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Appendix A Hyperparameters and Training Details

A.1 ImageNet Experiments

The Compare GAN codebase” suffices to replicate BigGAN’s FID on ImageNet dataset at 128 x 128
resolution but has some small differences to the original paper [2]. First, the codebase uses a learning
rate of 10~ for G and 5 x 10~* for D. Second, it processes the raw images into 128 x 128 resolution
with random scaling and random cropping. Since we find that random cropping leads to a worse
IS, we process the raw images with random scaling and center cropping instead. We additionally
augment the images with random horizontal flips, yielding the best re-implementation of BigGAN
to our knowledge. With DiffAugment, we find that D’s learning rate of 5 x 10~* often makes D’s
loss stuck at a high level, so we reduce D’s learning rate to 4 x 10~* for the 100% data setting and
2 x 10~ for the 10% and 20% data settings. However, we note that the baseline model does not
benefit from this reduced learning rate: if we reduce D’s learning rate from 5 x 1074 to 2 x 107
under the 50% data setting, its performance degrades from an FID/IS of 9.64/89.9 to 10.79/75.7. All
the models achieve the best FID within 200k iterations and deteriorate after that, taking up to 3 days
on a TPU v2/v3 Pod with 128 cores.

See Figure 3 for a qualitative comparison between BigGAN and BigGAN + DiffAugment. Our
method improves the image quality of the samples in both 25% and 100% data settings. The visual
difference is more clear under the 25% data setting.

Notes on CR-BigGAN [50]. CR-BigGAN [50] reports an FID of 6.66, which is slightly better
than ours 6.80 (BigGAN + DiffAugment) with 100% data. However, the code and pre-trained
models of CR-BigGAN [50] are not available, while its IS is not reported either. Our reimplemented
CR-BigGAN only achieves an FID of 7.95 with an IS of 82.0, even worse than the baseline BigGAN.
Nevertheless, our CIFAR experiments suggest the potential of applying DiffAugment on top of CR.

A.2 FFHQ and LSUN-Cat Experiments

We use the official TensorFlow implementation of StyleGAN2' and the default network configuration
at 256 x256 resolution with an R; regularization vy of 1, but without the path length regularization
and the lazy regularization since they do not improve FID [18]. The number of feature maps at
shallow layers (64 x 64 resolution and above) is halved to match the architecture of ADA [16]. All
the models in our experiments are augmented with random horizontal flips, trained on 8§ GPUs with a
maximum training length of 25,000k images.

See Figure 4-5 for qualitative comparisons between StyleGAN2 and StyleGAN2 + DiffAugment.
Our method considerably improves the image quality with limited data available.

*https://github.com/google/compare_gan
Thttps://github.com/NVlabs/stylegan?
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Figure 1: Unconditional generation results on CIFAR-100. We are able to roughly match Style-
GAN?2’s FID and outperform its IS using only 20% training data.
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Figure 2: Analysis of smaller models or stronger regularization on CIFAR-10 with 10% training
data. left: Smaller models reduce overfitting for the BigGAN baseline, while our method outperforms
it at all the model capacities. right: Over a wide sweep of the R, regularization v for the baseline
StyleGAN?2, its best IS (7.75) is still 12% worse than ours (8.84).

Method 100% training data 20% training data 10% training data
IS FID IS FID IS FID
BigGAN [2] 9.06 9.59 8.41 21.58 7.62 39.78
+ DiffAugment 9.16 8.70 8.65 14.04 8.09 22.40
CR-BigGAN [50] 9.20 9.06 8.43 20.62 7.66 37.45
+ DiffAugment 9.17 8.49 8.61 12.84 8.49 18.70
StyleGAN2 [18] 9.18 11.07 8.28 23.08 7.33 36.02
+ DiffAugment 9.40 9.89 9.21 12.15 8.84 14.50

Table 1: CIFAR-10 results. IS and FID are measured using 10k samples; the validation set is the
reference distribution for FID calculation. We select the snapshot with the best FID for each method.
Results are averaged over 5 evaluation runs; all standard deviations are less than 1% relatively.

Method 100% training data 20% training data 10% training data
IS FID IS FID IS FID
BigGAN [2] 10.92 12.87 9.11 33.11 5.94 66.71
+ DiffAugment 10.66 12.00 9.47 22.14 8.38 33.70
CR-BigGAN [50] 10.95 11.26 8.44 36.91 7.91 47.16
+ DiffAugment 10.81 11.25 9.12 20.28 8.70 26.90
StyleGAN2 [18] 9.51 16.54 7.86 32.30 7.01 45.87
+ DiffAugment 10.04 15.22 9.82 16.65 9.06 20.75

Table 2: CIFAR-100 results. IS and FID are measured using 10k samples; the validation set is the
reference distribution for FID calculation. We select the snapshot with the best FID for each method.
Results are averaged over 5 evaluation runs; all standard deviations are less than 1% relatively.



