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A Entropy gradient bounds

Here, we prove the following bounds for the gradients of the entropy, the weakest (and most efficient)
of which we make use of in Algorithm 1:
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with εt ≡
∏
i w

xti
i and w±i , a±t constants that depend on the other entries in a and w. Note that it

is these quantities, rather than the entropy itself, that are important for regularization, since overall
entropy bounds may depend crucially on constants that do not affect the optimization that defines wi
and at. Rather, it is the entropy gradients that define the regularization “forces” that result in estimates
that are either weaker (lower bound) or stronger (upper bound) than the true entropy gradients and
thus estimates of wi that are closer to or farther away from 0 and 1. Indeed, as we shall see, both the
upper and lower bounds above derive from upper bounds on the entropy itself.

A.1 Strong convexity bound

We start with the following Lemma:
Lemma 1. For any exponential family distribution p(x) with only Boolean sufficient statistics,
H[p(x)] is σ-strongly concave for σ ∈ (0, 4].

Proof. Let Ti(x) be the sufficient statistics and νi their natural parameters, so that

p(x) =
e
∑

i νiTi(x)

Z , (3)

from which follows the well-known exponential family results
∂

∂νi
logZ = ETi (4)

∂2

∂νi∂νj
logZ =

∂ETi
∂νj

= Jij = E[TiTj ]− ETiETj = cov(Ti, Tj) . (5)
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That is, the Hessian of the negative free energy is both the covariance matrix of the sufficient
statistics and the Jacobian of the mapping from the natural parameters to the means. Likewise, for the
derivatives of the entropy,

H = E[− log p(x)] = −
∑
i

νiETi + logZ (6)

∂

∂ETj
H = −νj −

∑
k

∂νk
∂ETj

ETk +
∑
k

ETk
∂νk
∂ETj

= −νj (7)

∂2

∂ETi∂ETj
H = − ∂νj

∂ETi
= −J−1ij , (8)

which is really another way of saying that H and − logZ are convex duals, and is related to the
Cramér-Rao Bound.

Now, recall that for any binary variable T , we have var(T ) ≤ 1
4 , so the maximum eigenvalue of

cov(Ti, Tj), which are all binary, is also 1
4 . From this, it follows that the minimum eigenvalue of

−∇2H, which is its inverse, is at least 4.

Finally, recall that a continuously differentiable convex function f(x) is σ-strongly convex for some
σ > 0 if we have, for all y in dom(f),

f(x) ≥ f(y) +∇f(y) · (x− y) +
σ

2
‖x− y‖2 , (9)

which is equivalent to ∇2f � σI [1]. Clearly, this is true when σ is no larger than the minimum
eigenvalue of∇2f , and we have that −H is strongly convex for σ ≤ 4.

In our case, we take x = w, T = (w, a(w)) and ν = (ν, γ). Our plan is to expand this around the
maximum of H. This point is achieved at νi = γt = 0 and corresponds to independent wi with
wi = 1

2 and at = 1 − εt(0) = 1 −
(
1
2

)∑
i xti ≈ 1 when the number of units tested is large. Then,

from the lemma and the definition of strong convexity,

H ≤ Hsc = N log 2− 2

∥∥∥∥w − 1

2

∥∥∥∥2 − 2 ‖a− 1 + ε‖2 . (10)

Finally, since we have H = Hsc and ∇H = ∇Hsc = 0 at wi = at = 0, and −∇2H � −∇2Hsc
from above, we have |∇Hsc| ≤ |∇H| everywhere.

A.2 Independent connections bound

The second, stronger lower bound can be derived by once again considering the exponential family
form (3). For binary variables, we can write
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which gives
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From (7), this is −∇H. The first term on the right-hand side involves expectations we assume known,
while the second involves expectations in a reduced model with νi = 0. Thus, if we were able to
calculate E−iTi, we could calculate ∇H exactly. Unfortunately, this calculation is intractable in
general. However, specializing to our case, if we considerH as a function of (ν, γ), then concavity
gives

