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Abstract

Pairwise alignment of DNA sequencing data is a ubiquitous task in bioinformatics
and typically represents a heavy computational burden. State-of-the-art approaches
to speed up this task use hashing to identify short segments (k-mers) that are shared
by pairs of reads, which can then be used to estimate alignment scores. However,
when the number of reads is large, accurately estimating alignment scores for all
pairs is still very costly. Moreover, in practice, one is only interested in identifying
pairs of reads with large alignment scores. In this work, we propose a new approach
to pairwise alignment estimation based on two key new ingredients. The first
ingredient is to cast the problem of pairwise alignment estimation under a general
framework of rank-one crowdsourcing models, where the workers’ responses
correspond to k-mer hash collisions. These models can be accurately solved via a
spectral decomposition of the response matrix. The second ingredient is to utilise
a multi-armed bandit algorithm to adaptively refine this spectral estimator only
for read pairs that are likely to have large alignments. The resulting algorithm
iteratively performs a spectral decomposition of the response matrix for adaptively
chosen subsets of the read pairs.

1 Introduction

A key step in many bioinformatics analysis pipelines is the identification of regions of similarity
between pairs of DNA sequencing reads. This task, known as pairwise sequence alignment, is a
heavy computational burden, particularly in the context of third-generation long-read sequencing
technologies, which produce noisy reads [45]. This challenge is commonly addressed via a two-step
approach: first, an alignment estimation procedure is used to identify those pairs that are likely to
have a large alignment. Then, computationally intensive alignment algorithms are applied only to the
selected pairs. This two-step approach can greatly speed up the alignment task because, in practice,
one only cares about the alignment between reads with a large sequence identity or overlap.

Several works have developed ways to efficiently estimate pairwise alignments [6, 29, 30, 36]. The
proposed algorithms typically rely on hashing to efficiently find pairs of reads that share many k-mers
(length-k contiguous substrings). Particularly relevant to our discussion is the MHAP algorithm of
Berlin et al. [6]. Suppose we want to estimate the overlap size between two strings S0 and S1 and let
Γ(Si) be the set of all k-mers in Si, i = 0, 1. For a hash function h, we can compute a min-hash

h(Si) , min{h(x) : x ∈ Γ(Si)}, (1)
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for each read Si. The key observation behind MHAP is that, for a randomly selected hash function h,

P [h(S0) = h(S1)] =
|Γ(S0) ∩ Γ(S1)|
|Γ(S0) ∪ Γ(S1)|

. (2)

In other words, the indicator function 1{h(S0) = h(S1)} provides an unbiased estimator for the
k-mer Jaccard similarity between the sets Γ(S0) and Γ(S1), which we denote by JSk(S0, S1). By
computing 1{h(S0) = h(S1)} for several different random hash functions, one can thus obtain an
arbitrarily accurate estimate of JSk(S0, S1). As discussed in [6], JSk(S0, S1) serves as an estimate
for the overlap size and can be used to filter pairs of reads that are likely to have a significant overlap.

Now suppose we fix a reference read S0 and wish to estimate the size of the overlap between S0 and
Si, for i = 1, . . . , n. Assume that all reads are of length L and let pi ∈ [0, 1] be the overlap fraction
between Si and S0 (i.e., the maximum p such that a pL-prefix of Si matches a pL-suffix of S0 or
vice-versa). By taking m random hash functions h1, . . . , hm, we can compute min-hashes hj(Si) for
i = 0, 1, . . . , n and j = 1, . . . ,m. The MHAP approach corresponds to estimating each pi as

p̂i =
1

m

∑m

j=1
1{hj(S0) = hj(Si)}. (3)

In the context of crowdsourcing and vote aggregation [16, 19, 40], one can think of each hash function
hj as a worker/expert/participant, who is providing binary responses Yi,j = 1{hj(S0) = hj(Si)} to
the questions “do Si and S0 have a large alignment score?” for i = 1, . . . , n. Based on the binary
matrix of observations Y = [Yi,j ], we want to estimate the true overlap fractions p1, . . . , pn.

