Table 3: Accuracy and certified individual fairness for the CAT + NOISE constraint on the CRIME
dataset for different loss balancing factors . Compared to the baseline v = 0, our method (y #
0) incurs minimal changes in accuracy while significantly increasing the percentage of certified
individual fairness for a wide range of .

¥ 0 0.1 0.2 0.5 1 2 5 10 20 50

ACCURACY (%) 84.36 84.62 84.87 84.36 84.10 84.62 84.36 81.79 50.77 50.77
CERTIFIED (%) 6.15 9.23 12.05 18.46 33.08 52.31 61.28 62.82 100 100

A Training with Categorical Constraints

A key challenge arising in Section [4] is that DL2 does not support logical formulas ¢ involving
categorical constraints, which are critical to the fairness context. To illustrate this problem, we recall
the example similarity constraint

oz, a)= N (@i=z) N\ |z—2f<a

i€Cat\{race} JENum

As mentioned in Section , numerical attribute constraints of the form |z; — x;| < « can be solved
efficiently by projecting x; onto [z; — a, z; + «]. Unfortunately, this does not directly extend to

categorical constraints. To see this, consider another constraint that considers two individuals x and z’
similar irrespective of their race. Further, consider an individual x with only one (categorical) attribute,

namely 2 = [race;], and r distinct races. After a one-hot encoding, the features of x are [1,0,...,0].
Now, one could try to translate the constraint as |z, — x§€| < aforall k = 1,...,r. However,
choosing e.g., & = 0.3 would only allow for 2’ with features of the form [0.7,0.3,0,...,0] which

still represent the same race when considering the maximum element. Thus, this translation would
not consider individuals with different races as similar. At the same time, choosing a larger «, e.g.,
a = 0.9, would yield a translation which considers an individual 2’ with features [0.9, 0.9, ..., 0.9]
similar to x. Clearly, this does not provide a meaningful relaxation of the categorical constraint.

To overcome this problem, we relax the categorical constraint to z}, € [0, 1] and normalize the
sum over all possible races as ) |, ;. = 1 with every projection step, thus ensuring a meaningful
feature vector. Moreover, it can be easily seen that our translation allows z’ to take on any race value
irrespective of the race of . We note that although our relaxation can produce features with fractional
values, e.g., [0,0.2,0.3,0,...,0.5], we found it works well in practice.

B Loss Balancing Factor ~

Here, we investigate the impact of the balance parameter v from Equation (3 on the accuracy-
fairness tradeoff. To that end, we compare accuracy and certified individual fairness for different loss
balancing factors for the CAT + NOISE constraint on the CRIME dataset in Table[3] We observe that
increasing ~y up to 10 yields significant fairness gains while keeping the accuracy roughly constant.
For larger values of ~, the fairness constraint dominates the loss and causes the classifier to resort to
majority class prediction, which is perfectly fair. Note that our method can increase both accuracy,
albeit only by a small amount, and fairness for certain values of v (e.g., v = 2). We conjecture
that this effect is due to randomness in the training procedure and sufficient model capacity for
simultaneous accuracy and fairness for v < 5. As we observed the same trend on all datasets, we
recommend data producers who want to apply LCIFR in practice to increase + up to the point where
the downstream validation accuracy drops below their requirements.

C Robust Training

Here, we investigate the necessity and impact of the robust training employed by the data consumer
as outlined in Section We recall that the data consumer obtains the latent representation z = fy(x)
for every data point x from the data producer. Assuming that the latent representation was generated
by an encoder fy trained to maintain predictive utility and satisfy Equation (@), the data consumer
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only needs to ensure local robustness of her classifier h,, for perturbations up to § in £,-norm to
obtain an individually fair classifier h,. However, the data consumer may be hestitant to apply robust
training methods due to potentially negative impacts on accuracy or may not care about fairness at all.

We first study the case where the data consumer employs logistic regression for i as in Section@ We
consider the CAT + NOISE constraint and run LCIFR on all five datasets for different loss balancing
factors v € {0.001,0.01,0.1, 1,10} both with and without adversarial training for h,,. Across all
datasets and values of v the largest increase in certification for adversarial training is roughly 7%,
with a simultaneous accuracy drop of 0.5%, and the largest accuracy drop is roughly 1%, with a
simultaneous increase in certification of 2.9%. This rather limited impact of adversarial training on
both accuracy and certifiable individual fairness for logistic regression is to be expected due to the
smoothness of the decision boundary. However, for a more complex classifier, such as a feedforward
neural network with 2 hidden layers of 20 nodes each, adversarial training doubles the certification
rate from 34% to 70.8%, while decreasing accuracy only by 1.6% for the CAT + NOISE constraint on
the HEALTH datasets with v = 1.

