
In the appendix, we will give the proof of the main theorems. The appendix is organized as follows:293

1. In section A, we list some notations used in the appendix.294

2. In section B, we prove the two main theorems in one-block case.295

3. In section C, we briefly state the proof of the two main theorems in multi-block setting.296

4. In section D, we prove the two main error bound lemmas (Lemma 4.3 and Lemma 4.2)297

under the strict complementarity assumption.298

5. In section E, we see that the strict complementarity assumption can be relaxed to a weaker299

regularity assumption. We also prove that this weaker regularity assumption is generic for300

robust regression problems with square loss, i.e., we prove that our regularity assumption301

holds with probability 1 if the data points are joint from a continuous distribution.302

6. In the last section F, we give some more details about the experiment.303

A Notations304

We first list some notations which will be used in the appendix.305

1. [m] = {1, 2, · · · ,m}.306

2. W ∗ is the solution set of (1.1) or (1.2). X∗ is the set of all solutions x∗, i.e., x∗ ∈ X∗ if307

there exists a y∗ such that (x∗, y∗) ∈W ∗.308

3. B(r) is a Euclidian ball of radius r for proper dimension.309

4. dist(v, S) means the Euclidian distance from a point v to a set S.310

5. For a vector v, vi means the i-th component of v. For a set S, vS ∈ R|S| is the vector311

containing all components vi’s with i ∈ S.312

6. Let A ∈ Rn×m be a matrix and S ⊆ [m] be an index set. Then AS represents the row313

sub-matrix of A corresponding to the rows with index in S.314

7. For a matrix M, γ(M) is the smallest singular value of M.315

8. The projection of a point y, onto a set X is defined as PX(y) = argminx∈X
1
2‖x− y‖

2.316

B Proof of the two main theorems: one-block case317

In this section, we prove the two main theorems in one-block case. The proof of the multi-block318

case is similar and will be given in the next section.319

Proof Sketch.320

• In Step 1, we will introduce the potential function φt which is shown to be bounded below.321

To obtain the convergence rate of the algorithms, we want to prove the potential function322

can make sufficient decrease at every iterate t, i.e., we want to show φt − φt+1 > 0.323

• In Step 2, we will study this difference φt − φt+1 and provide a lower bound of it in324

Proposition 4.2. Notice that a negative term (4.3) will show up in the lower bound, and we325

have to carefully analyze the magnitude of this term to obtain φt − φt+1 > 0.326

• Analyzing the negative term will be the main difficulty of the proof. In Step 3, we will327

discuss how to deal with this difficulty for solving Problem 1.1 and Problem 1.2 separately.328

• Finally, we will show the potential function makes a sufficient decrease at every iterate329

as stated in (4.4), and will conclude our proof by computing the number of iterations to330

achieve an ε-solution in Lemma B.12.331

B.1 The potential function and basic estimate332

Recall that the potential function is:

φt = Φ(xt, zt; yt) = K(xt, zt; yt)− 2d(yt, zt) + 2P (zt),
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where333

K(x, z; y) = f(x, y) +
p

2
‖x− z‖2,

d(y, z) = min
x∈X

K(x, z; y),

P (z) = min
x∈X

max
y∈Y

K(x, z; y).

Also note that if p > L, K(x, z; y) is strongly convex of x with modular p−L and∇xK(x, z; y) is334

Lipschitz-continuous of x with a constant L+ p. We also use the following notations:335

1. h(x, z) = maxy∈Y K(x, z; y).336

2. x(y, z) = arg minx∈X K(x, z; y), x∗(z) = arg minx∈X h(x, z).337

3. The set Y (z) = arg maxy∈Y d(y, z).338

4. y+(z) = PY (y + α∇yK(x(y, z), z; y)).339

5. x+(y, z) = PX(x− c∇xK(x, z; y)).340

First of all, we can prove that φt is bounded from below:341

Lemma B.1 We have
φ(x, y, z) ≥ f.

Proof By the definition of d(·) and P (·), we have342

K(x, z; y) ≥ d(y, z), P (z) ≥ d(y, z), , P (z) ≥ f. (B.1)

Hence, we have343

φ(x, y, z) = P (z) + (K(x, z; y)− d(y, z)) + (P (z)− d(y, z))

≥ P (z)

≥ f.
344

Next, we state some “error bounds”.345

Lemma B.2 There exist constants σ1, σ2, σ3 independent of y such that346

‖x(y, z)− x(y, z′)‖ ≤ σ1‖z − z′‖, (B.2)
‖x∗(z)− x∗(z′)‖ ≤ σ1‖z − z′‖, (B.3)
‖x(y, z)− x(y′, z)‖ ≤ σ2‖y − y′‖, (B.4)

‖xt+1 − x(yt, zt)‖ ≤ σ3‖xt − xt+1‖, (B.5)

for any y, y′ ∈ Y and z, z′ ∈ X , where σ1 = p
−L+p , σ2 = 2(p+L)

p−L , σ3 = 1+(c(−L+p))
c(−L+p) ..347

Proof The proofs of (B.2), (B.3) and (B.5) are the same as those in Lemma 3.6 in [29] and hence348

omitted. We only need to prove (B.4). Using the strong convexity of K(·, z; y) of x, we have349

K(x(y, z), z; y)−K(x(y′, z), z; y) ≤ −−L+ p

2
‖x(y, z)− x(y′, z)‖2, (B.6)

K(x(y, z), z; y′)−K(x(y′, z), z; y′) ≥ −L+ p

2
‖x(y, z)− x(y′, z)‖2. (B.7)

Moreover, using the concavity of K(x, z; ·) of y, we have350

K(x(y, z), z; y′)−K(x(y, z), z; y)

≤ 〈∇yK(x(y, z), z; y), y′ − y〉. (B.8)

Using the Lipschitz-continuity of∇yK(x, z; ·), we have351

K(x(y′, z), z; y)−K(x(y′, z), z; y′)

≤ 〈∇yK(x(y′, z), z; y), y′ − y〉+
L

2
‖y − y′‖2. (B.9)
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Combining (B.6) and (B.9), we have352

(−L+ p)‖x(y, z)− x(y′, z)‖2 (B.10)

≤ 〈∇yK(x(y, z), z; y)−∇yK(x(y′, z), z; y), y′ − y〉+
L

2
‖y − y′‖2 (B.11)

≤ (p+ L)‖x(y′, z)− x(y, z)‖‖y − y′‖+
L

2
‖y − y′‖2, (B.12)

where the last inequality uses the Cauchy-schwarz inequality and the Lipschitz-continuity of353

∇xK(·, z; y) of x.354

Let ζ = ‖x(y, z)− x(y′, z)‖/‖y − y′‖. Then (B.10) becomes

ζ2 ≤ p+ L

p− L
ζ +

L

2(p− L)
.

Hence, we only need to solve the above quadratic inequality. We have355

ζ2 ≤ 1

2
ζ2 +

1

2

(
p+ L

p− L

)2

+
L

2(p− L)

≤ 1

2
ζ2 +

1

2

(
p+ L

p− L

)2

+
p+ L

2(p− L)

≤ 1

2
ζ2 +

1

2

(
p+ L

p− L

)2

+
1

2

(
p+ L

p− L

)2

=
1

2
ζ2 +

(
p+ L

p− L

)2

,

where the first inequality is due to the AM-GM inequality and the third inequality is because (p +
L)/(p− L) > 1. Therefore

ζ ≤
√

2
p+ L

p− L
< 2

p+ L

p− L
.

Hence, we can take σ2 = 2(p+ L)/(p− L) and finish the proof.356

The following lemma is a direct corollary of the above lemma:357

Lemma B.3 The dual function d(·, z) is a differentiable function of ywith Lipschitz continuous gra-
dient

∇yd(y, z) = ∇yK(x(y, z), z; y) = ∇yf(x(y, z), y)

and358

‖∇yd(y′, z)−∇yd(y′′, z)‖ ≤ Ld‖y′ − y′′‖, ∀ y′, y′′ ∈ Y.
with Ld = L+ Lσ2.359

Remark.Note that if p ≥ 3L, then we have σ2 = 2(p+ L)/(p− L) ≥ 4L and hence360

Ld ≥ 5L. (B.13)

Proof Using Danskin’s theorem in convex analysis [39], we know that d is a differentiable function
with

∇yd(y, z) = ∇yK(x(y, z), z; y) = ∇yf(x(y, z), y).