The idea of jointly estimating p1, . . . , pn from the whole matrix Y was recently proposed by Baharav
et al. [5]. The authors noticed that in practical datasets the distribution of k-mers can be heavily
skewed. This causes some hash functions hj to be “better than others” at estimating alignment scores.
Hence, much like in crowdsourcing models, each worker has a different level of expertise, which
determines the quality of their answer to all questions. Motivated by this, Baharav et al. [5] proposed
a model where each hash function hj has an associated unreliability parameter qj ∈ [0, 1] and, for
i = 1, . . . , n and j = 1, . . . ,m, the binary observations are modeled as

Yi,j ∼ Ber(pi) ∨ Ber(qj), (4)

where Ber(p) is a Bernoulli distribution with parameter p and ∨ is the OR operator. If a given hj
assigns low values to common k-mers, spurious min-hash collisions are more likely to occur, leading
to the observation Yi,j = 1 when Si and S0 do not have an overlap (thus being a “bad” hash function).
Similarly, some workers in crowdsourcing applications provide less valuable feedback, but we cannot
know a priori how reliable each worker is.

A key observation about the model in (4) is that, in expectation, the observation matrix Y is rank-one
after accounting for an offset. More precisely, since EYi,j = pi + qj − piqj = (1− pi)(qj − 1) + 1,

EY − 11T = (1− p)(q− 1)T , (5)

where p = [p1, . . . , pm]T and q = [q1, . . . , qn]T . Baharav et al. [5] proposed to estimate p by
computing a singular value decomposition (SVD) of Y − 11T , and setting p̂ = 1− u, where u is
the leading left singular vector of Y − 11T . The resulting overlap estimates p̂1, . . . , p̂n are called the
Spectral Jaccard Similarity scores and were shown to provide a much better estimate of overlap sizes
than the estimator given by (3), by accounting for the variable quality of hash functions for the task.

In this paper, motivated by the model of Baharav et al. [5], we consider the more general framework
of rank-one models. In this setting, a vector of parameters u = [u1, . . . , un]T (the item qualities) is
to be estimated from the binary responses provided by m workers, and the n×m observation matrix
X is assumed to satisfy EX = uvT . In the context of these rank-one models, a natural estimator
for u is the leading left singular vector of X . Such a spectral estimator has been shown to have
good performance both in the context of pairwise sequence alignment [5] and in voting aggregation
applications [19, 26]. However, the spectral decomposition by default allocates worker resources
uniformly across all items. In practice, one is often only interested in identifying the “most popular”
items, which, in the context of pairwise sequence alignment, corresponds to the reads Si that have the
largest overlaps with a reference read S0. Hence, we seek strategies that can harness the performance
of spectral methods while using adaptivity to avoid wasting worker resources on unpopular items.

Main contributions: We propose an adaptive spectral estimation algorithm, based on multi-armed
bandits, for identifying the k largest entries of the leading left singular vector u of EX . A key
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technical challenge is that multi-armed bandit algorithms generally rely on our ability to build
confidence intervals for each arm, but it is difficult to obtain tight element-wise confidence intervals
for the singular vectors of random matrices with low expected rank [1]. For that reason, we propose a
variation of the spectral estimator for u, in which one computes the leading right singular vector first
and uses it to estimate the entries of u via a matched filter [44]. This allows us to compute entrywise
confidence intervals for each ui, which in turns allows us to adapt the Sequential Halving bandit
algorithm of Karnin et al. [28] to identify the top-k entries of u. We provide theoretical performance
bounds on the total workers’ response budget required to correctly identify the top-k items with a
given probability. We empirically validate our algorithm on controlled experiments that simulate the
vote aggregation scenario and on real data in the context of pairwise alignment of DNA sequences.
For a PacBio E. coli dataset [38], we show that adaptivity can reduce the budget requirements (which
correspond to the number of min-hash comparisons) by around half.

Related work: Our work is motivated by the bioinformatics literature on pairwise sequence alignment
[6, 29, 30, 36]. In particular, we build on the idea of using min-hash-based techniques to efficiently
estimate pairwise sequence alignments [6], described by the estimator in (3). More sophisticated
versions of this idea have been proposed, such as the use of a tf-idf (term frequency-inverse document
frequency) weighting for the different hash functions [11, 34], which follows the same observation
that “some hashes are better than others” made by Baharav et al. [5]. A proposed strategy to reduce
the number of hash functions needed for the alignment estimates is to use bottom sketches [37]. More
precisely, for a single hash function, one can compute s minimisers per read (the bottom-s sketch)
and estimate the alignments based on the size of the intersection of bottom sketches. Winnowing has
also been used in combination with min-hash techniques to allow the mapping of reads to very long
sequences, such as full genomes [23].