A.3 CIFAR-10 and CIFAR-100 Experiments

We replicate BigGAN and CR-BigGAN baselines on CIFAR using the PyTorch implementation®. All
hyperparameters are kept unchanged from the default CIFAR-10 configuration, including the batch
size (50), the number of D steps (4) per G step, and a learning rate of 2 x 10~# for both G and D.
The hyperparameter A of Consistency Regularization (CR) is set to 10 as recommended [50]. All
the models are run on 2 GPUs with a maximum of 250k training iterations on CIFAR-10 and 500k
iterations on CIFAR-100.

For StyleGAN2, we use the official TensorFlow implementation® but include some changes to make
it work better on CIFAR. The number of channels is 128 at 3232 resolution and doubled at each
coarser level with a maximum of 512 channels. We set the half-life of the exponential moving average
of the generator’s weights to 1, 000k instead of 10k images since it stabilizes the FID curve and leads
to consistently better performance. We set v = 0.1 instead of 10 for the R; regularization, which
significantly improves the baseline’s performance under the 100% data setting on CIFAR. The path
length regularization and the lazy regularization are also disabled. The baseline model can already
achieve the best FID and IS to our knowledge for unconditional generation on the CIFAR datasets.
All StyleGAN2 models are trained on 4 GPUs with the default batch size (32) and a maximum
training length of 25,000k images.

We apply DiffAugment to BigGAN, CR-BigGAN, and StyleGAN2 without changes to the baseline
settings. There are several things to note when applying DiffAugment in conjunction with gradient
penalties [12] or CR [50]. The R; regularization penalizes the gradients of D(x) w.r.t. the input .
With DiffAugment, the gradients of D(T'(x)) can be calculated w.r.t. either « or T'(x). We choose
to penalize the gradients of D(T'(x)) w.r.t. T'(x) for the CIFAR, FFHQ, and LSUN experiments
since it slightly outperforms the other choice in practice; for the low-shot generation experiments,
we penalize the gradients of D(T'(x)) w.r.t. x instead from which we observe better diversity of the
generated images. As CR has already used image translation to calculate the consistency loss, we
only apply Cutout DiffAugment on top of CR under the 100% data setting. For the 10% and 20%
data settings, we exploit stronger regularization by directly applying CR between « and T'(x), i.e.,
before and after the Translation + Cutout Diff Augment.

We match the top performance for unconditional generation on CIFAR-100 as well as CIFAR-10
using only 20% data (see Figure 1). See Figure 2 for the analysis of smaller models or stronger
regularization in terms of IS. See Table 1 and Table 2 for quantitative results.

A.4 Low-Shot Generation Experiments

We compare our method to transfer learning algorithms using the FreezeD’s codebase (for Transfer-
GAN [45], Scale/shift [31], and FreezeD [30]) and the newly released MineGAN [44] codell. All the
models are transferred from a pre-trained StyleGAN model from the FFHQ dataset [17] at 256 <256
resolution. FreezeD reports the best performance when freezing the first 4 layers of D [30]; when
applying DiffAugment to FreezeD, we only freeze the first 2 layers of D. All other hyperparameters
are kept unchanged from the default settings. All the models are trained on 1 GPU with a maximum
of 10k training iterations on our 100-shot datasets and 20k iterations on the AnimalFace [37] datasets.

When training the StyleGAN2 model from scratch, we use their default network configuration at
256x256 resolution with an R; regularization -y of 10 but without the path length regularization
and the lazy regularization. We use a smaller batch size of 16, which improves the performance of
both the StyleGAN2 baseline and ours, compared to the default batch size of 32. All the models are
trained on 4 GPUs with a maximum training length of 300k images on our 100-shot datasets and
500k images on the AnimalFace datasets.

See Figure 6 for the additional interpolation results, Figure 7 and Figure 8 for the nearest neighbor
tests of our method without pre-training both in pixel space and in the LPIPIS feature space [51]. See
Figures 9-13 for qualitative comparisons.

https://github. com/ajbrock/BigGAN-PyTorch
Shttps://github.com/NVlabs/stylegan2
Thttps://github.com/sangwoomo/FreezeD
Ihttps://github.com/yaxingwang/MineGAN
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Appendix B Evaluation Metrics

We measure FID and IS using the official Inception v3 model in TensorFlow for all the methods
and datasets. Note that some papers using PyTorch implementations, including FreezeD [30], report
different numbers from the official TensorFlow implementation of FID and IS. On ImageNet, CIFAR-
10, and CIFAR-100, we inherit the setting from the Compare GAN codebase that the number of
samples of generated images equals the number of real images in the validation set, and the validation
set is used as the reference distribution for FID calculation. For the low-shot generation experiments,
we sample 5k generated images and we use the training set as the reference distribution. For the
FFHQ and LSUN experiments, we use the same evaluation setting as ADA [16].