To prove the Lipschitz-continuity, we have361

‖∇yd(y′, z)−∇yd(y′′, z)‖ = ‖∇yK(x(y′, z), z; y′)−∇yK(x(y′′, z), z; y′′)‖
≤ ‖∇yK(x(y′, z), z; y′)−∇yK(x(y′, z), z; y′′)‖

+‖∇yK(x(y′, z), z; y′′)−∇yK(x(y′′, z), z; y′′)‖
≤ L‖y′ − y′′‖+ L‖x(y′, z)− x(y′′, z)‖
≤ L‖y′ − y′′‖+ Lσ2‖y′ − y′′‖ = Ld‖y′ − y′′‖,

where the last inequality is due to Lemma B.2.362

We then prove the following basic estimate.363

12



Proposition B.4 We let364

p > 3L, c <
1

p+ L
,α < min{ 1

11L
,

1

4Lσ2
3

} = min{ 1

11L
,

c2(p− L)2

4L(1 + c(p− L))2
}, β < min{ 1

20
,

(p− L)2

384p(p+ L)2
}.

(B.14)
Then we have365

φt − φt+1 (B.15)

≥ 1

8c
‖xt − xt+1‖2

+
1

8α
‖yt − yt+(zt)‖2 +

p

8β
‖zt − zt+1‖2 (B.16)

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2 (B.17)

To prove this basic estimate, we need a series of lemmas.366

Lemma B.5 (Primal Descent) For any t, we have367

K(xt, zt; yt)−K(xt+1, zt+1; yt+1) ≥ 1

2c
‖xt − xt+1‖2 + 〈∇yK(xt+1, zt; yt), yt − yt+1〉

−L
2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2. (B.18)

Proof Notice that the step of updating x is a standard gradient projection, hence we have368

K(xt, zt; yt)−K(xt+1, zt; yt) ≥ 1

2c
‖xt − xt+1‖2. (B.19)

Next, because∇yK(x, z; y) is L-Lipschitz-continuous of y, we have369

K(xt+1, zt; yt)−K(xt+1, zt; yt+1) ≥ 〈∇yK(xt+1, zt; yt), yt − yt+1〉 − L

2
‖yt − yt+1‖2.(B.20)

Based on the update of variable zt+1, i.e. zt+1 = zt + β(xt+1 − zt), it is easy to show that370

K(xt+1, zt; yt+1)−K(xt+1, zt+1; yt+1) ≥ p

2β
‖zt − zt+1‖2.

Combining (B.19)-(B.21), we finish the proof.371

Lemma B.6 (Dual Ascent) For any t, we have372

d(yt+1, zt+1)− d(yt, zt) ≥ 〈∇yd(yt, zt), yt+1 − yt〉 − Ld
2
‖yt − yt+1‖2

+
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1)) (B.21)

= 〈∇yK(x(yt, zt), zt; yt), yt+1 − yt〉 − Ld
2
‖yt − yt+1‖2(B.22)

+
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1)) (B.23)

Proof Using Lemma B.3, we have373

−d(yt+1, zt)− (−d(yt, zt)) ≤ −〈∇yd(yt, zt), yt+1 − yt〉+
Ld
2
‖yt − yt+1‖2

= −〈∇yK(xt+1, zt; yt), yt+1 − yt〉+
Ld
2
‖yt − yt+1‖2.(B.24)

Next,374

d(yt+1, zt+1)− d(yt+1, zt)

= K(x(yt+1, zt+1), zt+1; yt+1)−K(x(yt+1, zt), zt; yt+1)

≥ K(x(yt+1, zt+1), zt+1; yt+1)−K(x(yt+1, zt+1), zt; yt+1)

=
p

2
‖x(yt+1, zt+1)− zt+1‖2 − p

2
‖x(yt+1, zt+1)− zt‖2

=
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1)). (B.25)
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Finally, using (B.24)-(B.25) we finish the proof.375

Recall that
Y (z) = {y ∈ Y | arg max

y∈Y
d(y, z)}

Note that
P (z) = d(y(z), z),

for any y(z) ∈ Y (z).376

Lemma B.7 (Proximal Descent) For any t ≥ 0, there holds377

P (zt+1)− P (zt) ≤ p

2
(zt+1 − zt)T (zt + zt+1 − 2x(y(zt+1, zt)), (B.26)

where y(zt+1 is arbitrary y belongs to the set Y (zt+1).378

Proof In the rest of the Appendix, y(zt+1) denote any y belongs to the set Y (zt+1). Using Kaku-
toni’s Theorem, we have

min
x∈X

max
y∈Y

K(x, z; y) = max
y∈Y

min
x∈X

K(x, z; y),

which implies
max
y∈Y

d(y, z) = min
x∈X

h(x, z) = P (z).

Hence we have379

P (zt+1)− P (zt)
(i)
≤ P (zt+1)− d(y(zt+1), zt)
(ii)
= d(y(zt+1), zt+1)− d(y(zt+1), zt)
(iii)
= K(x(y(zt+1), zt), zt+1; y(zt+1))−K(x(y(zt+1), zt), zt; y(zt+1))
(iv)
=

p

2
(zt+1 − zt)T (zt+1 + zt − 2x(y(zt+1), zt)),

where (i) and (iii) are because of (B.1), (ii) is because of the definition of y(zt+1) and (iv) is from380

direct calculation.381

Lemma B.8 x∗(z) = x(y, z) for any y ∈ Y (z) and x∗(z) is continuous of z. Moreover, we have

z = x∗(z)

if and only if z ∈ X∗.382

We define
y+(z) = PY (y + α∇yK(x(y, z), z; y)).

Then we have383

Lemma B.9 We have
‖yt+1 − yt+(zt)‖ ≤ κ‖xt − xt+1‖,

where κ = αLσ3.384

Proof By the nonexpansiveness of the projection operator, we have385

‖yt+1 − yt+(zt)‖ = ‖PY (yt + α∇yK(x(yt, zt), zt; yt))− PY (yt + α∇yK(xt+1, zt; yt))‖
≤ ‖(yt + α∇yK(x(yt, zt), zt; yt))− (yt + α∇yK(xt+1, zt; yt))‖
≤ αL‖xt+1 − x(yt, zt)‖
≤ αLσ3‖xt − xt+1‖,

where the first inequality is due to the nonexpansiveness of the projection operator, the second is386

because of the Lipschitz-continuity of∇yK and the last inequality is because of (B.5).387
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Now we can prove Proposition B.4.388

Proof Using the three descent lemma, we have389

Φt − Φt+1

≥ 1

2c
‖xt − xt+1‖2 + 〈∇yK(xt+1, zt; yt), yt − yt+1〉 − L

2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt), yt+1 − yt〉 − 2Ld
2
‖yt − yt+1‖2 + p(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1))

−p(zt+1 − zt)T (zt + zt+1 − 2x(y(zt+1), zt))

=
1

2c
‖xt − xt+1‖2 − L+ 2Ld

2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2 + 〈∇yK(xt+1, zt; yt), yt+1 − yt〉

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉 (B.27)

+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1)). (B.28)

Using the property of the projection operator and the update of the dual variable yt, we have390

〈∇yK(xt+1, zt; yt), yt+1 − yt〉 ≥ 1

α
‖yt − yt+1‖2.