The literature on crowdsourcing and vote aggregation is vast [14, 19, 26, 27, 31, 40, 41, 46, 47, 47–
50]. Many of these works are motivated by the classical Dawid-Skene model [16]. Ghosh et al. [19]
considered a setting where the questions have binary answers and the workers’ responses are noisy.
They proposed a rank-one model and used a spectral method to estimate the true answers. For a
similar setting, Karger et al. [27] showed that random allocation of questions to workers (according to
a sparse random graph) followed by belief propagation is optimal to obtain answers to the questions
with some probability of error, and this work was later extended [14, 26]. While the rank-one model
these works have considered is similar in spirit to the one we consider, in our setting, the true answers
to the questions are not binary. Rather, our answers are parameters in (0, 1), which can be thought
of as the quality of an item or the fraction of the population that would answer “yes” to a question.
Natural tasks to consider in our case would be to find the top ten products among a catalogue of
100,000 products, or identify the items that are liked by more than 80% of the population. Notice that
such questions are meaningless in the case of questions with binary answers.

The use of adaptive strategies for ranking a set of items or identifying the top-k items have been
studied in the context of pairwise comparisons between the items [8, 20, 21, 42]. Moreover, the
top-k arm selection problem has been considered in many contexts and a large set of algorithms
exist to identify the best items while minimising the number of observations required to do that
[7, 17, 22, 24, 25, 28, 35]. Recent works have taken advantage of some of these multi-armed bandit
algorithms to solve large-scale computation problems [2–4], which is similar in flavor to our work.

Outline of manuscript: In Section 2, we introduce rank-one models and give examples of potential
applications. In Section 3, we develop a spectral estimator for these models that enables construction
of confidence intervals. In Section 4, we leverage these confidence intervals to develop adaptive
bandit-based algorithms. Section 5 presents empirical results.

2 Rank-One Models

While our main target application is the pairwise sequence alignment problem, we define rank-one
models for the general setting of response aggregation problems. In this setting, we are interested in
estimating a set of parameters, or item values, u1, . . . , un. To do that, we recruit a set of workers
with unknown levels of expertise, which provide binary opinions about the items. We can choose the
number of workers and their opinions can be requested for any subset of the n items. The rank-one
model assumption is that the matrix of responses X = [Xi,j ] is rank-one in expectation; i.e.,

EX = uvT (6)
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Figure 1: Three Channel Models: (a) the Z-channel models one-sided errors; (b) the binary sym-
metric channel models two-sided symmetric errors; (c) the general binary channel admits different
probabilities q(0) for 0→ 1 errors and q(1) for 1→ 0 errors.

for unknown vectors u and v with entries in (0, 1). This means that, for each i and j, Xi,j has a
Ber(uivj) distribution. Furthermore, we assume throughout that all entries Xi,j are independent.

Abstractly, this setting applies to a situation in which we have a list of questions that we want
answered. One can think of a question as the rating of a movie or whether a product is liked. The
parameter associated with the ith question, ui, can be thought of as representing the average rating of
the movie, or the fraction of people in the population who like the product. We can think of Xi,j as a
noisy version of the response of worker j to question i, with the noise modelling respondent error.
We point out that X can alternatively be viewed as noisy observations of responses to the questions
through a binary channel [13], with each worker having a channel of distinct characteristics. We next
discuss two instances of this model and the corresponding binary channels.

One-sided error: In the pairwise sequence alignment problem presented in Section 1, we want to
recover the pairwise overlap fractions (or alignment scores) pi ∈ (0, 1) between read S0 and read
Si, for i = 1, . . . , n. The observation for read pair (S0, Si) and hash function hj is modelled by
Yi,j ∼ Ber(pi) ∨ Ber(qj), which can be thought of as observing a Ber(pi) random variable through
a Z-channel with crossover probability qj . A Z-channel, shown in Fig. 1(a), is one where an input 1
is never flipped but an input 0 is flipped with some probability [13]. Hence, this models one-sided
errors. If we process the data as X , Y − 11T , we then have that

E[X] = (1− p)(q− 1)T , (7)

giving us u = 1− p and v = 1− q. While, in this case, the entries Xi,j are technically in {0,−1},
our main results (presented in Section 3 for a binary matrix X ∈ {0, 1}n×m) can be readily extended.