0 = |∇iH(0, 0)| ≤ |∇iH(ν, 0)| ≤ |∇iH(ν, γ)| . (13)
The middle term, with γ = 0, corresponds to a model with independent wi, where we can easily
calculate all expectations in (12), giving ∣∣∣∣log

wi
1− wi

∣∣∣∣ ≤ |∇wiH| (14)∣∣∣∣log
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Figure S1: Comparison of entropy gradient bounds. Plots of ∇H (top) and its magnitude |∇H|
(bottom) for representative (unrelated) cases of w (left) and a (right). Magnitude lower bounds based
on strong convexity and independent w (14 - 15) are close near the maximum entropy point and
diverge with distance from it. Upper (solid) and lower (dotted) bounds based on feasibility constraints
(shaded region) for (w, a) (17 - 20) likewise show an increasing gap near the endpoints of the interval.
Importantly, the bounds for each wi depend on all at in which it participates, and the bounds for at
depend on all wi tested. Lower bounds on |∇H| produce less regularized, optimistic estimates of w
and a, while upper bounds produce conservative estimates biased toward the maximum entropy point.

A.3 Feasibility bounds

A final approach to bounding |∇H| again starts from (12), but this time simply bounds the second
term based on mutual constraints among the parameters wi and at. That is, we again want to calculate
E−iTi, the mean of Ti(x) under the exponential family distribution with no constraints on Ti but all
other sufficient statistic means specified. So, for example, we want wi calculated under the maximum
entropy distribution with (wi6=j , at) specified. Yet recall that the definition at ≡ max(xtiwi) implies
constraints on at = Eat and wi = Ewi:

wixti ≤ at ≤
∑
i

xtiwi . (16)

But this allows us to conclude that, for any i, t,

max({at −
∑
j 6=i

xtjwj} ∪ {0}) ≤ wi ≤ min({at|xti = 1}) (17)

max({xtjwj}) ≤ at ≤
∑
i

xtiwi . (18)

That is, if constraints dictate that wi ∈ [w−i , w
+
i ], we have from (12)

w−i − log
wi

1− wi
≤ ∇Hwi

≤ w+
i − log
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|∇H−wi
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|
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(
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|, |∇H+
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|
)
, (20)

with exactly analogous formulas for at. Note that the w±i depend on both the other wj with which wi
appears in tests and the at for the tests including it, while the a±t depend only on those connections
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Figure S2: Naive methods. (a, b) Specificity and sensitivity, respectively, for the naive methods
tested. The average case (solid green) was used in the main text.

wi tested on trial t. Moreover, these latter bounds allow the constraints in (8) from the main text to
be included in w± and a±, which can be used (at some computational cost) to derive conservative
bounds on the true posteriors by upper bounding∇H.

B Naive baseline model

As a baseline model for network recovery, we consider two versions of a naive protocol based on
individual cell (S = 1) stimulations. For each test, a target neuron is randomly chosen (i.i.d.) from
the entire population. In the first method, responses (0 or 1, according to the output of the hypothesis
test) for each other neuron in the network are recorded, and these are used to update connection
estimates based on a running mean. That is, the outgoing connections for the target neuron are
updated each time the neuron is stimulated. All connections are initialized to zero, and connections
that produce a result more than 50% of the time are set to 1. This method was used for the naive
comparison in the main text.

A second analysis approach for the same stimulation protocol is to use Bayesian inference, placing
Beta priors on each connection that favor non-existence (e.g., a = 1, b = 10). In this case, recovery
is based on a thresholded version of the maximum a posteriori estimate given n1 responses and n0
non-responses to stimulation: wij = 1 if

wMAP =
a+ n1 − 1

a+ b+ n0 + n1 − 2
>

1

2
. (21)

If a, b = 1 this reduces exactly to the first naive method. The stronger the bias towards 0 in the prior,
the more tests are required to correctly infer the true connections, but the number of false positives is
greatly reduced.

Figure S2 shows the results of all tested naive approaches. The first method of averaging used in the
main text initialized all connections to zero (solid green line); here we also show the case where all
connections are initialized to 0.5 (dotted green line), and the roles of specificity and sensitivity are
effectively reversed. Finally, the second method using Bayesian inference (pink) with a Beta prior
(a = 1, b = 5) requires many more tests to reach the same level of sensitivity, but is most successful
at remain highly specific, similar to the case of exact Bayesian inference in our new approach (see
section D.1).