Substituting the above inequality into (B.27), we get391

Φt − Φt+1

≥ 1

2c
‖xt − xt+1‖2 + (

1

α
− L+ 2Ld

2
)‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

≥ 1

2c
‖xt − xt+1‖2 + (

1

α
− L+ 10L

2
)‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

≥ 1

2c
‖xt − xt+1‖2 +

1

2α
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

where the second inequality is because of (B.13) and the last inequality is because α ≤ 1
11L .392

Notice that393

2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

= 2p(zt+1 − zt)T ((x(y(zt+1), zt)− x(y(zt+1), zt+1)) + (x(y(zt+1)), zt+1)− x(yt+1, zt+1)))

= 2p(zt+1 − zt)T (x(y(zt+1), zt)− x(y(zt+1), zt+1))

+2p(zt+1 − zt)T (x(y(zt+1)), zt+1)− x(yt+1, zt+1))
(i)
≥ −2pσ1‖zt+1 − zt‖2 + 2p(zt+1 − zt)T (x(y(zt+1)), zt+1)− x(yt+1, zt+1))
(ii)
≥ −2pσ1‖zt+1 − zt‖2 − p

6β
‖zt+1 − zt‖2 − 6pβ‖x(y(zt+1), zt+1)− x(yt+1, zt+1)‖2,

where (i) is because of the Cauchy-Schwarz inequality and Lemma B.2 and (ii) is due to the AM-GM394

inequality. Also we have395

2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
≥ −2‖∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt)‖ · ‖yt+1 − yt‖
≥ −2L‖xt+1 − x(yt, zt)‖ · ‖yt − yt+1‖
≥ −Lσ2

3‖yt − yt+1‖2 − Lσ−2
3 ‖xt+1 − x(yt, zt)‖2

≥ −Lσ2
3‖yt − yt+1‖2 − L‖xt+1 − xt‖2,
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where the first inequality is because of the Cauchy-Schwarz in equality, the second inequality is be-396

cause∇yK = ∇yf is L-Lipschitz-continuous, the third inequality is due to the AM-GM inequality397

and the last is because of (B.5).398

Hence we have399

Φt − Φt+1

≥ (
1

2c
− L)‖xt − xt+1‖2 + (

1

2α
− Lσ2

3)‖yt − yt+1‖2 + (
p

2β
− 2pσ1 −

p

6β
)‖zt − zt+1‖2

−6pβ‖x(y(zt+1), zt+1)− x(yt+1, zt+1)‖2

By the conditions of p, c, we have
1/2c− L ≥ 1/4c.

By the condition for α, we have
α < 1/(4Lσ2

3),

which yields
1/(2α)− Lσ2

3 ≥ 1/(4α)

And by the conditions that β < 1
20 and p ≥ 3L together with the definition of σ1,

p

2β
− 2pσ1 −

p

6β
≥ p

4β
.

Then we have400

Φt − Φt+1

≥ 1

4c
‖xt − xt+1‖2 +

1

4α
‖yt − yt+1‖2 +

p

4β
‖zt − zt+1‖2

−6pβ‖x(y(zt+1), zt+1)− x(yt+1, zt+1)‖2 (B.29)

=
1

4c
‖xt − xt+1‖2 +

1

4α
‖yt − yt+1‖2 +

p

4β
‖zt − zt+1‖2

−6pβ‖x∗(zt+1)− x(yt+1, zt+1)‖2, (B.30)

where the last equality is because of Lemma B.8. By Lemma B.9 and the convexity of the norm401

square function, we have402

‖yt+1 − yt‖2 = ‖(yt+1 − yt+(zt)) + (yt+(zt)− yt)‖2 (B.31)

≥ ‖yt − yt+(zt)‖2/2− ‖yt+1 − yt+(zt)‖2 (B.32)

≥ ‖yt − yt+(zt)‖2/2− κ2‖xt − xt+1‖2. (B.33)

Similarly, by Lemma B.9, (B.4) and the convexity of norm square function, we have403

‖x∗(zt+1)− x(yt+1, zt+1)‖2 (B.34)

= ‖(x∗(zt+1)− x∗(zt)) + (x∗(zt)− x(yt+(zt), zt)) (B.35)

+(x(yt+(zt), zt)− x(yt+1, zt)) + (x(yt+1, zt)− x(yt+1, zt+1))‖2 (B.36)

≤ 4‖x∗(zt+1)− x∗(zt)‖2 + 4‖x∗(zt)− x(yt+(zt), zt)‖2 (B.37)

+4‖x(yt+(zt), zt)− x(yt+1, zt)‖2 + 4‖x(yt+1, zt)− x(yt+1, zt+1)‖2 (B.38)

≤ 4σ2
1‖zt − zt+1‖2 + 4‖x∗(zt)− x(yt+(zt), zt)‖2 (B.39)

+4σ2
2κ

2‖xt − xt+1‖2 + 4σ2
1‖zt − zt+1‖2 (B.40)

= 8σ2
1‖zt − zt+1‖2 + 4‖x∗(zt)− x(yt+(zt), zt)‖2 (B.41)

+4σ2
2κ

2‖xt − xt+1‖2. (B.42)

Substituting (B.31) and (B.34) to (B.29) yields404

φt − φt+1

≥ (
1

4c
− 24pβσ2

2κ
2 − κ2/(4α))‖xt − xt+1‖2

+
1

8α
‖yt − yt+(zt)‖2 + (

p

4β
− 48pβσ2

1)‖zt − zt+1‖2

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2.
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Notice that
α < 1/(4Lσ2

3) < 1/(4cL2σ2
3),

and hence κ2/(4α) = α2L2σ2
3/(4α) < 1/(16c). Also we have

β < 1/(96pασ2
2),

thus
24pβσ2

2κ
2 < κ2/(4α) ≤ 1/(16c).

Consequently, we have

(
1

4c
− 24pβσ2

2κ
2 − κ2/(4α)) < 1/(8c).

By the definition of σ1 and the conditions p ≥ 3L, β < 1
20 , we have

(
p

4β
− 48pβσ2

1) ≥ p

8β
.

Combining the above, we have405

φt − φt+1

≥ 1

8c
‖xt − xt+1‖2

+
1

8α
‖yt − yt+(zt)‖2 +

p

8β
‖zt − zt+1‖2

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2,
which finishes the proof.406

B.2 General nonconvex-concave case407

We have the following error bound:408

Lemma B.10 We have409

(p− L)‖x∗(zt)− x(yt+(zt), zt)‖2 < (1 + αL)‖yt − yt+(zt)‖ · dist(yt+(zt), Y (zt)).

≤ (1 + αL)‖yt − yt+(zt)‖ ·DY ),

where D(Y ) is the diameter of Y .410

The proof will be given in the next section.411

Lemma B.11 If412

max{‖xt − xt+1‖, ‖yt − yt+(zt)‖, ‖zt − xt+1‖} ≤ λ̄ε, (B.43)

then (xt+1, yt+1) is a λε− solution for some λ > 0.413

Proof414

By the update of xt+1, we have

xt+1 = arg min
x∈X
{〈∇xf(xt, yt) + p(xt − zt), x− xt〉+

1

c
‖x− xt‖2 + ι(x)}.

Therefore, we have415

0 ∈ ∇xf(xt+1, yt) + p(xt+1 − zt) +
1

c
(xt+1 − xt) + ι(xt+1). (B.44)

Similarly, we have416

0 ∈ arg min
y∈Y
{−∇yf(xt+1, yt) +

1

α
(yt+1 − yt) + ι(yt+1)}. (B.45)

We let

u = (∇xf(xt+1, yt)−∇xf(xt, yt))+(∇xf(xt+1, yt+1)−∇xf(xt+1, yt))−p(xt+1−zt)−1

c
(xt+1−xt)
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and
v = ∇yf(xt+1, yt)−∇yf(xt+1, yt+1)− 1

α
(yt+1 − yt).

By the Lipschitz-continuity of∇xf(x, y), Lemma B.9 and (B.43), we have417

‖u‖ ≤ L‖xt − xt+1‖+ L‖yt − yt+1‖+ pε+
1

C
ε

≤ (1 + p+ 1/c)ε+ L‖yt − yt+(zt)‖+ ‖yt+(zt)− yt+1‖
≤ (1 + p+ 1/c)ε+ ε+ κε,

where the first and the second inequalities are both due to (B.43), the triangular inequality and the
Lipschitz-continuity of ∇xf(·) and the last inequality is because of Lemma B.9. Similarly, we can
prove that

‖v‖ ≤ (L+ 1 + κ+
1

α
)ε.