Two-sided error: In the binary crowdsourcing problem, n items have associated parameters pi ∈
(0, 1) (the population rating of the item), for i = 1, . . . , n. The observation of the rating of worker
j on the ith item is modelled as Yi,j ∼ Ber(pi)⊕ Ber(qj), where ⊕ represents the XOR operation.
This can be thought of as observing a Ber(pi) random variable through a Binary Symmetric Channel
with crossover probability qj . A Binary Symmetric Channel, shown in Fig. 1(b), is one where the
probability of flipping 1 to 0 and 0 to 1 is the same. The processed data in this case isX , Y − 1

211
T ,

and the expected value of our observation matrix is given by

E[X] =
(
p− 1

21
)

(1− 2q)T , (8)

giving us u = p− 1
21 and v = 1− 2q. As in the case of one-sided errors, the observations Xi,j are

not in {0, 1} but they only take two values and the results in Section 3 still hold.

Notice that if we do not make the assumption of symmetry and use a general binary channel, shown
in Fig. 1(c), the model is still low-rank (it is rank-2) in expectation. In this manuscript, we focus on
rank-one models, but briefly discuss this generalization in Appendix A.

Model Identifiability: Strictly speaking, the models described above are not identifiable, unless
extra information is provided. This is because ‖u‖ and ‖v‖ are unspecified, and replacing u and v
with αu and 1

αv leads to the same distribution for the observation matrix X .

In practice one can overcome this issue by including questions with known answers. For the
pairwise sequence alignment problem of Baharav et al. [5], the authors add “calibration reads” to the
dataset. These are random reads, expected to have zero overlap with other reads in the dataset. In
a crowdsourcing setting one similarly can add questions whose answers are known to the dataset.
Based on questions with known answers, it is possible accurately estimate the “average expertise” of
the workers, captured by ‖v‖. In order to avoid overcomplicating the model and the results and to
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circumvent the unidentifiability issue, we assume that ‖v‖ is known in our theoretical analysis. In
our experiments, we adopt the known-questions strategy to estimate ‖v‖.

3 Spectral Estimators

Consider the general rank-one model described in Section 2. The n×m binary matrix of observations
X can be written as X = E[X] +W, where E[X] = uvT . We assume throughout this section that
ui, vj ∈ [c, C], where 0 < c < C < 1. Moreover, we assume that ‖v‖ is known, in order to make
the model identifiable, as described in Section 2.

A natural estimator for u is the leading left singular vector of X (or the leading eigenvector of XXT ),
rescaled to have the same norm as u. One issue with such an estimator is that it is not straightforward
to obtain confidence intervals for each of its entries. There is a fair amount of work in constructing `2
confidence intervals around eigenvectors of perturbed matrices [9, 10, 12]. However, the translation
of `2 control over eigenvectors to element-wise control using standard bounds costs us a

√
n factor,

which makes the resulting bounds too loose for the purposes of adaptive algorithms, which we will
explore in Section 4. There has been some work on directly obtaining `∞ control for eigenvectors by
Abbe et al. [1], Fan et al. [18]. However, a direct application of these results to our rank-one models
does not give us enough element-wise control for our purposes.

In order to overcome this issue and obtain element-wise confidence bounds on our estimate of each ui,
we propose a variation on the standard spectral estimator for u. To provide intuition to our method,
let us consider a simpler setting – one where we know v exactly. In this case a popular means to
estimate u is the matched filter estimator [44]

ûi = Xi,.
v

‖v‖2
, (9)

where Xi,. is the ith row of X . It is easy to see that ûi is an unbiased estimator of ui, and standard
concentration inequalities can be used to obtain confidence intervals. We try to mimic this intuition
by splitting the rows of the matrix into two – red rows and blue rows. We then use the red rows to
obtain an estimate v̂ of v. We treat this as the true value of v and obtain the matched filter estimate
for the uis corresponding to the blue rows, which gives us element-wise confidence intervals. We
then use the blue rows to estimate v, and apply the matched filter to obtain estimates for the uis
corresponding to the red rows. This is summarised in the following algorithm.