D Full Encoding

Here, we present our fairness constraint language and show how to encode constraints as a mixed-inter
linear program (MILP). We closely follow Fischer et al. [15]].

Logical language We recall that our framework allows the data regulator to define notions of simi-
larity via a logical constraint ¢. Our language of logical constraints consists of boolean combinations
of comparisons between terms where each term ¢ is a linear function over a data point x. We note
that although Fischer et al. [[15] support terms with real-valued functions, we only consider linear
functions since nonlinear constraints, e.g., 2?2 < 3, cannot be encoded exactly as MILP. Unlike
Fischer et al. [15]], our constraint language also supports constraints on categorical features. To form
comparison constraints, two terms ¢ and ¢’ can be combined as t = t/, ¢t < ¢/, ¢t # ¢, and t < ¢'.
Finally, a logical constraint ¢ is either a comparison constraint, a negation —¢’ of a constraint ¢’, or a
conjunction ¢’ A ¢ or disjunction ¢’ V ¢’ of two constraints ¢’ and ¢".

Encoding as MILP Given an individual = and a logical constraint ¢ capturing some notion of
similarity, the data producer needs to compute the radius e of the smallest ¢,,-ball around the latent
representation z = fy (x) that contains the latent representations of all similar individuals fp (S (x)),
i.e., argmin, fy (54 (2)) C B (2, €). To that end, the data producer is required to encode Sy () as
a MILP which can be performed in a recursive manner.

The individual z belongs to the test dataset and can thus be treated as a constant. To model Sy (),
we encode a similar individual 2’ by considering numerical and categorical features separately. For
all numerical features we add a real-valued variable v; to the MILP. For all categorical features we
add k; binary variables vé» forl =1,...,k;, where k; is the number of distinct values this categorical

feature can take, to the MILP. Furthermore, we add the constraint 3 . vé = 1 for every categorical
variable, thereby ensuring that it takes on one and only one of its values.

With these variables, each term can be directly encoded as it consists of a linear function. Likewise,
the comparison constraints =, <, and < can be directly encoded in the MILP. We encode ¢ # ¢’ as
(t <t') v (¢ <) for continuous variables and as \/;_,, t = [ for categorical variables.

Next, we consider the case where ¢ is a boolean combination of constraints ¢’ A ¢ or ¢’ VV ¢’'. The
first case can be encoded straightforwardly in the MILP. To encode the disjunction ¢’ VV ¢"" we add
two additional binary variables v’ and v” to the MILP with the constraints

V=1 = ¢,

v// — 1 (b//’
v+’ > 1.
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Finally, if ¢ is a negation —¢’ of ¢’, the constraint is preprocessed and rewritten into a logically
equivalent constraint before encoding as MILP:

—(t=t)=t#¢t,
—t<t):=t <t,
S(t#E) =t =1,
(<t =t <t,
(¢ AGT) =g V=g,
—(¢' V@) =g A=g”,
= (¢) =¢.

E Individual Fairness Certificate

In this section, we prove the correctness of our individual fairness certificate as formalized in Theo-
rem@ which allows the data consumer to prove individual fairness of the end-to-end model M, once
given the latent representation z and radius € by the data producer:

Theorem 2. (Individual fairness certificate) Suppose M = hy, o fg with data point x and similarity
notion ¢. Furthermore, let z = fo(z), Sg(v) = {2' € R" | ¢(x,2")} and € = maxycg, () |[2 —
ol o 1 o
hY’(2) =R (2) <0
z'e%jé,e) b (") b (")

for all labels y' different from the true label y, then for all ' € Sy(x) we have M (x) = M (z').

Proof. The data producer computes the latent representation z = fy(x) and certifies that

e= max ||z — fo(2)||co- (6)
x'€S¢(x)
Thus, it immediately follows that fy (Sy (z)) C B (2, €), where B, (2, €) is the £o-bounding box
with center z and radius e. Consider any label 3’ different from the true label y = M (). If the data
consumer certifies that W) -
max h)'(¢)-hY(Z) <0, 7
smax hy (2") = hy (7) Q)
then the classifier will predict label y for all 2/ € B, (2, ¢). Combining this with fy (54 (z)) C
Boo (2, €) we have
Va' € Sy(z) : M(x) = M(z'),
implying that the end-to-end classifier is individually fair for similarity notion ¢ at data point z. We

refer to Section[5]and Tjeng et al. [16]] for details on the correctness of the certificates for Equations (6))
and (7). O

F Datasets

In this section, we provide a detailed overview of the datasets considered in Section[6] We recall that
we perform the following preprocessing on all datasets: (i) normalize numerical attributes to zero
mean and unit variance, (ii) one-hot encode categorical features, (iii) drop rows and columns with
missing values, and (iv) split into train, test and validation sets. Although we only consider datasets
with binary classification tasks, we note that our method straightforwardly extends to the multiclass
case.

