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In the appendix, we will give the proof of the main theorems. The appendix is organized as follows:

1. In section A, we list some notations used in the appendix.

2. In section B, we prove the two main theorems in one-block case.

3.

4. In section D, we prove the two main error bound lemmas (Lemma 4.3 and Lemma 4.2)

In section C, we briefly state the proof of the two main theorems in multi-block setting.

under the strict complementarity assumption.

. In section E, we see that the strict complementarity assumption can be relaxed to a weaker

regularity assumption. We also prove that this weaker regularity assumption is generic for
robust regression problems with square loss, i.e., we prove that our regularity assumption
holds with probability 1 if the data points are joint from a continuous distribution.

. In the last section F, we give some more details about the experiment.

A Notations

We first list some notations which will be used in the appendix.

1. [m]={1,2,--- ,m}.

. W* is the solution set of (1.1) or (1.2). X™ is the set of all solutions z*, i.e., * € X* if

there exists a y* such that (z*,y*) € W*.

. B(r) is a Euclidian ball of radius r for proper dimension.

4. dist(v, S) means the Euclidian distance from a point v to a set S.

5. For a vector v, v; means the ¢-th component of v. For a set S, vs € RISI is the vector

containing all components v;’s with i € S.

. Let A € R™™"™ be a matrix and S C [m] be an index set. Then A s represents the row

sub-matrix of A corresponding to the rows with index in S.

7. For a matrix M, v(M) is the smallest singular value of M.

8. The projection of a point y, onto a set X is defined as Px (y) = argmin, ¢ x 3z — y||>.

B Proof of the two main theorems: one-block case

In this section, we prove the two main theorems in one-block case. The proof of the multi-block
case is similar and will be given in the next section.

Proof Sketch.

In Step 1, we will introduce the potential function ¢! which is shown to be bounded below.
To obtain the convergence rate of the algorithms, we want to prove the potential function
can make sufficient decrease at every iterate t, i.e., we want to show ¢* — ¢!*t1 > 0.

In Step 2, we will study this difference ¢* — ¢'T! and provide a lower bound of it in
Proposition 4.2. Notice that a negative term (4.3) will show up in the lower bound, and we
have to carefully analyze the magnitude of this term to obtain ¢* — ¢**! > 0.

Analyzing the negative term will be the main difficulty of the proof. In Step 3, we will
discuss how to deal with this difficulty for solving Problem 1.1 and Problem 1.2 separately.

Finally, we will show the potential function makes a sufficient decrease at every iterate
as stated in (4.4), and will conclude our proof by computing the number of iterations to
achieve an e-solution in Lemma B.12.

B.1 The potential function and basic estimate

Recall that the potential function is:

o' =@(a", 25yt = K(a, 25 y') — 2d(y', 2*) + 2P(2"),

10
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where

p
K(z,zy) = flz.y)+5le -2
d = in K ;
(y,2) min K (z, 23 y),
P = i K JY).
(2) gél)l(lryneag (z,z;y)

Also note thatif p > L, K(z, z; y) is strongly convex of « with modular p — L and V. K (z, z; y) is
Lipschitz-continuous of x with a constant L 4+ p. We also use the following notations:

1. h(z,z) = maxyey K(z, 2;y).

2. z(y,z) = argminge x K(z, z;y), 2*(2) = arg minge x h(z, 2).

3. The set Y (z) = argmaxycy d(y, 2).

4. y1(2) = Pr(y +aVy K(z(y, 2), 2 y))-

5. 24(y, 2) = Px(x — ¢V K(x, z;9)).

First of all, we can prove that ¢! is bounded from below:

Lemma B.1 We have
o(z,y,2) > [

Proof By the definition of d(-) and P(-), we have

K(z,zy) 2 d(y, 2), P(z) 2d(y,z), ,P(z)=/[. (B.1)
Hence, we have
o(r,y,2) = P2)+ (K(z,29) —dy, 2)) + (P(2) — d(y, 2))
> P(z)
> f.
|
Next, we state some “error bounds”.
Lemma B.2 There exist constants o1, 02, 03 independent of y such that
lz(y, 2) — =(y, )| < o1llz = 2|, (B.2)
[2%(2) — 2" ()| < oullz = 2, (B.3)
z(y, 2) = 2(y', )| < o2lly — ¥/l (B.4)
Iz = 2(y", 20| < osfla’ — 2, (B.5)
foranyy,y' €Y and z,2' € X, where o1 = ', 03 = z;ijL)’ 03 = 1+C((C£zi:)z’))..

