
Supplementary to “Part-dependent Label Noise:
Towards Instance-dependent Label Noise”

A How to learn robust classifiers by exploiting part-dependent transition
matrices

For those who are not familiar with how to use the transition matrix to learn robust classifiers, in this
supplementary material, we will provide how to learn robust classifiers by exploiting part-dependent
transition matrices.

We begin by introducing notation. LetD be the distribution of the variables (X,Y ), D̄ the distribution
of the variables (X, Ȳ ). Let S = {(xi, yi)}ni=1 be i.i.d. samples drawn from the distribution D,
S̄ = {(xi, ȳi)}ni=1 i.i.d. samples drawn from the distribution D̄, and c the size of label classes.

The aim of multi-class classification is to learn a classifier f that can assign labels for given instances.
The classifier f is of the following form: f(x) = arg maxi∈{1,2,...,c} gi(x), where gi(x) is an
estimate of Pr(Y = i|X = x). Expected risk of employing f is defined as

R(f) = E(X,Y )∼D[`(f(X), Y )]. (1)

The optimal classifier to learn is the one that minimizes the risk R(f). Due to the distribution D is
usually unknown, the optimal classifier is approximated by the minimizer of the empirical risk:

Rn(f) =
1

n

n∑
i=1

`(f(xi), yi). (2)

Given only the noisy training samples {(xi, ȳi)}ni=1, the noisy version of the empirical risk is defined
as:

R̄n(f) =
1

n

n∑
i=1

`(f(xi), ȳi). (3)

In the main paper (Section 3), we show how to approximate instance-dependent transition matrix
by exploiting part-dependent transition matrices. For an instance x, according to the definition of
instance-dependent transition matrix, we have that Pr(Ȳ|X = x) = T>(x)Pr(Y|X = x), we let

h̄(x) = arg max
i∈{1,2,...,c}

(T>(x)g)i(x). (4)

The empirical risk of our PTD-F algorithm is defined as:

R̄n(h̄) =
1

n

n∑
i=1

`(h̄(xi), ȳi). (5)

By employing the importance reweighting technique [1, 2, 4], the empirical risk of our PTD-R
algorithm is defined as:

R̄n(f, h̄) =
1

n

n∑
i=1

gȳi
(xi)

h̄ȳi(xi)
`(f(xi), ȳi). (6)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Algorithm 2 Instance-dependent Label Noise Generation
Input: Clean samples {(xi, yi)}ni=1; Noise rate τ .
1: Sample instance flip rates q ∈ Rn from the truncated normal distribution N (τ, 0.12, [0, 1]);
2: Independently sample w1, w2, . . . , wc from the standard normal distribution N (0, 12);
3: For i = 1, 2, . . . , n do
4: p = xi × wyi

; //generate instance-dependent flip rates
5: pyi = −∞; //control the diagonal entry of the instance-dependent transition matrix
6: p = qi × softmax(p); //make the sum of the off-diagonal entries of the yi-th row to be qi
7: pyi = 1− qi; //set the diagonal entry to be 1-qi
8: Randomly choose a label from the label space according to the possibilities p as noisy label ȳi;
9: End for.
Output: Noisy samples {(xi, ȳi)}ni=1

Here, gj(x) is an estimate for Pr(Y = j|x) and hj(x) is an estimate for Pr(Ȳ = j|x).

When the slack variable ∆T is introduced to modify the instance-dependent transition matrices,
reviewing Eq. (4), we replace T (x) with T (x) + ∆T to get h̄′(x), i.e.,

h̄′(x) = arg max
i∈{1,2,...,c}

(T (x) + ∆T )>g)i(x). (7)

Then the empirical risks of PTD-F-V and PTD-R-V are defined as R̄n(h̄′) and R̄n(f, h̄′), i.e.,

R̄n(h̄′) =
1

n

n∑
i=1

`(h̄′(xi), ȳi). (8)

and

R̄n(f, h̄′) =
1

n

n∑
i=1

gȳi(xi)

h̄′ȳi
(xi)

`(f(xi), ȳi). (9)

To learn noise robust classifiers under noisy supervision, we minimize the empirical risk of PTD-F,
PTD-R, PTD-F-V, and PTD-R-V, respectively.