Hence, we finish the proof with η = 2 + L+ p+ κ+ max{1/c, 1/α}.418

419

We say that φt decreases sufficiently if420

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

pβ

16
‖zt − xt+1‖2. (B.46)

Lemma B.12 Let T > 0. Then if for any t ∈ {0, 1, · · · , T − 1}, (B.46) holds, there must exist421

a t ∈ {1, 2, · · · , T} such that (xt, yt) is an C/
√
Tβ-solution. Moreover, if for any t ≥ 0, (B.46)422

holds, Then any limit point of (xt, yt) is a solution of (1.2), and the iteration complexity of attaining423

an ε−solution is O(1/ε2).424

Proof425

We have426

φ0 − f ≥
T−1∑
t=0

(φt − φt+1) (B.47)

≥ (1/(16c) + 1/(16α) + p/16)

T−1∑
t=0

max{‖xt − xt+1‖2, ‖yt − yt+(zt)‖2, β‖xt+1 − zt‖2},(B.48)

where the last inequality is due to (B.46). Therefore, there exists a t ∈ {0, 1, · · · , T − 1} such that

(1/(16c) + 1/(16α) + p/16) max{‖xt − xt+1‖2, ‖yt − yt+(zt)‖2, β‖xt+1 − zt‖2} ≤ (φ0 − f)/T.

Since β < 1, we further get

(1/(16c)+1/(16α)+p/16) max{‖xt−xt+1‖2, ‖yt−yt+(zt)‖2, ‖xt+1−zt‖2} ≤ (φ0−f)/(Tβ).

Hence, by Lemma B.11, (xt+1, yt+1) is a
√

(φ0 − f)/((1/8c+ 1/8α+ 16)Tβ)-solution. Ac-427

cording to above analysis, If (B.46) holds for any t, we can attain an ε-solution within (φ0 −428

f)/(β(1/(16c) + 1/(16α) + p/16)ε2) iterations. Moreover, if (B.46) holds for any t, by (B.47), we429

have430

max{‖xt − xt+1‖, ‖yt − yt+(zt)‖, ‖zt − xt+1‖} → 0. (B.49)
Consequently, for any limit point (x̄, ȳ) of (xt, yt), there exists a z̄ such that

max{‖x̄− x̄+(ȳ, z̄)‖, ‖ȳ − ȳ+(z̄)‖, ‖x̄+(ȳ, z̄)− z̄‖} = 0,

which yields (x̄, ȳ) is a stationary solution. Here

x+(y, z) = PX(x−∇xK(x, z; y)).

431

Now we are ready to prove Theorem 3.3.432

Proof [Proof of Theorem 3.3] There are two cases (B.50) and (B.51) as discussed in the proof for433

the general nonconvex-concave problems in last subsection.434
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1. For some t ∈ {0, 1, · · · , T − 1}, we have435

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖yt−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≤ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2.

(B.50)
2. For any t ∈ {0, 1, · · · , T − 1},436

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖yt−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≥ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2

(B.51)

In the first case (B.50), we have437

‖yt − yt+(zt)‖2 ≤ 384pβα‖x(yt+(zt), zt)− x∗(zt)‖2

≤ 384pβα
(1 + αL)

p− L
‖yt − yt+(zt)‖D(Y ).

Hence, letting λ1 = 384pα (1+αL)
p−L ·D(Y ), we have438

‖yt − yt+(zt)‖ ≤ λ1β. (B.52)

Moreover,439

‖xt+1 − zt‖2 = ‖(zt+1 − zt)/β‖2 (B.53)
(i)
≤ 384p‖x(yt+(zt), zt)− x∗(zt)‖2 (B.54)
(ii)
≤ 384p

1 + αL

p− L
D(Y )‖yt − yt+(zt)‖ (B.55)

(iii)
≤ 384p

1 + αL

p− L
D(Y )λ1β, (B.56)

where Inequality (i) is due to Inequality (B.50) and (ii) is because of Lemma B.10 and (iii) is due to440

(B.52). We also have441

‖xt − xt+1‖2
(i)
≤ 384cpβ‖x∗(zt)− x(yt+(zt), zt)‖2 (B.57)
(ii)
≤ 384pcβ

1 + αL

p− L
D(Y )‖yt − yt+(zt)‖ (B.58)

(iii)
≤ 384pc

1 + αL

p− L
λ1D(Y )β2, (B.59)

where (i) is due to (B.50), (ii) is due to Lemma B.10 and (iii) is because of (B.52). Combining the442

above, in the first case, we have443

max{‖xt − xt+1‖2, ‖yt − yt+(zt)‖2, ‖zt − xt+1‖2} (B.60)

≤ max{λ2β
2, λ2

1β
2, λ3β}, (B.61)

where λ2 = 384p 1+αL
p−L D(Y )λ1 and λ3 = 192pc 1+αL

p−L λ1D(Y ) According to Lemma B.11, there444

exists a λ > 0 such that (xt+1, yt+1) is a λ445

max{β,
√
β}-solution.446

In the second case, we have

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

1

16β
‖zt − zt+1‖2

for any t ∈ {0, 1, · · · , T − 1}. By Lemma B.12, there exists a t ∈ {0, 1, · · · , T − 1}, such that447

(xt+1, yt+1) is a
√

(φ0 − f)/((1/8c+ 1/8α+ 16)Tβ)-solution Finally taking β = 1/
√
T and448

combining the two cases with Lemma B.12 yield the desired results.449

450
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B.3 The max problem is over a discrete set451

In this subsection, we prove Theorem 3.6. We will prove that under the strict complementarity452

assumption, the potential function φt decreases sufficiently after any iteration. Then by the following453

simple lemma, we can prove Theorem 3.6.454

By the bounded level set assumption (Assumption 3.5) and the fact that ψ(z) ≤ P (z), for any
(x0, y0, z0) ∈ Rn+m+n, there exists a constant R(x0, y0, z0) > 0 such that

{z | P (z) ≤ φ(x0, y0, z0)} ⊆ B(R(x0, y0, z0)).

Then we have the following “dual error bound”. Note that this error bound is homogeneous com-455

pared to Lemma B.10.456

Lemma B.13 Let
x+(y, z) = PX(x−∇xK(x, z; y)).

If the strict complementarity assumption and the bounded level set assumption hold for (1.2) , there
exists δ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
‖x(y+(z), z)− x∗(z)‖ < σ5‖y − y+(z)‖

for some constant σ5 > 0.457

Equipped with the dual error bound, we can prove the that the potential function decreases after any458

iteration in the following proposition:459

Proposition B.14 Suppose the conditions in Theorem 3.6 holds, we have460

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

p

16β
‖zt − zt+1‖2. (B.62)

Proof We set β < min{δ/
√
λ2, δ/λ1, δ

2/λ3, 1/(384pασ2
5)}. First, we prove that461

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

p

16β
‖zt − zt+1‖2. (B.63)

and
‖zt‖ < R(x0, y0, z0)

for any t ≥ 0. We prove it by induction. We will prove that462

1. If ‖zt‖ ≤ R(x0, y0, z0), then463

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

p

16β
‖zt − zt+1‖2. (B.64)

2. If φt+1 ≤ φt, we have ‖zt+1‖ ≤ R(x0, y0, z0).464

For t = 0, it is trivial that ‖zt‖ ≤ R(x0, y0, z0). For the first step, assume that we have ‖zt‖ ≤465

R(x0, y0, z0). There are two cases:466

1. For some t, we have467

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖y−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≤ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2.

(B.65)
2. For any t,468

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖y−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≥ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2

(B.66)
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For the first case, as in the last subsection, we have469

max{‖xt − xt+1‖2, ‖yt − yt+(zt)‖2, ‖xt+1 − zt‖2}
≤ max{λ2β

2, λ2
1β

2, λ3β}
≤ δ2.

Hence, we can make use of Lemma B.13. In fact, we have470

24pβ‖x(yt+(zt), zt)− x∗(zt)‖2 ≤ 24pβσ2
5‖yt − yt+(zt)‖

≤ 1

16α
‖yt − yt+(zt)‖2,

which yields (B.46) together with (B.15). For the second case, (B.46) holds as in the last subsec-471

tion. Hence, if ‖zt‖ ≤ R(x0, y0, z0), we have (B.46). For the second step, if (B.46) holds for472

0, 1, · · · , (t− 1), we have473

P (zt+1) ≤ φt+1

≤ φ0.