Proof The proofs of (B.2), (B.3) and (B.5) are the same as those in Lemma 3.6 in [29] and hence
omitted. We only need to prove (B.4). Using the strong convexity of K (-, z;y) of =, we have

—L+p

K(o(,2),259) = Ko, 2),50) < ——Llaly.2) — 2l 2P, B6)
—L
K(a(y,2),51) = Ky, ), 59) 2 = Llaly,2) - o, AP B

Moreover, using the concavity of K (z, z; -) of y, we have
K(z(y,2),zy) — K(z(y,2), 21 9)
< (VK (2(y,2),%9),9 — ) (B.8)
Using the Lipschitz-continuity of V, K (x, z; -), we have
K(z(y',2), zy) — K(z(y',2), z19/)

L
< (VyK(x(y',z),z;y)ay’—y>+§||y—y’||2. (B.9)
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Combining (B.6) and (B.9), we have

(—L+p)|z(y,2) — 2y, 2)| (B.10)
! L !/
< (VyK(x(y,2),2y) = VyK(z(y', 2), 2,9), ¥ — y) +5||yfy 12 (B.11)
L
< (+ Dl 2) =2y, 2)llly =yl + S lly - y'|1%, (B.12)

where the last inequality uses the Cauchy-schwarz inequality and the Lipschitz-continuity of
V.K(:, z;y) of x.
Let ¢ = ||z(y, z) — z(y', 2)||/|ly — ¥||- Then (B.10) becomes
+L L
Prcy .
p—L 2(p-1L)
Hence, we only need to solve the above quadratic inequality. We have
1, 1(p+L\? L
¢ o< g2 +
2 2\p—L 2(p—1L)
1/(p+L 2 p+L
2\p—L 2(p—1L)

1, 1(p+L\> 1(p+L\?
S ,Cz + - L + - L
2 2\p—1L 2\p—1L
1 +L\°
2 p—L
where the first inequality is due to the AM-GM inequality and the third inequality is because (p +
L)/(p — L) > 1. Therefore

¢ <

12
< =
f2C+

L L
CS\@ZL<21L.
p—L p—1L

Hence, we can take 0o = 2(p + L)/(p — L) and finish the proof. [ |

The following lemma is a direct corollary of the above lemma:

Lemma B.3 The dual function d(-, z) is a differentiable function of ywith Lipschitz continuous gra-

dient
Vyd(y, 2) = Vy K(2(y, 2), z:9) = Vy f(2(y, 2), )
and
IVyd(y',2) = Vyd(y", 2)| < Lally’ ="l V¢',y" €Y.
with Ly = L + Los.
Remark.Note that if p > 3L, then we have 05 = 2(p+ L)/(p — L) > 4L and hence
Ly > 5L (B.13)

Proof Using Danskin’s theorem in convex analysis [39], we know that d is a differentiable function

with
Vyd(y, z) = Vy K (2(y, 2), z;9) = Vy f(2(y, 2),v).

To prove the Lipschitz-continuity, we have

IVyd(y',2) = Vyd(y" 2)Il = [IVyK(x(y',2), 29) = Vy K", 2), 9"
IVyK(2(y', 2),219') = VyK(2(y', 2), ;9"
HIVy K (2(y', 2), 2 9") = Vy K (2(y", 2), 239" |
Llly' ="l + Lll=(y', 2) — z(y", 2)|
Llly ="l + Loz|ly’ = y"|l = Lally" — ",
where the last inequality is due to Lemma B.2. [ ]

IN

VANV

We then prove the following basic estimate.

12



se4 Proposition B.4 We let

.