C Uncertainty in test error rates

In our model (2) in the main text, we have assumed that the true and false positive rates for our test h,
α and β, are known accurately. And for many tests of interest, these two quantities may be known
theoretically, provided the supplied data match the assumptions of the test. But when applied to real
biological data assumptions are likely to be violated, and consequently, we may not know α and β
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Figure S3: Model misspecification. (a, b) Specificity and sensitivity, respectively, for the base case
(α, β = 0.05) in the main text (blue) and misspecified models with varying α and β both over and
under confident comapred to the true test error rates, including a disparate case with α = 0.0001 and
β = 0.45 (orange).

precisely. Here, we show both empirically and theoretically how this model misspecification affects
our results.

C.1 Empirical effects of misspecified error rates

Emprirically we observed essentially no difference if we misspecify the error rates; either if we
assume them to be lower than they are or if we assume assume them to be higher than they are. The
rates that matter are those of the test itself. Figure S3 shows a case where the assumed α and β are
highly disparate (0.0001 and 0.45, respectively) and the true α and β are those of the base case, 0.05,
as well as less disparate but still misspecified cases (e.g. α = 0.1, β = 0.01). The model consistently
shows a negligible difference from the fit achieved from base case, where we use the true α and β.

C.2 Recovery performance is independent of error rates

From Figure S3, it is apparent that model misspecification appears to have negligible impact on
network recovery. Here, we show that this is in fact the case under very mild conditions. To do this,
we begin with (3) from the main text, in the T → ∞ limit, so we can replace averages over trials
with expectations over stimulation patterns:

log p(y|w, x) = T

[
log

(1− α′)(1− β′)
α′β′

Ex[y · a(w, x)]− log
1− α′
β′

Ex[a(w, x)] + const
]

+ o(T )

(22)
where we have not assumed that the error rates for the likelihood model (α′, β′) are the same as those
for the actual data-generating process (α, β).

Fortunately, for the Bernoulli model, in which each neuron is stimulated i.i.d. with probability p,
we can calculate the expectations in (22). Let A = {x|a(w, x) = 1}, Y = {x|y = 1}. From the
definition (1) in the main text, we have

Ex[a(w, x)] = p(A) = 1− (1− p)ω , (23)

where ω =
∑
i wi is the number of nonzero connections. That is, the probability of predicting an

activation is the complement of the probability that none of the ω connected neurons is stimulated.
The second expectation can be rewritten

Ex[y · a(w, x)] = p(Y ∩A)

= p(Y |A∗)p(A∗ ∩A) + p(Y |Ac∗)p(Ac∗ ∩A)

= (1− β) p(A∗ ∩A) + αp(Ac∗ ∩A)

= (1− β − α) p(A∗ ∩A) + αp(A) , (24)
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with ∗ indicating quantities calculated in the true data-generating model, Ac the complement of A,
and in the last line, we have used p(Ac∗∩A) = p(A\A∗) = p(A)−p(A∗∩A). As for the remaining
probability, we have

1− p(A ∩A∗) = p(Ac ∪Ac∗) = p(Ac) + p(Ac∗)− p(Ac ∩Ac∗)
= (1− p)ω + (1− p)ω∗ − (1− p)ω+ω∗−ω∩ (25)

where ω∩ ≡
∑
i wiw∗i ≤ min(ω, ω∗) is the number of connections shared between the true model

and the model under consideration. Combining these and reinserting in (22), we then have (dropping
constants)

1

T
log p(y|w, x)→ L = c+(1− β − α) p(A∗ ∩A) + (αc+ − c−) p(A) , (26)

where c± involve logarithms of α′ and β′ as above: c+ = log 1−β′
α′ + c−, and c− = log 1−α′

β′ . In
other words, asymptotically, the likelihood depends on w only through ω and ω∩.