B Instance-dependent Label Noise Generation

Note that it is more realistic that different instances have different flip rates. Without constraining
different instances to have a same flip rate, it is more challenging to model the label noise and train
robust classifiers. In Step 1, in order to control the global flip rate as τ but without constraining all of
the instances to have a same flip rate, we sample their flip rates from a truncated normal distribution
N (τ, 0.12, [0, 1]). Specifically, this distribution limits the flip rates of instances in the range [0, 1].
Their mean and standard deviation are equal to the mean τ and the standard deviation 0.1 of the
selected truncated normal distribution respectively.

In Step 2, we sample parameters w1, w2, . . . , wc from the standard normal distribution for generating
instance-dependent label noise. The dimensionality of each parameter is d× c, where d denotes the
dimensionality of the instance. Learning these parameters is critical to model instance-dependent
label noise. However, it is hard to identify these parameters without any assumption.

Note that an instance with clean label y will be flipped only according to the y-th row of the transition
matrix. Thus, in Steps 4 to 7, we only use the yi-th row of the instance-dependent transition matrix
for the instance xi. Specifically, Steps 5 and 7 are to ensure the diagonal entry of the yi-th row is 1-
qi. Step 6 is to ensure that the sum of the off-diagonal entries is qi.

C Experiments complementary on synthetic noisy datasets

In the main paper (Section 4), we present the experimental results on four synthetic noisy datasets, i.e.,
F-MNIST, SVHN, CIFAR-10, and NEWS. In this supplementary material, we provide the experimental
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Table 1: Means and standard deviations (percentage) of classification accuracy on MNIST with
different label noise levels.

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 98.24±0.07 98.21±0.06 96.78±0.12 93.76±0.18 79.69±4.35
Decoupling 96.63±0.12 96.62±0.22 92.73±0.36 90.34±0.33 80.56±2.67
MentorNet 97.45±0.11 97.21±0.13 92.88±0.31 88.23±1.65 80.02±1.71

Co-teaching 97.56±0.12 97.32±0.15 94.81±0.24 92.45±0.59 83.30±1.37
Co-teaching+ 98.32±0.07 98.07±0.12 96.70±0.35 94.37±0.48 82.97±1.11

Joint 98.53±0.06 98.17±0.14 96.51±0.17 93.07±0.62 83.72±3.22
DMI 98.63±0.04 98.40±0.11 97.75±0.21 96.45±0.23 87.52±1.03

Forward 97.23±0.15 96.87±0.15 95.01±0.27 90.30±0.61 77.42±3.28
Reweight 98.21±0.07 97.99±0.13 96.96±0.14 94.55±0.67 80.87±4.14

T-Revision 98.49±0.06 98.39±0.09 97.55±0.14 96.50±0.31 84.71±3.47

PTD-F 98.55±0.05 97.92±0.27 97.34±0.11 94.67±0.83 84.01±2.11
PTD-R 98.22±0.10 98.12±0.17 97.06±0.13 94.75±0.54 82.72±2.04

PTD-F-V 98.71±0.05 98.46±0.11 97.77±0.09 96.07±0.45 88.55±1.96
PTD-R-V 98.66±0.03 98.43±0.15 97.81±0.23 96.73±0.20 88.67±1.25

results on another synthetic noisy dataset MNIST. MNIST contains 60,000 training images and 10,000
test images with 10 classes. We use a LeNet-5 network for it. The detailed experimental results are
shown in Table 1. The classification performance shows that our proposed method is more robust
than the baseline methods when coping with instance-dependent label noise.

D The details of significance tests

We exploit significance tests to show whether all experimental results are statistically significant. The
p-values are obtained with two independent samples t-test [3]. Note that small p-values reflect the
performance of the proposed method is significantly better than the performance of the baselines.
The proposed method PTD-R-V achieves the best classification performance in almost all cases. We
thus conduct significance tests to compare the baselines with PTD-R-V. The results of significance
tests are presented in Table 2. We can see that almost all results are statistically significant.