1 1 A(p— L) 1 (p-1L)?
>3L,¢c < ——,a <min{—, —} = min{ —, B < — e
b ¢< e < minlygy et = mia T s ot < MM S8+ 02
(B.14)
365 Then we have
¢t _ ¢t+1 (BIS)
1
Z ngt _ xt+1H2
= g DI+ Lt — 2 (B.16)
S8 + 83
—24pB||lz* (2") — J:(yﬁr(zt), zt)H2 (B.17)
se6 To prove this basic estimate, we need a series of lemmas.
367 Lemma B.5 (Primal Descent) For any t, we have
1
K(a'25y") = K@ 2y ™) >0 ot = a7+ (VK (@ 20y, 0" =y )
c
L 4112 Pt t+112
—— — — — . B.18
Sy =y +2ﬁllz 27| (B.18)
sse  Proof Notice that the step of updating x is a standard gradient projection, hence we have
1
K2t 25yt — K(a'™ 2t yh) > — ot — 2% (B.19)

2¢
ss9  Next, because VK (z, z;y) is L-Lipschitz-continuous of y, we have

L
K(C[;t-‘rl,zt;yt) _ K(wt+17zt;yt+1) Z <VyK($t+17Zt;yt),yt _ yt+1> _ 7||yt _ yt+1\|2.(B.2O)

2
370 Based on the update of variable 2/, i.e. 2t+! = 2t + B(at+! — 21), it is easy to show that

p
K($t+1,zt;yt+1) o K($t+1,zt+1;yt+1) > 7”215 o Zt+1||2.

371 Combining (B.19)-(B.21), we finish the proof. » |
s72 Lemma B.6 (Dual Ascent) For any t, we have
Ay d(y ) 2 (Tl 2y ) - P
—l—lz(th — T (M 2t = 2x(yttL M) (B.21)

2
L
= (VyK(z(y', 2", 25y, 4" — o) - {llyt —y*t1tB.22)

+g(zt+1 )T (L 4 gt 2p(ytt, 2t (B.23)
373 Proof Using Lemma B.3, we have
() (' ) S (T 2y )+ g~y P
= (R, = )+ Sy g B2

2
a7a  Next,
d(yt+1,zt+1) _ d( t+1 Zt)
K(J}(yt+1 zt-‘rl) Zt—i—l yt+1)_K( (yt+1 t) Z t+1)
K (x(y™h ), 2y = K(a(y™, 2, 24y
p p
Sy ™ 2 = 22 = Clla(y, 2 - )

AV

B(zt—H . Zt)T(Zt+1 4t

5 —2x(yt T, 2t ThY). (B.25)

13
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Finally, using (B.24)-(B.25) we finish the proof. [ ]
Recall that
Y(2) = {y €Y | argmaxd(y, 2)}
Y

Note that

for any y(z) € Y(2).
Lemma B.7 (Proximal Descent) For any t > 0, there holds

P(e*1) = P(') < Z("1 = 2T (2 + 2 = 20(y(=", 2)), (B.26)

where y(z'T1 is arbitrary y belongs to the set Y (2t+1).
Proof In the rest of the Appendix, y(2!*1) denote any y belongs to the set Y (2!*1). Using Kaku-
toni’s Theorem, we have

min max K (x, z;y) = maxmin K (x, z;
z€X yey (@, 27y) yeY zeX (@, 25y),

which implies

d = minh = P(z).
max d(y, z) = min h(z, 2) = P(2)

Hence we have
P — P(2)
S PR —dy(), )
DAy ) — dly(=), 2
DRy, 2,2y ) - Ky, ), ()

(0] g(zt-i-l _ Zt)T(Zt-H 4ot 2x(y(zt+1),zt))7

where (i) and (iii) are because of (B.1), (ii) is because of the definition of y(z'*!) and (iv) is from
direct calculation. u

Lemma B.8 2*(2) = z(y, ) forany y € Y (z) and x*(z) is continuous of z. Moreover, we have
z=1%(2)

ifand only if z € X*.

We define

Then we have

Lemma B.9 We have . .
ly+t = g ()] < st — 2+

where kK = aLos.
Proof By the nonexpansiveness of the projection operator, we have

Iy = gL GOl = I+ aVyK(2(y',2), 25 9") = Pr(y' + oV, K 25 y")|
Iy +aVy K (z(y',2"), 2% y")) = (4" + oV, K (@, 2" y")|

aLlz"™ —a(y’, 2"
2",

INIA A

aLos||zt —

where the first inequality is due to the nonexpansiveness of the projection operator, the second is
because of the Lipschitz-continuity of V, K and the last inequality is because of (B.5). [ ]

14



sse  Now we can prove Proposition B.4.