Now, under a unit change in ω∩, we have

∆L
∆ω∩

= c+(1− β − α)(1− p)ω+ω∗−ω∩((1− p)−1 − 1) > 0 (27)

which implies that the likelihood is maximized when ω∩ = min(ω, ω∗). Substituting this into (25)
gives

p(A ∩A∗) = 1− (1− p)min(ω,ω∗)

and

L =

{
((1− β)c+ − c−) (1− (1− p)ω) ω < ω∗
c+(1− β − α)p(A∗)− (c− − αc+)(1− (1− p)ω) ω > ω∗

.

which have the same optimum solution, ω = ω∗, independently of c± provided

(1− β)c+ > c− > αc+ (28)

or
1− α
α

>
log 1−β′

α′

log 1−α′
β′

>
β

1− β . (29)

Of course, if α, β < 0.5 and α′ = β′, this is always satisfied. In this case, likelihood maximization
remains consistent even for a misspecified model, and we do not need accurate estimates of our test
error rates to recover the true set of connections.

C.3 Bayesian analysis of uncertain error rates

In a full Bayesian analysis, we can consider placing priors on the test error rates:

α ∼ Beta(φ+, φ−) (30)
β ∼ Beta(ϕ+, ϕ−) (31)

Combining this with (2), we again have (3) from the main text, but we must now marginalize over
our uncertainty in α and β. That is, we want

p(y|w, x) =

∫
p(y|w, x, α, β)p(α)p(β) dα dβ (32)

=
B(φ+ + nFP, φ− + nTN)B(ϕ+ + nFN, ϕ− + nTP)

B(φ+, φ−)B(ϕ+, ϕ−)
,

whereB(x, y) is the beta function, nTP is the number of true positives (at = 1, yt = 1), and similarly
for the other expressions. We would like to relate this quantity to (3). The easiest way to do this
is to consider the limit of large numbers of tests, so that the beta functions are given by Stirling’s
approximation to Γ(x). That is,

B(x, y) ∼
√

2π
xx−

1
2 yy−

1
2

(x+ y)x+y−
1
2

, (33)
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so that (32) gives

log p(y|w, x) = nFP log

(
φ+ + nFP

φ+ + φ− + nFP + nTN

)
+ nTN log

(
φ− + nTN

φ+ + φ− + nFP + nTN

)
+ nFN log

(
ϕ+ + nFN

ϕ+ + ϕ− + nFN + nTP

)
+ nTP log

(
ϕ− + nFN

ϕ+ + ϕ− + nFN + nTP

)
− 1

2
log(φ+ + φ− + nFP + nTN)− 1

2
log(ϕ+ + ϕ− + nFN + nTP) + constant , (34)

which can be put into correspondence with (3) (up to subleading logarithmic terms in n) if we identify

ᾱ =
φ+ + nFP

φ+ + φ− + nFP + nTN
(35)

β̄ =
ϕ+ + nFN

ϕ+ + ϕ− + nFN + nTP
. (36)

Of course (35) and (36) are just the posterior means of α and β, and we see that in the limit of
large numbers of tests, the logarithmic terms in n can be ignored relative to the linear terms and
the log evidence concentrates around the parameters of the data generating process. This in turn
suggests an empirical Bayes approach in which we alternate variational inference (with ns fixed) with
adjustment of the ns based on posterior estimates of the Eat. Fortunately, this alternation would only
be necessary until the estimates of error rates stabilized, which can happen rapidly when we pool
across the (assumed) independent sets of input connections. That is, for a population of N neurons,
one observes N outcomes for each stimulation t, suggesting accurate estimation in only a small
number of trials T (provided the Eat estimates are not changing rapidly). We leave this possibility
for future work.

D Additional experiments

All experimental simulations were run on a 2018 custom-built desktop machine with 128 GB of
system memory, a 14 core 3.1 GHz Intel i9-7940X processor, an NVIDIA Titan Xp GPU with 12 GB
of memory, and running Ubuntu 18.04.4 LTS.

Figure S4 shows the variation due to setting different random seeds, along with the time per iteration.
Each set of results (specificity and sensitivity for all tests) takes about 20 minutes in total to run when
using 50 iterations for batch fitting. To run 500 tests for a N=1000 system, for example, would only
take up to 3.5 minutes (see specific timing information for each set of tests in Fig. S4c).