E The experimental results of ablation study

In Section 4.2, we have shown that our proposed method is insensitive to the number of parts. Due
the space limit, we only provide the illustration by exploiting the figures. In this supplementary
material, more detailed results including means and standard deviations of approximation error and
classification accuracy about the ablation study are shown in Table 3 and Table 4.

F Visualization of parts

Note that to make use of the power of deep learning, in the main paper, the data matrix used for
factorization consists of deep representations extracted by a deep network. We learn parts and
parts-based representations (new representations) by applying NMF to this data matrix. Although
deep representations contain semantic information, it is not easy to visualize these parts obtained
from the deep representations directly. We propose to approximate and visualize the parts of the
deep representations by studying their corresponding parts of the original observations. Intuitively,
let the NMF of the deep representations and the original observations to have the same parts-based
representations, the obtained parts from the two factorizations should be corresponding to each other.
The obtained parts for MNIST and F-MNIST are presented in Figure 1 and Figure 2. Note that
the datasets, i.e., SVHN, CIFAR-10, and Clothing1M, are also used to verify the effectiveness of
the proposed method. However, the instances in these datasets contain three channels (i.e., RGB
channels). It is hard to properly visualize the parts of the deep representations by finding their
corresponding parts of the original observations.
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Table 2: The results of significant tests (p-value) on five synthetic noisy datasets with different noise
levels.
Dataset Method IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

MNIST

CE 0.0000 0.0187 0.0000 0.0000 0.0152
Decoupling 0.0000 0.0000 0.0000 0.0000 0.0002
MentorNet 0.0000 0.0000 0.0000 0.0000 0.0004
Co-teaching 0.0000 0.0000 0.0000 0.0000 0.0001
Co-teaching+ 0.0000 0.0005 0.0009 0.0000 0.0000
Joint 0.0036 0.0202 0.0000 0.0000 0.0112
DMI 0.0016 0.4489 0.0157 0.1732 0.4395
Forward 0.0000 0.0000 0.0000 0.0000 0.0000
Reweight 0.0000 0.0044 0.0001 0.0011 0.0025
T-Revision 0.0050 0.8045 0.0058 0.2130 0.0695

F-MNIST

CE 0.0000 0.0001 0.0000 0.0000 0.0000
Decoupling 0.0000 0.0000 0.0000 0.0000 0.0000
MentorNet 0.0000 0.0000 0.0003 0.0001 0.0000
Co-teaching 0.0000 0.0000 0.0000 0.0173 0.0000
Co-teaching+ 0.0737 0.0023 0.0030 0.4358 0.0000
Joint 0.0000 0.0000 0.0000 0.0000 0.0000
DMI 0.4281 0.0068 0.0000 0.0000 0.0000
Forward 0.0001 0.0002 0.0000 0.0000 0.0000
Reweight 0.0000 0.0041 0.0000 0.0001 0.0001
T-Revision 0.9522 0.1335 0.1626 0.0931 0.0002

SVHN

CE 0.0000 0.0000 0.0000 0.0000 0.0012
Decoupling 0.0000 0.0000 0.0000 0.0005 0.0000
MentorNet 0.0000 0.0000 0.0001 0.0000 0.0000
Co-teaching 0.0000 0.0000 0.0001 0.0000 0.0000
Co-teaching+ 0.0001 0.0000 0.0000 0.0000 0.0005
Joint 0.0000 0.0000 0.0000 0.0000 0.0001
DMI 0.0068 0.0385 0.6901 0.0000 0.0002
Forward 0.0000 0.0000 0.0002 0.0000 0.0000
Reweight 0.0001 0.0139 0.0031 0.0018 0.0002
T-Revision 0.2258 0.3116 0.5436 0.0471 0.0228