389 Proof Using the three descent lemma, we have

Pt _ Pt+l
! L
> |zt — 22+ <VyK(It+1’Zt;yt),yt — oyt — Dyt -yt p 2t — 212
2c 5 25
2L4
+2<VyK($(yt,zt)7zt;yt)7yt+1 gty — 7”yt g2 (et — T (2 4 2t — 2 (gt L)

—p(H = T (4 2 = 2y (), )

1 L+2L
= %th e Tdﬂyt Y %Hzt — A2 (VK (2 2ty — )

+2<VyK(3;(yt’ zt), zt; yt) - VyK($t+1, Zt; yt)7 yt+1 . yt> 27

+2p(2 1 — 2T (2(y(211Y), 2) — 2(yP T, 2P). B2%)

390 Using the property of the projection operator and the update of the dual variable 3¢, we have

1
(V@ 2590, =) >~y =y
391 Substituting the above inequality into (B.27), we get
(bt _ q)tJrl

1 L+2Ly )
> ollat - )2 + (= - =5y - 12 %Hzt 2
F2(V, K (z(y, 2), 25 ') — VK (2, 25y, — o)
+2p(zt+1 _ Zt)T(x(y(ZhLl),Zt) _ I(ytJrl,ZtJrl))
1 L+ 10L )
> %th — 2% + (a — T)||yt — 2 %Hzt — 2
F2V, K (z(y, 2), 25 ') — VK (2 25y, — o)
Fop( — 2T (e(y(2HY), 20) — a(y T, 2Y)
1 p
> oot =2 P oyt -y 2507 - 2

+2V, K (x(yt, 2Y), 25 y) — VK (2 25ty — o)
F2p( — T (w(y(2HHY), 2 — 2y, 2
392 where the second inequality is because of (B.13) and the last inequality is because o < ﬁ
393 Notice that
(1 — )T (x(y(2H1), 24) — z(yt L, 2L
— op( — )T ((a(y(2HY), 2Y) — a(y(z1), 2 + (2(y (1), 2 — 2yt )
= 2" = )T (2(y(2"), 2) — w(y(z"), 1)
z

F2p(a )T (a(y (), ) — 2yt 2)
@
> 2o | = 2P 4 2p(a - )T (a(y (), ) — a(yt )
(i) p
> —2po et 2 = Dl - 2 GpBla(y(s1), o)~y 2P,

66
394 where (i) is because of the Cauchy-Schwarz inequality and Lemma B.2 and (ii) is due to the AM-GM
395 inequality. Also we have

2V, K(z(y', 1), 25 y') — VK (2 2 yt), y T — )
—2|[V, K (a(y', 2), 25y = VK (@250 -y -
—2La T = 2y, 2] - llyt -yt

—Lodlly" =y = Loy * [l — 2 (y", 20|
t+1||2 _ L||l,t+1 _ xtsz

A2 VAR \VARLY,

—La3lly' —y

15



396
397
398

399

400

401
402

404

where the first inequality is because of the Cauchy-Schwarz in equality, the second inequality is be-
cause VK =V, f is L-Lipschitz-continuous, the third inequality is due to the AM-GM inequality

and the last is because of (B.5).

Hence we have
(bt _ ‘I)t-‘rl

1 1
> (=D’ =P+ (-

- 2c

—L 2 t_ t+1 2 7_2 _ 7
o~ LoD~ P+ (2 - L -

—6pBlla(y(z"th), 2 ) — a(yt 2P
By the conditions of p, ¢, we have

1/2¢ — L > 1/4ec.

By the condition for o, we have

a < 1/(4La3),

which yields
1/(2a) — Lo? > 1/(4a)
And by the conditions that 5 < 55 and p > 3L together with the definition of o1,
L —opoy — 2> L
2 68 ~ 4p°
Then we have
(bt—(I)t+1
1 p
S gt — 2 L gt 2 Pyt 12
> let = et =y R+ -
—6pfllz(y("1), 2 — 2y, 2
I R R ST R TR RO R LT S SRR
= gl =R R e

—6pBlla™ (") —a(y™, 27
where the last equality is because of Lemma B.8. By Lemma B.9 and the convexity of the norm

square function, we have

[y =" 17 = @ =y (") + Wz —yO))1?
>yt =y EOIP2 =y =y )P
>yt = yh (2N)P/2 — kPl — 2