Algorithm 1 Spectral estimation of u

1: Input: X ∈ {0, 1}n×m, ‖v‖
2: Split X into two n

2 ×m matrices XA and XB

3: v̂A ← leading right singular vector of XA

4: v̂B ← leading right singular vector of XB

5: ûA ← XA
v̂B

‖v̂B‖‖v‖ , ûB ← XB
v̂A

‖v̂A‖‖v‖

6: return û =

[
ûA
ûB

]

The main result in this section is an element-wise confidence interval for the resulting û.
Theorem 1. When given X and ‖v‖ as inputs, Algorithm 1 returns û = [û1, . . . , ûm]T satisfying

P (|ûi − ui| > ε) ≤ 3n exp
(
−C1mε

2
)
, (10)

for i ∈ {1, . . . , n}, 0 < ε < 1, m ≤ n, and constant C1 specified in Appendix G.

In the remainder of this section, we describe the key technical results required to prove Theorem 1.
We discuss the application of these confidence intervals to create an adaptive algorithm in Section 4.

To prove Theorem 1 we first establish a connection between `2 control of v̂ and element-wise control
of û. Then we provide expectation and tail bounds for the `2 error in v̂. For ease of exposition,
we will drop the subscripts A and B in XA, XB , v̂A, and v̂B . We will implicitly assume that X
and v̂ correspond to distinct halves of the data matrix, thus being independent. The main technical
ingredient required to establish Theorem 1 is the following lemma.
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Lemma 1. The error of estimator û satisfies

‖û− u‖∞ ≤
1

‖v‖

∣∣∣∣∣∣
m∑
j=1

(Xi,j − ui)E
[
v̂j
‖v̂‖

]∣∣∣∣∣∣+
1

c

∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥+

(
1 +

1

c

)
E
∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ .
Notice that the right-hand side of the bound in Lemma 1 (proved in Appendix B) involves the `2
error of v̂, and can in turn be used to bound the `∞ error of the estimator û. The first term in the
bound is a sum of independent, bounded, zero-mean random variables (Xi,j − ui)E[v̂j/‖v̂‖], for
j = 1, . . . ,m. Using Hoeffding’s inequality, we show in Appendix C that, for any ε > 0,

P
(∣∣∣∑m

j=1(Xi,j − ui)E[v̂j/‖v̂‖]
∣∣∣ > ‖v‖ε) ≤ 2 exp

(
−2c2mε2

)
. (11)

In order to bound the second and third terms on the right-hand side of Lemma 1, we resort to matrix
concentration inequalities and the Davis-Kahan theorem [15]. More precisely, we have the following
lemma, which we prove in Appendix D.
Lemma 2. The error of estimator v̂ satisfies

(a) P
(∥∥∥ v̂
‖v̂‖ −

v
‖v‖

∥∥∥ ≥ ε) ≤ (m+ n) exp
(
−C2ε

2 min(m,n)
)
, for 0 < ε < 1,

(b) E
∥∥∥ v̂
‖v̂‖ −

v
‖v‖

∥∥∥ ≤ C3

√
log(m+n)
min(m,n) ,

where C2 and C3 are constants specified in Appendix G.

Given (11) and the bounds in Lemma 2, it is straightforward to establish Theorem 1, as we do next.
Combining Lemmas 1, 2 and equation (11) to build a confidence interval for ûi. To that end, fix some
ε ∈ (0, 1). If ε2 min(m,n) > (6C3/c)

2 log(m+ n), Lemma 2(b) implies that(
1 +

1

c

)
E
∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≤ 2C3

c

√
log(m+ n)

min(m,n)
<
ε

3
.

Hence, if ε2 min(m,n) > (6C3/c)
2 log(m+ n),

P (|ûi − ui| > ε) ≤ P

∣∣∣∣∣∣
m∑
j=1

(Xi,j − pi)E
[
v̂j
‖v̂‖

]∣∣∣∣∣∣ > ‖v‖ε3

+ P
(∥∥∥∥ v̂

‖v̂‖
− v

‖v‖

∥∥∥∥ ≥ cε

3

)

≤ 2 exp

(
−c

2mε2

18

)
+ (m+ n) exp

(
−C2

c2ε2 min(m,n)

9

)
≤ (m+ n+ 2) exp

(
−C4 min(m,n)ε2

)
. (12)

Notice that (12) is a vacuous statement whenever C4ε
2 min(m,n) < log(m+ n), as the right-hand

side is greater than 1. Hence, if we replace C4 with C1 = min[C4, (6C3/c)
−2], the inequality holds

for all m and n. The result in Theorem 1 then follows by assuming m ≤ n.