CIFAR-10

CE 0.0000 0.0000 0.0000 0.0000 0.0000
Decoupling 0.0001 0.0000 0.0000 0.0000 0.0000
MentorNet 0.0000 0.0000 0.0000 0.0000 0.0000
Co-teaching 0.0000 0.0000 0.0000 0.0000 0.0000
Co-teaching+ 0.0002 0.0001 0.0000 0.0001 0.0000
Joint 0.0000 0.0000 0.0083 0.0704 0.0638
DMI 0.0000 0.0000 0.0000 0.0000 0.0000
Forward 0.0000 0.0000 0.0000 0.0000 0.0000
Reweight 0.0000 0.0000 0.0000 0.0000 0.0000
T-Revision 0.0000 0.0000 0.0000 0.0000 0.0013

NEWS

CE 0.0000 0.0000 0.0000 0.0000 0.0002
Decoupling 0.0000 0.0000 0.0000 0.0000 0.0000
MentorNet 0.0000 0.0001 0.0000 0.0000 0.0000
Co-teaching 0.0000 0.0027 0.0125 0.0000 0.0000
Co-teaching+ 0.0000 0.0001 0.0000 0.0000 0.0000
Joint 0.0000 0.0000 0.0001 0.0025 0.0008
DMI 0.0004 0.0000 0.0004 0.0032 0.0001
Forward 0.0000 0.0000 0.0000 0.0000 0.0000
Reweight 0.0000 0.0001 0.0008 0.0021 0.0108
T-Revision 0.0010 0.0006 0.0040 0.0052 0.0285
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Table 3: Means and standard deviations of approximation error on CIFAR-10 with 50% label noise
level.

Class-dependent T-Revision PTD PTD-F-V PTD-R-V

r=10 0.945±0.051 0.922±0.037 0.840±0.030 0.815±0.011 0.811±0.020
r=11 0.945±0.051 0.922±0.037 0.841±0.022 0.802±0.010 0.815±0.011
r=12 0.945±0.051 0.922±0.037 0.831±0.015 0.806±0.014 0.812±0.014
r=13 0.945±0.051 0.922±0.037 0.814±0.024 0.790±0.019 0.791±0.017
r=14 0.945±0.051 0.922±0.037 0.821±0.040 0.792±0.022 0.791±0.016
r=15 0.945±0.051 0.922±0.037 0.829±0.034 0.812±0.017 0.802±0.025
r=16 0.945±0.051 0.922±0.037 0.831±0.029 0.800±0.018 0.800±0.020
r=17 0.945±0.051 0.922±0.037 0.819±0.012 0.800±0.011 0.792±0.013
r=18 0.945±0.051 0.922±0.037 0.829±0.011 0.798±0.012 0.794±0.017
r=19 0.945±0.051 0.922±0.037 0.827±0.017 0.799±0.013 0.795±0.018
r=20 0.945±0.051 0.922±0.037 0.832±0.025 0.805±0.021 0.800±0.015

Table 4: Means and standard deviations (percentage) of classifation accuracy on CIFAR-10 with 50%
label noise level.

PTD-F PTD-R PTD-F-V PTD-R-V

r=10 46.84±2.34 49.02±2.55 48.84±2.74 53.78±2.77
r=11 47.22±1.77 49.11±1.98 48.64±1.58 53.72±2.63
r=12 47.01±2.65 48.75±1.95 48.62±3.05 53.52±1.99
r=13 47.05±1.87 48.99±2.67 48.63±1.42 53.33±1.96
r=14 47.01±1.65 49.12±3.02 48.77±1.46 53.72±2.13
r=15 46.88±1.29 49.14±1.89 48.65±1.01 53.90±1.67
r=16 47.19±1.49 49.03±1.78 48.59±2.03 53.98±1.95
r=17 47.01±1.36 49.02±2.06 48.62±1.62 54.01±1.72
r=18 47.09±1.45 48.89±2.51 48.58±1.03 53.69±2.31
r=19 47.39±1.48 49.09±2.58 48.79±1.01 53.75±2.77
r=20 46.88±1.25 49.07±2.56 48.76±1.75 53.98±2.34

Figure 1: Visualization of parts for MNIST.
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Figure 2: Visualization of parts for F-MNIST.
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