Similarly, by Lemma B.9, (B.4) and the convexity of norm square function, we have

lz* (=) —
= (=
+Ha(yl (1),
Afla* (") -

*(zt+1)

IN

+Hl|z(y} (21), 2
P+ Al (") -

IN

4af||zt —

+402 k2|2t —
P+ 4l (") -

= 8ot -

+402k% |2t —

t+1 t+1) ”2

P ) + (@) - 0l (9, 2)
) =y ) + (el ) — ()P
2P + 4l (24) — 2l (), 2P
=y P + eyt ) — eyt )
2l (=), 1)
A R B

o(yl (1), 2"

z(y

)II?

t+1H2'

Substituting (B.31) and (B.34) to (B.29) yields

(bt _ ¢t+1

2 (i — 24pBoik? — k2 /(4a)) ||zt — 22
gl — oGO+ (G~ aspedf — =1
—24pB|lz* (") — z(y' (zh), 21|

16
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(B.29)

(B.30)

(B.31)
(B.32)
(B.33)

(B.34)
(B.35)
(B.36)
(B.37)
(B.38)
(B.39)
(B.40)
(B.41)
(B.42)



Notice that
a < 1/(4Lo) < 1/(4cL?0?),
and hence k2 /(4a) = a?L?03 /(4a) < 1/(16¢). Also we have

B < 1/(96pac3),

thus
24pPosk? < k*/(4a) < 1/(16¢).

Consequently, we have
1
(— — 24pBoak? — K?/(4a)) < 1/(8c).

4c
By the definition of ¢; and the conditions p > 3L, 8 < %, we have
p 2 p
— — 48 >
405 Combining the above, we have
d)t _ ¢t+1
1
2 gHItfﬂjtJrlHQ
1 2 p 12
+@Hyt — gL (2P + @Ilzt -2

—24pplla* (=) — a(y! ("), )|,
406 which finishes the proof. [ ]

407 B.2 General nonconvex-concave case
408 We have the following error bound:
409 Lemma B.10 We have

(p = L)lla* (=) = a(y! (=), 2] (L +aL)lly’ =y (") - dist(y (=), Y (2")).

<
< (+al)lly -y ()l DY),
#10  where D(Y') is the diameter of Y.

411 The proof will be given in the next section.

412 Lemma B.11 If ~
max{[|z* — 2", ly* — yh (2D, 2" = 2} < e, (B.43)

s13  then (21 y'™1) is a Ae— solution for some \ > 0.

414 Proof

By the update of z'*!, we have
1
et = arg min{(Ve f(2*,y") + p(a’ —2"), 2 — ') + ||z - a'[* + o(2)}-

415 Therefore, we have

0€ Vauf(a™ y") +pa™ —2) + %(x”l — b)) 4+ o (ztTh). (B.44)
416 Similarly, we have
0 € argmin{ -V, /(2" y") + é(yt+1 —y") ey} (B.45)
We let
u= (Vo f(a™ y") =V f (2, y" )+ (Vo f (@ y™ )=V, (", yt))—p(l‘t“—zt)_%(xt“—fvt)

17



and
0= V) -V f ) S -y,
417 By the Lipschitz-continuity of V. f(x, y), Lemma B.9 and (B.43), we have
< l~s
- C
< (+p+1/0et+ Lly' — v I+ i () =y
< (14+p+1/c)e+ e+ ke,
where the first and the second inequalities are both due to (B.43), the triangular inequality and the

Lipschitz-continuity of V. f(-) and the last inequality is because of Lemma B.9. Similarly, we can
prove that

[l Lija* — 2" + Llly* =y + pe +

1
o <(L+14+k+ &)e.
st Hence, we finish the proof withn = 2+ L + p + xk + max{1/c,1/a}.
419 u

420 We say that ¢! decreases sufficiently if

1 1 pB
o' =" = oot = 2P 4 ey = gL OIP Tl = (B.46)

a2t LemmaB.12 Let T > 0. Then if forany t € {0,1,--- T — 1}, (B.46) holds, there must exist
a2 at e {1,2,---,T} such that (x*,y") is an C//T B-solution. Moreover; if for any t > 0, (B.46)
423 holds, Then any limit point of (z*,y*) is a solution of (1.2), and the iteration complexity of attaining
a4 an e—solution is O(1/€).