Hence, zt+1 ∈ B(R(x0, y0, z0)). Combining these, for any t ≥ 0, ‖zt‖ ≤ R(x0, y0, z0) and (B.46)474

holds. Then the theorem comes from Lemma B.12.475

C The multi-block cases476

The proofs for the multi-block case is similar to the one-block case. In this section, we briefly477

introduce the proof of them. Note that the only differences for proving the theorem s are Lemma478

B.5, (B.5) and Proposition 4.1. Instead, we have the following:479

Lemma C.1 (Primal Descent) For any t, we have480

K(xt, zt; yt)−K(xt+1, zt+1; yt+1) ≥ 1

2c
‖xt − xt+1‖2 + 〈∇yK(xt+1, zt; yt), yt − yt+1〉

−L
2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2. (C.1)

The proof of it is the same as Lemma 5.3 in [29]. The error bound (B.5) becomes:481

Lemma C.2 We have
‖xt+1 − x(yt, zt)‖ ≤ σ′3‖xt − xt+1‖,

where σ′3 = (c(p− L) + 1 + c(L+ p)N3/2)/c(p− L).482

The proof of Lemma C.2 is similar to Lemma 5.2 in [29] hence omitted here. Because of the above483

two differences, we have a replacement of Proposition B.4:484

Proposition C.3 We let485

p > 3L, c <
1

p+ L
,α < min{ 1

11L
,

c2(p− L)2

4L(1 + c(p+ L)N3/2 + c(p− L))2
},min{ 1

20
, β <

(p− L)2

384p(p+ L)2
}.

(C.2)

Then we have486

φt − φt+1 (C.3)

≥ 1

4c
‖xt − xt+1‖2

+
1

4α
‖yt − yt+(zt)‖2 +

p

8β
‖zt − zt+1‖2 (C.4)

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2 (C.5)

The proof of Proposition C.3 is similar to Proposition B.4 hence omitted.487
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D Proof of the error bound lemmas488

D.1 Proof of lemma B.10489

Let
x+(y, z) = PX(x− c∇xK(x, z; y))

and
y+(z) = PY (y + α∇yK(x(y, z), z; y)).

Then Lemma B.10 can be written as490

Lemma D.1 We have491

(p− L)‖x∗(z)− x(y+(z), z)‖2 < (1 + αL)‖y − y+(z)‖ · dist(y+(z), Y (z)).

≤ (1 + αL)‖y − y+(z)‖ ·D(Y ),

where D(Y ) is the diameter of Y .492

Proof By the strong convexity of K(·, z; y), we have493

K(x∗(z), z, ; y+(z))−K(x(y+(z), z)z; y+(z)) ≥ p− L
2
‖x(y+(z), z)− x∗(z)‖2 (D.1)

K(x(y+(z), z), z; y(z))−K(x∗(z), z; y(z)) ≥ p− L
2
‖x(y+(z), z)− x∗(z)‖2, (D.2)

where y(z) is an arbitrary vector in Y (z). Notice that y+(z) is the maximizer of the following
problem:

max
ȳ∈Y
{K(x(y+(z), z), z; ȳ)− δT (y, y+(z); z)ȳ},

where

δ(y, y+(z); z) = (y+(z) + α∇ȳK(x(y+(z), z), z; y+(z)))− (y + αȳK(x(y+(z), z), z; y))

satisfies
‖δ(y, y+(z); z)‖ < (1 + αL)‖y − y+(z)‖,

by the Lipschitz-continuity of∇yK = ∇yf . Hence, we have494

K(x(y+(z), z), z; y(z))− δT (y, y+(z); z)y(z)

≤ K(x(y+(z), z), z; y+(z))− δT (y, y+(z); z)y+(z).

Then, we have the following estimates:495

K(x(y+(z), z), z; y(z))−K(x(y+(z), z), z; y+(z)) (D.3)

≤ (y(z)− y+(z))T δ(y, y+(z); z) (D.4)
≤ ‖y+(z)− y(z)‖ · (1 + αL)‖y − y+(z)‖. (D.5)

Also because y(z) maximizes
max
ȳ∈Y

K(x∗(z), ȳ; z),

we have496

K(x∗(z), z; y(z)) ≥ K(x∗(z), z; y+(z)). (D.6)

Since y(z) is an arbitrary vector in Y (z), combining (D.1), (D.3), (D.6), we have

(p− L)‖x∗(z)− x(y+(z), z)‖2 < (1 + αL)‖y − y+(z)‖ · dist(y+(z), Y (z)),

which is the desired result.497
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D.2 Proof of Lemma B.13498

For a pair of min-max solution of (1.2), the KKT conditions in the following hold:499

JTF (x∗)y = 0, (D.7)
m∑
i=1

yi = 1, (D.8)

yi ≥ 0,∀i ∈ [m] (D.9)
µ− νi = fi(x),∀i ∈ [m], (D.10)
νi ≥ 0, νiyi = 0,∀i ∈ [m], (D.11)

where µ is the multiplier of the equality constraint
∑m
i=1 yi = 1 and νi is the multiplier for the500

inequality constraint yi ≥ 0.501

Definition D.2 For y ∈ Y , we define the active set

A[y] = {i ∈ [m] | yi = 0}.

We also define the inactive set of y as follows:

I[y] = {i ∈ [m] | yi > 0}.

Definition D.3 For an x ∈ Rn, we define the top coordinate set T (x) as the collection of all indexes502

of the top coordinates of F (x), i.e., fi(x) > fj(x) if i ∈ T (x), j /∈ T (x) and fi(x) = fj(x) if503

i, j ∈ T (x).504

According to the KKT conditions, it is easy to see that for (x, y) ∈W ∗,

I[y] ⊆ T (x).

Recall that we have the following strict complementarity condition:505

Assumption D.4 For any (x, y) satisfying (D.7), we have

νi > 0,∀i ∈ A[y].

It is easy to see that if the strict complementarity assumption holds,

I[y] = T (x)

for (x, y) ∈W ∗. Then we can prove the following “dual error bound”.506

Lemma D.5 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
‖x(y+(z), z)− x∗(z)‖ < σ5‖y − y+(z)‖

for some constant σ5 > 0.507

To prove this, we need the following lemmas. First, we prove that if the residuals go to zero, the508

iteration points converge to a solution.509

Lemma D.6 If {zk} is a sequence with ‖zk‖ ≤ R(x0, y0, z0) and

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0,

there exists a sub-sequence of {zk} converging to some z̄ ∈ X∗.510

Proof It is just a direct corollary of Lemma B.11.511
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Lemma D.7 Let
M(x) =

{
JT (x)F (x) 1

}
.

Then if (x, y) ∈W ∗, the matrix M(x)(x) is of full row rank.512

Proof We prove it by contradiction. If for some (x∗, y∗, µ∗, ν∗) satisfying (D.7), M(x∗) is not of
full row rank. Without loss of generality, we assume that T (x∗) = {1, 2, · · · , |T (x∗)|} Then there
exists a nonzero vector v ∈ R|T (x∗)| such that

MT (x∗)v = 0.

Let d = mini∈I[y∗]{yi/|vi|}. Then we define a vector y′ ∈ Rm as:513

y′i = y∗ − dvi, when i ∈ I;

y′i = 0, when otherwise.

Notice that y∗i = 0 for any i /∈ T (x∗). Then y′ satisfies514

JTF (x∗)y′ = 0,
m∑
i=1

y′i = 1,

y′i ≥ 0, i ∈ T (x∗),

y′i = 0, i /∈ T (x∗).

