
[
F (x(T,0))

]
− F (x(0,0))

ητeffT
≤− 1

8T

T−1∑

t=0

E
[∥∥∥∇F (x(t,0))

∥∥∥
2
]

+
τeffηL(σ2 + 3κ2)

q

+ 6η2L2σ2B + 12η2L2κ2C. (181)

After minor rearranging, the above inequality is equivalent to

1

T

T−1∑

t=0

E
[∥∥∥∇F (x(t,0))

∥∥∥
2
]

≤8
[
F (x(0,0))− Finf

]

ητeffT
+

8τeffηL(σ2 + 3κ2)

q
+ 48η2L2σ2B + 96η2L2κ2C. (182)

If we set the learning rate to be small enough, i.e., η =
√

q
τ̃T where τ̃ =

∑T−1
t=0 τ/T , then we get

1

T

T−1∑

t=0

E
[∥∥∥∇F (x(t,0))

∥∥∥
2
]
≤O

(
τ̃ /τeff√
qτ̃T

)
+O

(
τeff/τ̃√
qτ̃T

)
+O

(
q(B + C)

τ̃T

)
(183)

where O swallows all other constants.

31

H Pseudo-code of FedNova

Here we provide a pseudo-code of FedNova (see Algorithm 1) as a general algorithmic framework.
Then, as an example, we show the pseudo-code of a special case of FedNova, where the local solver
is specified as momentum SGD with cross-client variance reduction [21, 20] (see Algorithm 2).
Note that when the server updates the global model, we set τeff to be the same as FedAvg, i.e.,
τeff =

∑
i∈St pi‖a

(t)
i ‖1 where St denotes the randomly selected subset of clients. Alternatively, the

server can also choose other values of τeff.

Algorithm 1: FedNova Framework
Input: Client learning rate η; Client momentum factor ρ.

1 for t ∈ {0, 1, . . . , T − 1} do
2 Randomly sample a subset of clients St
3 Communication: Broadcast global model x(t,0) to selected clients
4 Clients perform local updates
5 Communication: Receive ‖a(t)

i ‖1 and d(t)i from clients

6 Update global model: x(t+1,0) = x(t,0) −
∑

i∈St
pi‖a(t)

i ‖1∑
i∈St pi

∑
i∈St

ηpid
(t)
i∑

i∈St
pi

7 end

Algorithm 2: FedNova with Client-side Momentum SGD + Cross-client Variance Reduction
Input: Client learning rate η; Client momentum factor ρ.

1 for t ∈ {0, 1, . . . , T − 1} at cleint i in parallel do
2 Zero client optimizer buffers u(t,0)

i = 0

3 Communication: Receive x(t,0) = x(t−1,0) − (
∑m
i=1 piai)η

∑m
i=1 pid

(t−1)
i from server

4 Communication: Receive
∑m
i=1 pid

(t−1)
i from server

5 Update gradient correction term: c(t)i = −d(t−1)i +
∑m
i=1 pid

(t−1)
i

6 for k ∈ {0, 1, . . . , τi − 1} do
7 Compute: g̃i(x(t,k)) = gi(x

(t,k)) + c
(t)
i

8 Update momentum buffer: u(t,k)
i = ρu

(t,k−1)
i + g̃i(x

(t,k))

9 Update local model: x(t,k)
i = x

(t,k−1)
i − ηu(t,k)

i

10 end
11 Compute: ai = [τi − ρ(1− ρτi)/(1− ρ)]/(1− ρ)

12 Compute normalized gradient: d(t)i = (x(t,0) − x(t,τi))/(ηai)

13 Communication: Send piai and pid
(t)
i to the server

14 end

I More Experiments Details

Platform. All experiments in this paper are conducted on a cluster of 16 machines, each of which is
equipped with one NVIDIA TitanX GPU. The machines communicate (i.e., transfer model parameters)
with each other via Ethernet. We treat each machine as one client in the federated learning setting.
The algorithms are implemented by PyTorch. We run each experiments for 3 times with different
random seeds.

Hyper-parameter Choices. On non-IID CIFAR10 dataset, we fix the mini-batch size per client as
32. When clients use momentum SGD as the local solver, the momentum factor is 0.9; when clients
use proximal SGD, the proximal parameter µ is selected from {0.0005, 0.001, 0.005, 0.01}. It turns
out that when Ei = 2, µ = 0.005 is the best and when Ei(t) ∼ U(2, 5), µ = 0.001 is the best. The
client learning rate η is tuned from {0.005, 0.01, 0.02, 0.05, 0.08} for FedAvg with each local solver
separately. When using the same local solver, FedNova uses the same client learning rate as FedAvg.

32

Specifically, if the local solver is momentum SGD, then we set η = 0.02. In other cases, η = 0.05
consistently performs the best. On the synthetic dataset, the mini-batch size per client is 20 and the
client learning rate is 0.02.

Training Curves on Non-IID CIFAR10. The training curves of FedAvg and FedNova are presented
in Figure 6. Observe that FedNova (red curve) outperforms FedAvg (blue curve) by a large margin.
FedNova only requires about half of the total rounds to achieve the same test accuracy as FedAvg.
Besides, note that in [54], the test accuracy of FedAvg is higher than ours. This is because the authors
of [54] let clients to perform 20 local epochs per round, which is 10 times more than our setting. In
[54], after 100 communication rounds, FedAvg equivalently runs 100× 20 = 2000 epochs.

0 20 40 60 80 100
Communication rounds

30

40

50

60

70

80

Tr
ai

ni
ng

 lo
ss

Local Solver: SGD
FedAvg
FedNova

0 20 40 60 80 100
Communication rounds

30

40

50

60

70

80

Tr
ai

ni
ng

 lo
ss

Local Solver: SGD-M

FedAvg-LM
FedNova-LM

0 20 40 60 80 100
Communication rounds

30

40

50

60

70

80

Tr
ai

ni
ng

 lo
ss

Local Solver: SGD

FedAvg
FedNova

0 20 40 60 80 100
Communication rounds

30

40

50

60

70

80

Tr
ai

ni
ng

 lo
ss

Local Solver: SGD-M

FedAvg-LM
FedNova-LM

Figure 6: Training curves on non-IID partitioned CIFAR10 dataset. In these curves, the only
difference between FedAvg and FedNova is the weights when aggregating normalized gradients.
‘LM’ represents for local momentum. First row: All clients perform Ei = 2 local epochs; Second
row: All clients perform random and time-varying local epochs Ei(t) ∼ U(2, 5).

0 20 40 60 80 100
Communication rounds

30
40
50
60
70
80

Tr
ai

ni
ng

 lo
ss

Hybrid Momen.
Server Momen.
No Momen.

0 20 40 60 80 100
Communication rounds

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y

Ei = 2, SGD w/ Prox.
Default
Correct eff only
Correct wi, eff

Figure 7: Left: Comparison of different momentum schemes in FedNova. ‘Hybrid momentum’
corresponds to the combination of server momentum and client momentum. Right: How FedNova-
prox outperform vanilla FedProx (blue curve). By setting τeff =

∑m
i=1 piτi instead of its default

value, the accuracy of FedProx can be improved by 5% (see the green curve). By further correcting
the aggregated weights, FedNova-prox (red curves) achieves around 10% higher accuracy than
FedProx.

33