425 Proof

426 We have

T—1
O —f = D (-9 (B.47)
t=0
T—1
> (1/(16¢) +1/(16a) 4+ p/16) Y max{[|z’ — 22, [|ly* — v (z")[|, Blla"*" — €B48)
t=0
where the last inequality is due to (B.46). Therefore, there existsat € {0,1,--- ,T — 1} such that

(1/(16¢) +1/(16a) + p/16) max{||z* — ="1|°, [ly" — o, (2")|I%, Bl = 2'|*} < (8° — f)/T.
Since 8 < 1, we further get
(1/(16¢) +1/(16a) +p/16) max{[|z* — 1|1, |l =y’ ()17, 12" = 2%} < (¢° = /) /(TB).

427 Hence, by Lemma B.11, (2!t 4'*1) is a \/(qbo — f)/((1/8¢+ 1/8a+ 16)T3)-solution. Ac-

a8 cording to above analysis, If (B.46) holds for any ¢, we can attain an e-solution within (¢° —
420 f)/(B(1/(16¢) +1/(16a) + p/16)e?) iterations. Moreover, if (B.46) holds for any ¢, by (B.47), we
430 have

max{||z’ — 2", [ly* — g ()], [|2° — 2} - 0. (B.49)
Consequently, for any limit point (Z, %) of (xt,y"), there exists a z such that
max{(|z — 2, (7, 2)|, 17 — 7+ (DI, 1747, 2) — 2]} = 0,
which yields (Z, §) is a stationary solution. Here
$+(y, Z) = PX(Q: - viCK(xv Z3 y))
431 |

432 Now we are ready to prove Theorem 3.3.

433 Proof [Proof of Theorem 3.3] There are two cases (B.50) and (B.51) as discussed in the proof for
43¢ the general nonconvex-concave problems in last subsection.
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1. Forsomet € {0,1,--- ,T — 1}, we have

1

2 83

(B.50)
2. Foranyt € {0,1,---,T — 1},

1 1 1
5 max{ g lat =R, oo =y (OIP =) 2 24pBla” () =y (1), =)
(B.51)
In the first case (B.50), we have
ly' =o' (297 < 384pBalz(y) ("), 2") — = ()|
1+al
< 3s4p8al 2 1yt gt () DY),
Hence, letting \; = 384])04(1;7@;) - D(Y"), we have
" =y ()] < M (B.52)
Moreover,
e+t =22 = I = 2/8)17 (B.53)
(i)
< 384p\|33(y3r(zt), 21—z (Y| (B.54)
(i) 1+al
< 384p— DY)y’ — i (] (B.55)
(iii) 1 L
< 384p +_aL D(Y)\ B, (B.56)

where Inequality (i) is due to Inequality (B.50) and (ii) is because of Lemma B.10 and (iii) is due to
(B.52). We also have

|zt — T2 < 384cpB|z*(2") — x(yi(zt), zt)||2 (B.57)
(i) 14+ aL
< 384pef—— DMy ~ i ()] (B.58)
(iii) 1 L
< 384pe p+_O‘L M D(Y)B2, (B.59)

where (i) is due to (B.50), (ii) is due to Lemma B.10 and (iii) is because of (B.52). Combining the
above, in the first case, we have

max{[|lz’ — 2%, Iyt =yl ()17 (|20 — 2%} (B.60)
< max{Ae8%, A16%, A58}, (B.61)
where Ay = 384pLraL D(Y) A1 and A3 = 192petEeEN D(Y) According to Lemma B.11, there

exists a A > 0 such that (2! y*+1) isa A

max{ 3, /[}-solution.

In the second case, we have

1 1 1
t_ gt S t o t+1)2 B NI t 412
8 =9 2 et — P ol = GO + gl -
forany t € {0,1,---,7 — 1}. By Lemma B.12, there exists a ¢t € {0,1,--- ,T — 1}, such that

('t y" ) s a \/(gbo — £)/((1/8¢ + 1/8a + 16)T8)-solution Finally taking 3 = 1/v/T and

combining the two cases with Lemma B.12 yield the desired results.
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451 B.3 The max problem is over a discrete set

452 In this subsection, we prove Theorem 3.6. We will prove that under the strict complementarity
453 assumption, the potential function ¢ decreases sufficiently after any iteration. Then by the following
454 simple lemma, we can prove Theorem 3.6.