Therefore, (x∗, y′, µ, ν) still satisfies (D.7) . Moreover, let i0 ∈ I satisfying d = y∗i0/vi0 . Then515

y′i0 = νi0 = 0. This is a contradiction to the strict complementarity assumption.516

We then have the following corollary from the above lemma and (D.7):517

Corollary D.8 For any x∗ ∈ X∗, there exists only one y ∈ Y such that (x∗, y) ∈ W ∗ and there518

exists only one (µ, ν) such that (x∗, y, µ, ν) satisfies (D.7).519

Proof First, this (y, µ, ν) must exist due to the existence of a solution. Next, the solution y must
satisfy

MT (x∗)y = (0, 0, · · · , 0, 1)T .

By Lemma D.7,MT (x∗) is of full column rank hence the solution of y is unique. Furthermore, since520 ∑m
i=1 yi = 1, there is at least one i such that yi > 0, νi = 0. Without loss of generality, we assume521

that y1 > 0, ν1 = 0. Then µ = f1(x∗) by (3.5). Further by (3.5), νi = fi(x
∗)− µ, i = 2, 3, · · · ,m.522

Hence, µ, νi are uniquely defined.523

Lemma D.9 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, γ > 0,
such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

γ(M(x∗(z))) ≥ γ and γ(M(x(y, z))) ≥ γ.524

Proof We prove it by contradiction. Suppose it is not true, there exists {zk} ⊆ B(R(x0, y0, z0))
such that γ(M(x∗(zk)))→ 0 and

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0.

Since T (x) has only finite choice, without loss of generality, we assume that T (x∗(zk)) = T for
any k(passing to a sub-sequence if necessary). By Lemma D.6, there exists a z̄ ∈ X∗ such that
zk → z̄. We let

M̃(z̄) = lim
k→∞

M(x∗(zk)) = {JT (x∗(z̄)) 1} .
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By the continuity of x∗(·)((B.3) of Lemma B.2) and the continuity of the function of taking the least
singular value, we know that

γ(M̃(z̄)) = 0,

where we also use the fact that x∗(z̄) = z̄ by Lemma B.8. Moreover, according to the definition
of T [z̄], we have fi(x∗(zk)) > fj(x

∗(zk)) for any k with i ∈ T , j /∈ T . Therefore, we have
fi(z̄) ≥ fj(z̄) for i ∈ T , j /∈ T . Consequently, we have

T ⊆ T [z̄].

Therefore M̃(x∗(z̄)) is a row sub-matrix ofM(z̄). Consequently,M(z̄) is not of full row rank. This525

is a contradiction! For x(y, z), it is similar to prove the desired result. Hence the details are omitted.526

527

The following lemma shows that if the residuals are small, the active set of y+(z) and y(z) ∈ Y (z)528

are the same.529

Lemma D.10 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

we have
A[y+(z)] = A[y(z)], for some y(z) ∈ Y (z).

Proof We prove it by contradiction. Suppose that there exists a sequence {(xk, yk, zk)} such that

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0

and
A[yk+(zk)] 6= A[y(zk)].

Since {yk+(zk)}, {zk} are bounded, we assume that yk+(zk)→ ȳ, zk → z̄. We write down the KKT530

condition for (x(yk+(zk), zk), yk+(zk)) as follows:531

JTF (x(yk+(zk), zk))yk+(zk) + p(x(yk+(zk), zk)− zk) = 0, (D.12)
m∑
i=1

(yki )+(zk) = 1, (D.13)

(yki )+(zk) ≥ 0,∀i ∈ [m] (D.14)
1

α
(yki )+(zk)− 1

α
yki + fi(x(yk, zk)) + µk − νki = fi(x(yk+(zk), zk)),∀i ∈ [m], (D.15)

νki ≥ 0, νki (yki )+(zk) = 0,∀i ∈ [m], (D.16)

It is not hard to check that µ, ν are bounded. Hence, we assume that µk → µ̄ and νk → ν̄. We take
limit to (D.12) and make use of the fact that

‖yk − yk+(zk)‖ → 0

together with Lemma B.2. We then attain that (x(ȳ, z̄), ȳ) is a min-max solution of (1.2), i.e.,
(x(ȳ, barz), ȳ, µ̄, ν̄) satisfies (D.7). By the strict complementarity assumption, ν̄i > 0 for i ∈ A[ȳ]
and ȳi > 0 for i /∈ A[ȳ]. Hence, for k sufficiently large, we have A[yk+(zk)] = A[ȳ]. Similarly,
when k is sufficiently large, we have

A[y(zk)] = A[ȳ].

532
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We also write down the KKT conditions for x∗(z) for some z.533

JTF (x∗(z))y + p(x∗(z)− z) = 0, (D.17)
m∑
i=1

yi = 1, (D.18)

yi ≥ 0,∀i ∈ [m] (D.19)
µ− νi = fi(x),∀i ∈ [m], (D.20)
νi ≥ 0, νiyi = 0,∀i ∈ [m], (D.21)

Lemma D.11 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
dist(y+(z), y(z)) < λ‖x∗(z)− x(y+(z), z)‖

for some constant λ > 0.534

Proof By Lemma D.10 , if the strict complementarity assumption holds for (1.2) , there exists δ > 0,
such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

we have
A[y+(z)] = A[y(z)],

for some y(z) ∈ Y (z). Hence, we have

T (x∗(z)) = T (x(y+(z), z)).

Let T = T (x∗(z)). Then for i /∈ T , yi(z) = (y+(z))i = 0 and ‖y(z) − y+(z)‖ = ‖(y(z))T −535

(y+(z))T ‖. Using the optimality conditions for x(y+(z), z) (D.12) and x∗(z) (D.17), we have536

MT (x(y+(z), z))(y+(z))T +

{
p(x(y+(z), z)− z)

0

}
= (0, 0, · · · , 0, 1), (D.22)

and537

MT (x∗(z))(y(z))T +

{
p(x∗(z)− z)

0

}
= (0, 0, · · · , 0, 1). (D.23)

Note that (D.22) can be written as538

MT (x∗(z))(y+(z))T = MT (x∗(z))(y+(z))T −MT (x(y+(z), z))(y+(z))T −
{
p(x(y+(z), z)− z)

0

}
.

(D.24)
By (D.23) and (D.24), we have

MT (x∗(z))((y(z))T −(y+(z))T ) = (MT (x(y+(z), z))−MT (x∗(z)))(y+(z))T −
{
p(x(y+(z), z)− x∗(z))

0

}
.

Therefore, taking norms to the above and the Lemma D.9, we have539

γ‖(y+(z))T − (y(z))T ‖ ≤
√
mL‖x(y+(z), z)− x∗(z)‖‖(y+(z))T ‖+ p‖x(y+(z), z)− x∗(z)‖

≤ (
√
mL+ p)‖x∗(z)− x(y+(z), z)‖,

where the first inequality uses the Lipschitz-continuity of∇xfi and the second is because ‖y+(z)‖ ≤540

1. Hence, we finish the proof with λ = (p+
√
mL)/γ.541

Proof [Proof of Lemma B.13] By Lemma B.10 and Lemma D.11, we have

‖x(y+(z), z)− x∗(z)‖ ≤ 1 + αL

λ(p− L)
‖y − y+(z)‖,

which finishes the proof with σ5 = 1+αL
λ(p−L) .542
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E Discussion of the strict complementarity condition543

In this section, we discuss some issues about the strict complementarity assumption. First, notice544

that the min-max problem (1.1) and (1.2) are both variational inequalities. As mentioned in the main545

text of the paper, the strict complementarity assumption is common in the field of variation inequality546

[36, 37]. While this assumption is popular, it is still interesting to weaken the assumption. Inspired547

by Lemma D.7, we prove Theorem 3.6 and Lemma 4.2 using a weaker regularity assumption rather548

than the strict complementarity assumption:549

Assumption E.1 For any (x∗, y∗) ∈W ∗, the matrix M(x∗) is of full column rank.550

Here recall that
M(x∗) =

{
JT (x∗) 1

}
.