Appendix C 100-Shot Generation Benchmark

We collect the 100-shot datasets from the Internet. We then manually filter and crop each image as a
pre-processing step. The full datasets are available here.


https://hanlab.mit.edu/projects/data-efficient-gans/datasets/
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Figure 3: Qualitative comparison on ImageNet 128 x 128 without the truncation trick [2].
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Figure 4: Qualitative comparison on FFHQ at 256 x256 resolution with 1k, 5k, 10k, and 30k training
images. Our method consistently outperforms the StyleGAN2 baselines [ 18] under different data
percentage settings.
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Figure 5: Qualitative comparison on LSUN-cat at 256 x256 resolution with 1k, 5k, 10k, and 30k
training images. Our method consistently outperforms the StyleGAN?2 baselines [ 18] under different
data percentage settings.



Figure 6: Style space interpolation of our method on the 100-shot Obama, grumpy cat, panda, the
Bridge of Sighs, the Medici Fountain, and the Temple of Heaven datasets without pre-training. The
smooth interpolation results suggest little overfitting of our method even given small datasets.
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Figure 7: Nearest neighbors in pixel space measured by the pixel-wise L; distance. Each query
(on the left of the dashed lines) is a generated image of our method without pre-training (StyleGAN2
+ DiffAugment) on the 100-shot or AnimalFace generation datasets. Each nearest neighbor (on the
right of the dashed lines) is an original image queried from the training set with horizontal flips.
The generated images are different from the training set, indicating that our model does not simply
memorize the training images or overfit even given small datasets.
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Figure 8: Nearest neighbors in feature space measured by the Learned Perceptual Image Patch
Similarity (LPIPS) [51]. Each query (on the left of the dashed lines) is a generated image of our
method without pre-training (StyleGAN?2 + DiffAugment) on the 100-shot or AnimalFace generation
datasets. Each nearest neighbor (on the right of the dashed lines) is an original image queried from the
training set with horizontal flips. The generated images are different from the training set, indicating
that our model does not simply memorize the training images or overfit even given small datasets.
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Scale/shift MineGAN TransferGAN  + DiffAugment FreezeD + DiffAugment StyleGAN2  + DiffAugment
FID: 54.83 FID: 54.45 FID: 52.61 FID: 49.10 FID: 47.70 FID: 46.07 FID: 71.71 FID: 42.44

| pre-trained with 70,000 images | }—only 160 images —]
Figure 9: Qualitative comparison on the AnimalFace-cat [37] dataset.

Scale/shift MineGAN TransferGAN  + DiffAugment FreezeD + DiffAugment StyleGAN2  + DiffAugment
FID: 83.04 FID: 93.03 FID: 82.38 FID: 65.57 FID: 70.46 FID: 61.03 FID: 130.19 FID: 58.85
| pre-trained with 70,000 images | }—only 389 images —]

Figure 10: Qualitative comparison on the AnimalFace-dog [37] dataset.
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Scale/shift MineGAN TransferGAN  + DiffAugment FreezeD + DiffAugment StyleGAN2  + DiffAugment
FID: 50.72 FID: 50.63 FID: 48.73 FID: 39.85 FID: 41.87 FID: 35.75 FID: 80.20 FID: 46.87

I pre-trained with 70,000 images | F—only 100 images —
Figure 11: Qualitative comparison on the 100-shot Obama dataset.

=Y L B v CINAS | € d 15 ‘i‘\ 7R o

Scale/shift MineGAN TransferGAN  + DiffAugment FreezeD + DiffAugment StyleGAN2  + DiffAugment
FID: 34.20 FID: 34.54 FID: 34.06 FID: 29.77 FID: 31.22 FID: 29.34 FID: 48.90 FID: 27.08

I pre-trained with 70,000 images | F—only 100 images —

Figure 12: Qualitative comparison on the 100-shot grumpy cat dataset.

Scale/shift MineGAN TransferGAN  + DiffAugment FreezeD + DiffAugment StyleGAN2 " DiffAugment
FID: 21.38 FID: 14.84 FID: 23.20 FID: 17.12 FID: 17.95 FID: 14.50 FID: 34.27 FID: 12.06

I pre-trained with 70,000 images | }—only 100 images —
Figure 13: Qualitative comparison on the 100-shot panda dataset.
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