Our model has only a few relevant hyperparameters: µ and σ when using the weak entropy bound, as
well as the step size for gradient descent or Adam. For best recovery, as defined by higher specificity
and sensitivity in the fewest number of tests, we set µ = 0 and σ = 0.1. In batch mode with Adam,
the step size is 0.01, whereas in the streaming case using simple gradient descent, we used a step size
of 0.1. Unless otherwise stated, all additional experiments were run using the batch method with base
case parameters (N=1000, α, β = 0.05, S=10, K=N0.3).

D.1 Inference with binary entropy

In contrast with our best recovery approximation, inference withH2(x) = −x log x−(1−x) log(1−
x) (see (14) in main text) requires a much greater number of tests to reach the same level of specificity
and sensitivity given a classification boundary of 0.5. Here, we present results for a smaller system,
N = 200 (Fig. S5). In general, this model exhibits many fewer false positives (specificity∼ 1), while
the posteriors for the true positive connections are less confident than the approximate case, ranging
from 0.5 to 0.8 (when the approximate estimates are > 0.8). That is, overconfidence generally
benefits recovery performance, while a decision rule based on the posterior marginals from tighter
bounds requires many more tests for the same level of accuracy. This is at least in part due to the
fact that the marginals fail to capture interactions among the w, and so are expected to underperform
estimates like the true MAP, which do.
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Figure S4: Variability and timing. (a, b) Specificity and sensitivity, respectively, for the base case
run with different random seeds (n=20, CI=95%) (c) Time per iteration in seconds, averaged across
50 iterations, as a function of the number of tests for the base case.

Figure S5: Recovery using binary entropy bounds. (a, b) Specificity and sensitivity, respectively,
for different test error rates. (c) Calibration plot comparing the weights obtained using the quadratic
entropy bound and those obtained with the binary entropy bound (N=200, T=1000, α, β = 0.02).

D.2 Sparsity

We additionally tested our method on networks with denser sets of connections, K = Nθ where
θ = [0.3, 0.4, 0.5], and show that this method is robust to the number of connections per neuron. As
the network becomes less sparse, the specificity and sensitivity decrease, but only slightly (Fig. S6).
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Figure S6: Sparsity. (a, b) Specificity and sensitivity, respectively, for different levels of network
sparsity.
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Figure S7: Number of neurons stimulated per test. (a, b) Specificity and sensitivity, respectively,
for different sizes of stimulation groups.
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Figure S8: Recovery in the online and adaptive settings. Sensitivity corresponding to the specificity
plots in the main text Figure 3, as well as online Bernoulli case with a larger window (100 tests).

D.3 Stimulation group size

In the base case, we used S=10 as the size of our stimulation group. Here we show the effect of
varying the stimulation group size (Fig. S7). As S grows, the number of tests required to reach a
certain specificity and sensitivity decreases. Indeed, the optimal choice for S is 1

K [2] when K is
known. However, for K = N0.3 ≈ 8, this number is large (S=125), and larger S (S>20) requires
many more iterations of Adam to converge as well as a smaller learning rate (e.g. 200-400 iterations
and step size of ∼ 0.001), making it impractical. Experimentally, it may also make sense to limit the
stimulation group size to avoid heating due to repeated photostimulation across large brain areas.

D.4 Sensitivity plots for online setting

In the streaming setting with 1 iteration per test, sensitivity can drop significantly (more false
negatives; see Fig. S8). This is due to the fact that, unlike the batch case, each at is only updated
for a small number of gradient steps (effectively the window length) before being frozen. The range
plotted here, matches the figure in the main text. Performance does eventually also plateau after more
tests, and the drop in sensitivity can be ameliorated, by increasing the window size (e.g., from 10 to
100 tests (dotted line)). Ultimately, adaptive stimulation is the most performant: sensitivity is higher
overall and plateaus early as a function of the number of tests, since we target the most uncertain
connections closest to the 0.5 classifier boundary. As there is a negligible time penalty incurred by
using the adaptive method (∼ 1 ms per test for a window length of 10), we suggest only using the
adaptive method when fitting online.
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