We say that Assumption E.1 is weaker since the strict complementarity assumption (Assumption551

D.4) can imply Assumption E.1 according to Lemma D.7. For this assumption, we have the follow-552

ing two claims:553

1. If we replace Assumption D.4 by Assumption E.1 in Theorem 3.6, we can attain a same554

result;555

2. In a robust regression problem (will define in E.2), if the data is joint from a continuous556

distribution, this regularity assumption holds with probability 1.557

E.1 Replacing Assumption D.4 by Assumption E.1 in Theorem 3.6558

In this section, we will see that we can prove the dual error bound (Lemma 4.2) using Assumption559

E.1 instead of Assumption D.4.560

Lemma E.2 Let
x+(y, z) = PX(x−∇xK(x, z; y)).

If Assumption E.1 and the bounded level set assumption hold for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
‖x(y+(z), z)− x∗(z)‖ < σ5‖y − y+(z)‖

for some constant σ5 > 0.561

Using this Lemma, we can prove Theorem 3.6 using Assumption E.1:562

Theorem E.3 Consider solving Problem 1.2 by Algorithm 2 or Algorithm 3. Suppose that As-563

sumption E.1 holds and either Assumption 3.5 holds or assume {zt} is bounded. Then there exist564

constants1 β′ and β′′ depending on the problem such that the following holds.565

1. (One-block case) If we choose the parameters in Algorithm 2 as in (C.2) and further let566

β < β′ , then we have:567

(a) Every limit point of (xt, yt) is a solution of (1.2).568

(b) The iteration complexity of Algorithm 2 to attain an ε-solution is O(1/ε2).569

2. (Multi-block case) Consider using Algorithm 3 to solve Problem 1.2. If we replace the570

condition for α in (C.2) by α < min{ 1
11L ,

c2(p−L)2

4L(1+c(p+L)N3/2+c2(p−L)2)
} and further require571

β < 1/
√
T , β < 1/

√
T and β < β′′, then we have the same results as in the one-block572

case.573

1These two constants, β′ and β′′, are independent of ε and T and will be discussed in the appendix.
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E.2 The rationality of Assumption E.1574

Intuitively, the assumption E.1 holds for “generic problem”. We rigorously justify this intuition575

for a simple problem. More specifically, we prove that this regularity assumption is generic for a576

robust regression problem using square loss, i.e., the regularity condition holds with probability 1 if577

the outputs of the data points are joint from some continuous distribution. Consider the following578

problem:579

min
x∈Rn

max
y∈Y

1

2
yi(`i −Ψ(x, ξi))

2, (E.1)

where Y is the probability simplex , Ψ(·) is a smooth function used to fit the data (for example the580

neural network) and ξi, `i are the input and the output of the i-th data point. We define Ψi(x) =581

Ψ(x, ξi) for convenience. We further make the following mild assumptions:582

Assumption E.4 `i is joint independently from a continuous distribution over a positive measure583

set Li ⊆ R.584

Here a continuous distribution over Li means that for any zero measure set S ⊆ R, Pr(x ∈ S ∩585

Li) = 0. With assumption, for any zero measure set S ⊆ Rm, Pr((`1, · · · , `m)T ∈ S∩
∏m
i=1 Li) =586

0.587

Assumption E.5 Let Ψ(x) = (Ψ1(x), · · · ,Ψm(x))T . Then Ψ(Rn) ∩
∏m
i=1 Li = Ω, where Ω is a588

zero measure set in
∏m
i=1 Li.589

This assumption means that minx maxy∈Y fi(x) > 0 with probability 1. This assumption is reason-590

able. If there exists an x∗ such that maxi fi(x
∗) = 0, then becaus fi(x) ≥ 0, we have fi(x∗) = 0591

for all i. In this case, we do not need the min-max fomulation! We just need to solve the finite sum592

problem minx
∑m
i=1 fi(x). However, in many cases, the uncertainty is large, we do need the robust593

optimization formulation. So in these cases, Assumption E.5 is reasonable.594

Moreover, we have the following lemma:595

Lemma E.6 Suppose that Assumption E.4 holds. If m > n, Assumption E.5 holds with probability596

1.597

Proof It is direct from the claim that a smooth map Ψ maps a zero measure set into a zero measure598

set. Specializing to this lemma, the map Ψ maps Rn into Rm, hence the image Ψ(Rn) is of zero599

measure since Rn is a zero measure set of Rm. Therefore, Ψ(Rn)∩
∏m
i=1 Li is zero measure in Rm.600

601

Then we have the following result:602

Proposition E.7 Suppose that Assumption E.4 and Assumption E.5 hold. Then with probability 1,603

every solution of (E.1) satisfies Assumption E.1.604

E.3 Proof of Lemma E.2 and Theorem E.3605

For a set S ⊆ [m], we define
MS(x) =

{
JSF (x;`S) 1

}
,

where JSF (x; `S) = ((Ψi(x)− `i)∇xΨi(x) | i ∈ S).606

Similar to the proof of Theorem 3.6, to prove Theorem E.3, we only to prove Lemma E.2. Hence,607

in this section, we only prove Lemma E.2. The proof is similar to the proof of Lemma 4.2. Hence608

we only give the main steps. First, similar to Lemma D.9, we have the following:609

Lemma E.8 If Assumption E.1 holds for Problem (E.1) , there exists δ > 0, γ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

then γ(MT (y,z)(x
∗(z))) ≥ γ and γ(MT (y,z)(x(y+(z), z))) ≥ γ, where

T (y, z) = T (x∗(z)) ∪ T (x(y+(z), z)).

28



Proof We prove it by contradiction. Suppose it is not true, there exist {xk}, {yk} ⊆ Y and
{zk} ⊆ B(R(x0, y0, z0)) such that γ(MT k(x∗(zk))), γ(MT k(x(yk+(zk), zk)))→ 0 and

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0,

where T k = T (x∗(zk)) ∪ T (x(yk+(zk), zk)). Since T k has only finite choice, without loss of
generality, we assume that T k = T for any k(passing to a sub-sequence if necessary). By Lemma
D.6, there exists a z̄ ∈ X∗ such that zk → z̄. Hence, by Lemma B.2 and Lemma B.8, we have

x∗(zk)→ x∗(z̄) = z̄.

Therefore by the definition of T (x), when k is sufficiently large, T (x∗(zk) ⊆ T (x∗(z̄)) = T (z̄)).
Moreover, since ‖yk − yk+(zk)‖ → 0, by Lemma B.10, we have

‖x(ȳk+(zk), zk)− x∗(zk)‖ → 0.

and hence T (x(yk+(zk), zk)) ⊆ T (z̄). Then T k ⊆ T (z̄) and γ(M)T k = 0, which contradicts610

Assumption E.1.611

We then can attain a result similar to Lemma D.11.612

Lemma E.9 If Assumption E.1 holds for (1.2) , there exists δ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
dist(y+(z), y(z)) < λ‖x∗(z)− x(y+(z), z)‖

for some constant λ > 0.613

Proof By Lemma E.8, we can find a δ > 0 and a γ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

then γ(MT (y,z)(x
∗(z))) ≥ γ and γ(MT (y,z)(x(y+(z), z))) ≥ γ, where

T (y, z) = T (x∗(z)) ∪ T (x(y+(z), z)).

Let T = T (y, z). Then for i /∈ T , yi(z) = (y+(z))i = 0 and ‖y(z) − y+(z)‖ = ‖(y(z))T −614

(y+(z))T ‖. Using the optimality conditions for x(y+(z), z) (D.12) and x∗(z) (D.17), we have615

MT
T (x(y+(z), z))(y+(z))T +

{
p(x(y+(z), z)− z)

0

}
= (0, 0, · · · , 0, 1), (E.2)

and616

MT
T (x∗(z))(y(z))T +

{
p(x∗(z)− z)

0

}
= (0, 0, · · · , 0, 1). (E.3)

Note that (E.2) can be written as617

MT
T (x∗(z))(y+(z))T = MT

T (x∗(z))(y+(z))T −MT
T (x(y+(z), z))(y+(z))T −

{
p(x(y+(z), z)− z)

0

}
.

(E.4)
By (E.3) and (E.4), we have

MT
T (x∗(z))(y(z)−y+(z)) = (MT

T (x(y+(z), z))−MT
T (x∗(z)))(y+(z))T −p(x(y+(z), z)−x∗(z)).