4 Leveraging confidence intervals for adaptivity

In the pairwise sequence alignment problem, one is typically only interested in identifying pairs of
reads with large overlaps. Hence, by discarding pairs of reads with a small overlap based on a coarse
alignment estimate and adaptively picking the pairs of reads for which a more accurate estimate
is needed, it is possible to save significant computational resources. Similarly, in crowdsourcing
applications, one may be interested in employing adaptive schemes in order to effectively use worker
resources to identify only the most popular items.

We consider two natural problems that can be addressed within an adaptive framework. The first one
is the identification of the top-k largest alignment scores. In the second problem, the goal is to return
a list of reads with high pairwise alignment to the reference, i.e., all reads with ui above a certain
threshold. More generally, we consider the task of identifying a set of reads including all reads
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with pairwise alignment above α and no reads with pairwise alignment below β, for some β ≤ α.
Adaptivity in the first problem can be achieved by casting the problem as a top-k arm multi-armed
bandit problem, while the second problem can be cast as a Thresholding Bandit problem [32].

Identifying the top-k alignments: We consider the setting where we wish to find the k largest
pairwise alignments with a given read. We assume that we have a total computational budget of T
min-hash comparisons. Notice that the regime where T < n is uninteresting as we cannot even make
one min-hash comparison per read. When T = Ω(n), a simple non-adaptive approach is to divide
our budget T evenly among all reads (as done in [5]). This gives us an n × T

n min-hash collision
matrix X , from which we can estimate û using Algorithm 1 and choose the top k alignments based
on their ûi values. Let u(1) ≥ u(2) ≥ . . . ≥ u(n) be the sorted entries of the true u and define
∆i = u(i) − u(k) for i = 1, . . . , n. Notice that the non-adaptive approach recovers u(1), . . . , u(k)

correctly if each ûi stays within ∆k+1 of its true value ui. From the union bound and Theorem 1,

P(failure) ≤
n∑
i=1

P (|ûi − ui| > ∆k+1/2) ≤ 3n2 exp

(
−C1

4

∆2
k+1T

n

)
, (13)

if n ≤ T ≤ n2. Hence, the budget required to achieve an error probability of δ is

T = O
(
∆−2
k+1n log

(
n
δ

))
. (14)

Moreover, from (13), we see that a budget T = n logβ n, β > 1, allows you to correctly identify the
top-k alignments if (∆2

k+1T )/n ≈ log n, or ∆k+1 ≈ log−(β−1)/2n. Hence, the budget T places a
constraint in the minimum gap ∆k+1 that can be resolved.

Next we propose an adaptive way to allocate the same budget T . Algorithm 2 builds on an approach
by Karnin et al. [28], but incorporates the spectral estimation approach from Section 3. The algorithm
assumes the regime n log n < T < n2.

Algorithm 2 Adaptive Spectral Top-k Algorithm

1: Input: T , k
2: Initialize I0 ← {1, 2, . . . , n} . Initial set of candidates
3: for r = 0 to rmax , dlog2

n√
T .
e − 1 do

4: tr ←

⌊
T

2|Ir|dlog2
n√
T
e

⌋
. Number of samples to be taken

5: Obtain a binary matrix X(r) ∈ {0, 1}|Ir|×tr and corresponding ‖v(r)‖
6: Use Algorithm 1 to compute estimates û(r) for X(r)

7: Set Ir+1 to be the d|Ir|/2e coordinates in Ir with largest û(r)

8: Clean up: Use trmax+1 = T
2 , and compute û(rmax+1) as above

9: return the k coordinates of Irmax+1 with the largest û(rmax+1)

At the r-th iteration, Algorithm 2 uses tr new hash functions and computes the min-hash collisions
for the reads in Ir, which are represented by the matrix X(r). Notice that we assume that the tr min-
hashes in each iteration are different, which makes observation matrices X(r) all independent. Also,
we assume that the `2 norm of the right singular vector of EX(r), ‖v(r)‖, can be obtained exactly at
each iteration of the algorithm. As discussed in Section 2, this makes the model identifiable and can be
emulated in practice with calibration reads. At each iteration, Algorithm 2 eliminates half of the reads
in Ir. After rmax + 1 iterations, the number of remaining reads satisfies

√
T/2 ≤ |Irmax+1| ≤ 2

√
T ,

and the total budget used is
∑rmax

r=0 |Ir|tr ≤ T/2. Finally, in the “clean up” stage, we use the
remaining T/2 budget to obtain the top k among the approximately

√
T remaining items. Notice that

the final observation matrix is approximately
√
T ×
√
T .