Adult The Adult Income dataset [53] is extracted from the 1994 US Census database. Every sample
represents an individual and the goal is to predict whether that person’s income is over 50K$ / year.

Compas The COMPAS Recidivism Risk Score dataset contains data collected on the use of the
COMPAS risk assessment tool in Broward County, Florida Angwin [56]. The task is to predict
recidivism within two years for all individuals.

16



Table 4: Statistics for train, validation, and test datasets. Note that most of the datasets, namely
Adult, German, Health, and Law School, have a highly skewed distribution of positive labels.

TRAIN VALIDATION TEST
SIZE POSITIVE SIZE POSITIVE SI1ZE POSITIVE
ADULT 24129 24.9% 6033 24.9% 15060 24.6%
COMPAS 3377 52.3% 845 52.2% 1056 55.6%
CRIME 1276 48.7% 319 55.5% 399 49.6%
GERMAN 640 70.5% 160 66.9% 200 71.0%

HEALTH 139785 68.0% 34947 68.6% 43683 68.0%
LAW ScHOOL 5053 27.3% 13764 26.8% 17205 26.3%

Table 5: Percentage of positive labels for train, validation, and test datasets for transfer learning
tasks. Note, that the percentages do not sum to 100% as the labels are aggregated by patient and year.

POSITIVE (%)
TRAIN  VALIDATION  TEST

MSC2A3 62.0 61.9 61.9
METAB3 34.9 34.9 34.9
ARTHSPIN 31.5 31.7 32.1
NEUMENT 28.4 28.5 28.6
RESPR4 27.5 27.5 27.5

Crime The Communities and Crime dataset [55] contains socio-economic, law-enforcement, and
crime data for communities within the US. We try to predict whether a specific community is above
or below the median number of violent crimes per population.

German The German Credit dataset [55] contains 1000 instances describing individuals who are
either classified as good or bad credit risks.

Health The Heritage Health dataset (https://www.kaggle.com/c/hhp) contains physician records
and insurance claims. For every patient we try to predict ten-year mortality by binarizing the Charlson
Index, taking the median value as a cutoff.

Law School This dataset from the Law School Admission Council’s National Longitudinal Bar
Passage Study [S7] has application records for 25 different law schools. The task is to predict whether
a student passes the bar exam.

We note that for some of these datasets the label distribution is highly unbalanced as displayed
in Table ] For example, for the Law School dataset, learning a representation that maps all
individuals to the same point in the latent space and classifying that point as negative would yield
73.7% test set accuracy. Moreover, individual fairness would be trivially satisfied for any constraint ¢
as all individuals are mapped to the same outcome. It is thus important to compare the performance
of all models with the base rates from Table |4] Moreover, for every table containing accuracy values
we provide an analogous table with balanced accuracy in Appendix [J}

Fair Transfer Learning We follow Madras et al. [9] and consider the Health dataset for transferable
representation learning. The original task for the Health dataset is to predict the Charlson Index.
Thus, to demonstrate transferability, we omit the primary condition group labels from the set of
features, and try to predict them from the latent representation without explicitly optimizing for the
task. We display the (highly imbalanced) label distributions for the considered primary condition
groups in Table 5]
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G Experiment Setup

Here, we provide a detailed overview of the model architectures and training hyperparameters
considered in Section@ Recall that we model the encoder fy as a neural network, and we use logistic
regression as a classifier h,,. We run a grid search over model architectures and loss balancing factors
~ which we evaluate on the validation set. Concretely, we search over two different encoders (both
with latent space of dimension 20): (i) without a hidden layer and (ii) with a single hidden layer of 20
neurons, and loss balancing factors v € [10,1,0,0.01]. As a result, we consider fy with one hidden
layer of 20 neurons (except for Law School where we do not have a hidden layer) and a latent space
of dimension 20. We fix « to 10 for Adult, Crime, and German, to 1 for Compas and Health, and to
0.1 for Law School. We train our models for 100 epochs with a batch size of 256. We use the Adam
optimizer [S1]] with weight decay 0.01 and dynamic learning rate scheduling based on validation
measurements (ReduceLROnPlateau from [58]]) starting at 0.01 with a patience 5 of epochs. Finally,
we run DL2 with 25 PGD iterations with step size 0.05 to find counterexamples (cf. Section ).

H Constraints

In this section, we provide a full formalization of the similarity constraints considered in Section [6]

Noise (NOISE) Under this constraint, two individuals are similar if their normalized numerical
features differ by no more than o. We consider a = 0.3 for all experiments, which means e.g., for
Adult: two individuals are similar if their age difference is smaller than roughly 3.95 years.