Therefore, taking norms to the above and the Lemma D.9, we have618

γ‖(y+(z))T − (y(z))T ‖ ≤
√
mL‖x(y+(z), z)− x∗(z)‖‖(y+(z))T ‖+ p‖x(y+(z), z)− x∗(z)‖

≤ (
√
mL+ p)‖x∗(z)− x(y+(z), z)‖,

where the first inequality uses the Lipschitz-continuity of∇xfi and the second is because ‖y+(z)‖ ≤619

1. Hence, we finish the proof with λ = (p+
√
mL)/γ.620

Then Lemma E.9 and Lemma 4.3 yield Theorem E.3.621
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E.4 Proof of Proposition E.7622

For a set S ⊆ [m], we define

MS(x; `S) =
{
JSF (x;`S) 1

}
,

where JSF (x; `S) = ((Ψi(x)− `i)∇xΨi(x) | i ∈ S).623

Proof Define the event ET ,P to be: there exists a solution (x∗, y∗) ∈ W ∗ , such that M(x∗) is not
of full row rank, T (x∗) = T and Ψi(x

∗) − `i ≥ 0 for i ∈ P and Ψi(x
∗) − `i for i /∈ P . Then

Proposition E.7 is equivalent to the claim:
Pr(∪T ⊆[m],P⊆T ET ,P) = 0.

Since there are only finite choice of the sets T and P , we only need to prove that for any T ⊆ [m]624

and P ⊆ T , ET ,P holds with probability 0, Without loss of generality, we let T = {1, 2, · · · , k}625

and P = {1, 2, · · · , p} with p ≤ k. We define δi for i ∈ [k] as δi = 1 for i ∈ P and δi = −1626

otherwise. Then if ET ,P holds, there exists an x∗ = (x∗1, · · · , x∗n)T ∈ X∗ and xn+1 ∈ R, such that627

1. (x∗1, · · · , x∗n)T ∈ X∗;628

2. x∗n+1 ≥ 0;629

3. T (x∗) = T ;630

4. Ψi(x
∗)− `i = x∗n+1 ≥ 0 for i ∈ P and Ψi(x

∗)− `i = −x∗n+1 ≤ 0 for i /∈ P .631

5. MT (x∗1, · · · , x∗n; `1, · · · , `k) is row rank deficient.632

Define X̄∗T ,P(`1, · · · , `k) to be the set of all x∗ ∈ X∗ satisfying the above conditions. Consider the
map G : Rn+1 → Rk defined as

G(x1, · · · , xn+1) = (Ψ1(x1, · · · , xn)− δ1xn+1, · · · ,Ψk(x1, · · · , xn)− δkxn+1)T .

Then G(x∗1, · · · , x∗n+1) = (`1, · · · , `k) for any (x∗1, · · · , x∗n+1)T ∈ X̄∗T ,P(`1, · · · , `k). Define the633

set X̄T ,P ⊆ Rn+1 be the collection of all (x1, · · · , xn+1) satisfying:634

1. xn+1 > 0.635

2. there exist ¯̀
1, · · · , ¯̀

k with Ψi(x1, · · · , xn)− ¯̀
i = xn+1 for i ∈ P and Ψi(x1, · · · , xn)−636

`i = −xn+1 for i /∈ P .637

3. MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) is rank deficient.638

4. ( ¯̀
1, · · · , ¯̀

k)T ∈
∏k
i=1 Li.639

Therefore, if ET ,P holds, we have

(`1, · · · , `m)T ∈ (G(X̄T ,P) ∩
k∏
i=1

Li)×
m∏

i=k+1

Li ∪ Ω.

For (x1, · · · , xn+1)T ∈ X̄T ,P , notice that JG(x1, · · · , xn+1) is attained by doing elemen-640

tary matrix transformation to the matrix MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k), i.e., multiplying the first641

k columns of MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) by 1/xn+1 and multiplying the k + 1-th column of642

MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) by −1 and then multiplying the i-th row by δi for i ∈ [n]. There-643

fore, MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) is also rank deficient.644

Consequently, G(x1, · · · , xn+1) with (x1, · · · , xn+1)T ∈ X̄T ,P is a critic value of G (see [40]).
Then by Sard’s Theorem [40], G(X̄T ,P) is a zero measure set in Rk. Hence, G(X̄T ,P) ∩

∏k
i=1 Li

is a zero measure set in
∏k
i=1 Li. Recall that if ET ,P holds, we have

(`1, · · · , `m)T ∈ Z = (G(X̄T ,P) ∩
k∏
i=1

Li)×
m∏

i=k+1

Li ∪ Ω.

By the above analysis, G(X̄T ,P) ∩
∏k
i=1 Li is a zero measure set in

∏k
i=1 Li. Hence, (G(X̄T ,P) ∩645 ∏k

i=1 Li) ×
∏m
i=k+1 Li is a zero measure set in

∏m
i=1 Li. Also by Assumption E.5, Ω is a zero646

measure set in
∏m
i=1 Li. Consequently, Z is a zero measure set in

∏m
i=1 Li. Then by the continuity647

of the distribution of `, we finish the proof.648
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F Details in Experiments649

Recall the procedure of training a robust neural network against adversarial attacks can be formu-650

lated as a min-max problem:651

min
w

N∑
i=1

max
δi, s.t. |δi|∞≤ε

`(f(xi + δi;w), yi), (F.1)

where w is the parameter of the neural network, the pair (xi, yi) denotes the i-th data point, and δi652

is the perturbation added to data point i.653

As (F.1) is nonconvex-nonconcave and thus difficult to solve directly, researchers introduce an ap-654

proximation of (F.1) [20] where the approximated problem has a concave inner problem. The ap-655

proximation is first replacing the inner maximization problem in F.1 with a finite max problem:656

min
w

N∑
i=1

max {`(f(x̂i0(w);w), yi), . . . , `(f(x̂i9(w);w), yi)} , (F.2)

where each x̂ij(w) is the result of a targeted attack on sample xi by changing the output of the657

network to label j.658

To obtain the targeted attack x̂ij(w), we need to introduce an additional procedure. Recall the
images in MNIST have 10 classifications, thus the last layer of the neural network architecture for
learning classification have 10 different neurons. To obain any targeted attack x̂ij(w), we perform
gradient ascent for K times:

xk+1
ij = ProjB(x,ε)

[
xkij + α∇x(Zj(x

k
ij ,w)− Zyi(xkij ,w))

]
, k = 0, · · · ,K − 1,

and let x̂ij(w) = xKij . Here, Zj is the network logit before softmax corresponding to label j; α > 0659

is the step-size; and ProjB(x,ε)[·] is the projection to the infinity ball with radius ε centered at x.660

Using the same setting in [20], we set the iteration number as K = 40, the stepsize as α = 0.01,661

and the perturbation level ε chosen from {0.0, 0.1, 0.2, 0.3, 0.4}.662

Now we can replace the finite max problem (F.2) with a concave problem over a probabilistic sim-663

plex, where the entire problem is non-convex in w, but concave in t:664

min
w

N∑
i=1

max
t∈T

9∑
j=0

tj`
(
f
(
xKij ;w

)
, yi
)
, T = {(t1, · · · , tm) |

m∑
i=1

ti = 1, ti ≥ 0}. (F.3)

We use Convolutional Neural Network(CNN) with the architecture detailed in Table 3 in the exper-665

iments. This setting is the same as in [20].666

Layer Type Shape

Convolution + ReLU 5× 5× 20
Max Pooling 2× 2
Convolution + ReLU 5× 5× 50
Max Pooling 2× 2
Fully Connected + ReLU 800
Fully Connected + ReLU 500
Softmax 10

Table 3: Model Architecture for the MNIST dataset.

The results are listed in Table 2. The first three lines are the results obtained from [20] and the fourth667

line is obtained by using the code provided in [20] to train their algorithm. As for comparison, we run668

our algorithm 2 for the same number of iterations (100 iterations) with parameter p = 0.2, β = 0.8669

and α = 0.5. In the experiment, to compute the projection of a vector of dimension d over the670

probability simplex, we use the algorithm from [41] which has a complexity O(d log d).671
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