In order to analyse the performance of Algorithm 2, we follow Karnin et al. [28], and define
H2 = maxi>k

i
∆2
i
. We then have the following performance guarantee (proof in Appendix F).
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Theorem 2. Given budget n log n ≤ T ≤ n2 and assuming 2k <
√
T , Algorithm 2 correctly

identifies the top k alignments with probability at least

1− 18kn log n exp

(
−C1

64

T

H2 log n

)
− 12n2 exp

(
−C1

16
∆2
k+1

√
T

)
(15)

Moreover, for sufficiently small δ, Algorithm 2 achieves an error probability of at most δ with budget

T = O

(
H2 log n log

(
nk

log n

δ

)
+ ∆−4

k+1 log2

(
n2

δ

))
. (16)

Comparing (15) and (16) with the non-adaptive counterparts (13) and (14) requires a handle on H2.
This quantity captures how difficult it is to separate the top k alignments, and satisfies (k+1)∆−2

k+1 ≤
H2 ≤ n∆−2

k+1. The extreme case H2 ≈ n∆−2
k+1 occurs when all of the n− k suboptimal items have

very similar qualities. In this case, adaptivity is not helpful. However, when u(k+1) is large compared
to other non-top-k alignments, we are in the H2 ≈ k∆−2

k+1 regime. Then the budget requirements
are essentially T = O(k∆−2

k+1 log2 n + ∆−4
k+1 log2 n), which is O(∆−4

k+1 log2 n) for k, δ constant.
Furthermore, in the H2 ≈ k∆−2

k+1 regime, a budget T = n logβ n, β > 2, allows you to correctly
identify the top-k alignments with a gap of ∆k+1 ≈ n−1/4 which is significantly smaller than the
∆k+1 ≈ log−(β−1)/2n afforded in the non-adaptive case. As a concrete example, suppose that out of
the n alignments, there are k highly overlapping reads with ui = C, k moderately overlapping reads
with ui = C−n−1/4, and n−2k reads with no overlap and ui = c. In this case, Algorithm 2 requires
a budget of T = O

(
n log2

(
n
δ

))
, while the non-adaptive approach requires T = O

(
(n3/2 log

(
n
δ

))
.

Identifying all alignments above a threshold: In this setting, we wish to select a set of reads such
that with high probability all reads with an overlap ui ≥ β with the reference read are returned and
no reads with ui ≤ α are returned, for some β > α. We state the following theorem, but relegate the
discussion and presentation of Algorithm 3 to Appendix E.

Theorem 3. Given parameters β and α such that β−α >
√

12 logn
C4n

, with probability at least 1− 2
n

Algorithm 3 will output a set of reads R such that {i : ui > β} ⊆ R ⊆ {i : ui > α} and use budget

T ≤ 2

(
12

C4

log n

(β − α)2

)2

+

n∑
`=κ+1

32

C4

log n

(Γ(`))2
for Γi =


ui − α if β < ui,

β − α if α ≤ ui ≤ β,
β − ui if ui < α,

(17)

where Γi denotes the difficulty of classifying ui, with Γ(1) ≤ · · · ≤ Γ(n) as the sorted list of the Γi.

5 Empirical Results

In order to validate the Adaptive Spectral Top-k algorithm, we conducted two types of experiments:
(1) controlled experiments on simulated data for a crowdsourcing model with symmetric errors; (2)
pairwise sequence alignment experiments on real DNA sequencing data. We consider the top-k
identification problem with k = 5 in both cases. We run Algorithm 2 with some slight modifications,
namely halving until we have fewer than 2k remaining arms before moving to the clean up step, and
compare its performance with the non-adaptive spectral approach. Further experimental details are in
Appendix I. We measure success in two ways. First, we consider the error probability of returning
the top k items (i.e., any deviation from the top-k is considered a failure). Second, we consider a less
stringent metric, where we allow the algorithm to return its top-2k items, and we consider the fraction
of the true top-k items that are present to evaluate performance. Our code is publicly available online
at github.com/TavorB/adaptiveSpectral.