Categorical (CAT) We consider two individuals similar if they are identical except for one or
multiple categorical attributes. For Adult and German, we choose the binary attribute gender. For
Compas, two people are to be treated similarly regardless of race. For Crime, we enforce the constraint
that the state should not affect prediction outcome for two neighborhoods. For Health, two identical
patients, except for gender and age, should observe the same ten-year mortality at their first insurance
claim. For Law School, we consider two individuals similar regardless of their race and gender.

Categorical and noise (CAT + NOISE) This constraint combines the two previous constraints and
considers two individuals as similar if their numerical features differ no more than « regardless of
their values for certain categorical attributes.

Conditional attributes (ATTRIBUTE) In this case, ¢ is composed of a disjunction of two mutually
exclusive cases, one of which has to hold for similarity. For this, we consider a numerical attribute
and a threshold 7. If two individuals are both below 7, then they are similar if their normalized
attribute differences are less than «;. If both individuals are above 7, similarity holds if the attribute
differences are less than as. Concretely, consider two applicants from the Law School dataset. If
both of their GPAs are below 7 = 3.4 (the median), then they are similar only if their difference in
GPA is less than 0.1694 (o = 0.4). However, if both their GPAs are above 3.4, then we consider the
applicants similar if their GPAs differ less than 0.847 (ca = 0.2). For Adult, we consider the median
age as threshold 7 = 37, with a; = 0.2 and as = 0.4 which corresponds to age differences of 2.63
and 5.26 years respectively. For German, we also consider the median age as threshold 7 = 33,
with a; = 0.2 and a2 = 0.4 which corresponds to age differences of roughly 0.24 and 0.47 years
respectively.

Subordination (QUANTILES) We follow Lahoti et al. [18] and define a constraint that counters
subordination between social groups. We consider the Law School dataset and differentiate two
social groups by race, one group containing individuals of white race and the other containing all
remaining races. To counter subordination, we compute within-group ranks based on the GPAs and
define similarity if the rank difference for two students from different groups is less than 24. Thus,
two students are considered similar if their performance relative to their group is similar even though
their GPAs may differ significantly.

18



Table 6: Balanced accuracy for encoders and classifiers from Table

BALANCED ACCURACY (%)

CONSTRAINT DATASET BASE LCIFR
ADULT 74.5 70.9
COMPAS 65.1 62.3
CRIME 84.4 83.2
NoIsE GERMAN 69.6 60.8
HEALTH 77.1 76.5
Law ScHoOOL  76.1 75.8
ADULT 74.7 73.9
COMPAS 64.9 65.7
CRIME 84.4 83.9
CAT GERMAN 69.2 68.3
HEALTH 77.2 77.1
LAw ScHoOOL  76.1 75.5
ADULT 74.7 70.8
COMPAS 64.9 62.5
CRIME 84.4 81.7
CAT+NOISE e MAN 69.2 49.8
HEALTH 77.2 76.5
LAw ScHOOL  76.1 75.5
ADULT 74.5 70.1
ATTRIBUTE GERMAN 69.6 61.8
LAw ScHOOL  76.1 74.3
QUANTILES LAw ScHooL  76.1 75.8

I Scaling to Large Networks

To show that our method can be easily scaled to larger networks, we train an encoder fy with 200
hidden neurons and latent space dimension 200. For such large models we can relax the MILP
encodings to a linear program [59]] and solve for robustness via convex relaxation. Running this
relaxation for our large network and the NOISE constraint on Adult we can certify fairness for 91.4%
of the individuals with 82.8% accuracy and average certification runtime of 1.13s. In contrast, the
complete solver can certify 92.6% of individuals with average runtime of 31.9s. For even larger
model architectures, one can use one of the recent state-of-the-art network verifiers [46]].

J Balanced Accuracy

We recall that some of the datasets are highly imbalanced (cf. Table f). Hence, we evaluate the
balanced accuracies for the models from Table [[land show them in Table[6l It can be observed that
LCIFR performs only slightly worse than the baseline across all constraints and datasets (except for
CAT + NOISE on German).

Fair Transfer Learning We recall that the label distribution of the primary condition groups
(transfer tasks) are highly imbalanced (cf. Table[5)). Nevertheless, LCIFR achieves accuracies that
are above the base rate achieved by majority class prediction (cf. Table|l]) in all cases except for
RESPRA4. Here, we display the corresponding balanced accuracies in Table[/} and we observe that
the balanced accuracies are inversely proportional to the label imbalance (cf. Table[5).
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Table 7: Balanced accuracy for transferable representation learning on Health dataset with CAT +
NOISE constraint from Table

TASK LABEL BALANCED ACCURACY (%)
ORIGINAL CHARLSON INDEX 63.9
MSC2A3 70.8
METAB3 68.5
TRANSFER ARTHSPIN 66.0
NEUMENT 58.9
RESPR4 56.0
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