Controlled experiments: We consider a crowdsourcing scenario with symmetric errors as modelled
in (8). We want to determine the 5 best products from a list of 1000 products. We generate the true
product qualities (that is, the pi parameters) from a Beta(1, 5) distribution independent of each other.
Each of the worker abilities qj is drawn from a Uniform(0, 1) distribution, independent of everything
else. We consider the problem of top-5 product detection at various budgets as shown in Figure 2(a)
with success rate measured by the presence in the top-10 items. We see that the adaptive algorithm
requires significantly fewer worker responses to achieve equal performance to the non-adaptive one.
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Figure 2: (a) shows the probability of error of the controlled crowdsourcing experiment as the number
of workers per product is increased, where an error is defined as incorrectly identifying the set of
top-k products. (b) shows the same in the thresholding bandits setup. (c) shows the fraction of the
top-k reads that are in the 2k reads returned for the E. coli dataset, while (d) shows the fraction of the
top-k reads that are in the top-k reads returned for the NCTC4174 dataset. (e) shows the probability
of error of correctly identifying the set of top-k overlaps on the E. coli dataset, while (f) shows the
same for the NCTC4174 dataset. 1000 trials are conducted for each point. 95% percentiles are shaded
around each point in (b), (c) and (d) (note that confidence intervals for (b) are on the x-axis). For (a),
(e) and (f), 1√

number of trials
is shaded around each point. For further details, see Appendix I.

In Figure 2(b) we consider the same set up as above but in the fixed confidence setting, considering
the problem of being able to detect all products that are liked by more than 65% of the population
while returning none that is liked by less than 50% of the population. Again, we see that for the same
probability of error the adaptive algorithm needs far fewer workers.

Real data experiments: Using the PacBio E. coli data set [38] that was examined in Baharav et al.
[5] we consider the problem of finding, for a fixed reference read, the 5 reads that have the largest
alignment with the reference read in the dataset. We show the fraction of the 5 reads that are present
when returning 10 reads in Figure 2(c) and the success probability when returning exactly 5 reads in
Figure 2(e) (i.e., the probability of returning exactly the top-5 reads). To achieve an error rate of 0.9%
the non-adaptive algorithm requires over 8500 min-hash comparisons per read, while the adaptive
algorithm requires fewer than 6000 per read to reach an error rate of 0.1%.

We also consider the NCTC4174 dataset of [39] and plot the fraction correct when returning 5 reads
in Figure 2(d) and the success probability when returning exactly 5 reads in Figure 2(f). The results
are qualitatively similar to what we observe in the case of the E. coli dataset.

6 Discussion

Motivated by applications in sequence alignment, we considered the problem of efficiently finding
the largest elements in the left singular vector of a binary matrix X with E[X] = uvT . To utilize the
natural spectral estimator of u, we designed a method to construct `∞ confidence intervals around the
spectral estimator. To perform this spectral estimation efficiently, we leveraged multi-armed bandit
algorithms to adaptively estimate the entries ui of the leading left singular vector to the necessary
degree of accuracy. We show that this method provides computational gains on both real data and in
controlled experiments.
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Broader Impact

Over the last decade, high-throughput sequencing technologies have driven down the time and
cost of acquiring biological data tremendously. This has caused an explosion in the amount of
available genomic data, allowing scientists to obtain quantitative insights into the biology of all living
organisms. Countless tasks – such as gene expression quantification, metagenomic sequencing, and
single-cell RNA sequencing – heavily rely on some form of pairwise sequence alignment, which is
a heavy computational burden and often the bottleneck of the analysis pipeline. The development
of efficient algorithms for this task, which is the main outcome of this paper, is thus critical for the
scalability of genomic data analysis.

From a theoretical perspective, this work establishes novel connections between a classical problem
in bioinformatics (pairwise sequence alignment), spectral methods for parameter estimation from
crowdsourced noisy data, and multi-armed bandits. This will help facilitate the transfer of insights
and algorithms between these traditionally disparate areas. It will also add a new set of techniques to
the toolbox of the computational biology community that we believe will find a host of applications in
the context of genomics and other large-scale omics data analysis. Further, this work will allow other
Machine Learning researchers unfamiliar with bioinformatics to utilise their expertise in solving new
problems at this novel intersection of bioinformatics, spectral methods, and multi-armed bandits.
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