By the bounded level set assumption (Assumption 3.5) and the fact that ¢(z) < P(z), for any
(20,90, 29) € R*t™m*" there exists a constant R(z°%, 4%, 2°) > 0 such that
{1 P(2) < 6(a°,",2%)} € B(R(2",y", 2")).

455 Then we have the following “dual error bound”. Note that this error bound is homogeneous com-
456 pared to Lemma B.10.

Lemma B.13 Let
x+(y, Z) = PX(I' - VzK(xv 23 y))
If the strict complementarity assumption and the bounded level set assumption hold for (1.2), there
exists 0 > 0, such that if
2]l < R(2®,3°,2°),
and
max{ ||z — x4 (y, 2) |l [y = y4- ()| 4 (y, 2) = 2[|} <6
we have
2(y+(2),2) — 2" (2)[| < oslly —ys(2)||
457 for some constant o5 > 0.

458 Equipped with the dual error bound, we can prove the that the potential function decreases after any
459 iteration in the following proposition:

460 Proposition B.14 Suppose the conditions in Theorem 3.6 holds, we have

p

1 1
bt s Tt b2 oty )2
¢ — o o =1 oy’ = o DI + o

2 1o |2 — 212 (B.62)

a1 Proof We set B < min{d/v/A2,0/\1,8%/X3,1/(384pac?)}. First, we prove that

p

ﬁ||,zf — 212 (B.63)

1 1
¢ — 't > 1760||$t — a2+ @Hyt -y OIP+

and
2] < R(2°, 5", 2°)
462 for any ¢ > 0. We prove it by induction. We will prove that

463 L If |2t < R(2°,4°, 2°), then

1 1 p
¢ — 't > T6c”xt -7+ ﬁ”yt -y IP + @Hzt — 22 (B.64)

a64 2. If o'+ < ¢f, we have || 20T < R(20, 40, 20).

se5 For t = 0, it is trivial that ||2t]| < R(2%,9Y, 2°). For the first step, assume that we have ||z!|| <
ass  R(x0,4°, 20). There are two cases:

467 1. For some ¢, we have

1 1 1

g s la—a 2, oy (1, Gl < 2498 () (' (), )
(B.65)

468 2. For any t,

1 1 1 p .
5 max{ o= [l =2, =y =y (NI 5112 =2 TP} = 24pBllar (2) —(yh (), )1

2 ' 83
(B.66)
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469 For the first case, as in the last subsection, we have
max{||z* — ", [ly" — o' ()7 2" = 2117}
max{)‘QBQa >‘§627 )\SB}
62,
470 Hence, we can make use of Lemma B.13. In fact, we have
24pBlla(yl (z"), 2") — 2z (Z)[> < 24pBoilly’ — v (2|

1

16

471 which yields (B.46) together with (B.15). For the second case, (B.46) holds as in the last subsec-
a72 tion. Hence, if |2t < R(z,y°, 2°), we have (B.46). For the second step, if (B.46) holds for
az3 0,1,--- ,(t — 1), we have

IA A

< 17,

ly* = v (")

P(Zt+1) ¢t+1

"

a74  Hence, 2! € B(R(z", y°, 2°)). Combining these, for any ¢ > 0, ||2|| < R(z?,y", 2°) and (B.46)
475 holds. Then the theorem comes from Lemma B.12. ]

IA A

a6 C The multi-block cases

477 The proofs for the multi-block case is similar to the one-block case. In this section, we briefly
478 introduce the proof of them. Note that the only differences for proving the theorem s are Lemma
479 B.5, (B.5) and Proposition 4.1. Instead, we have the following:

480 Lemma C.1 (Primal Descent) For any t, we have

1
K(a' 25yh) — K@@ 2yt > gcllwt — "+ (VK (2" 25y, )t =yt

2
28

481 The proof of it is the same as Lemma 5.3 in [29]. The error bound (B.5) becomes:

L
=5l =y P+ gl = (C.1)

Lemma C.2 We have ) )
o+t — 2yt 2] < aplat — 2+,

a2 where o = (c(p — L) + 1+ ¢(L + p)N3/?)/c(p — L).

483 The proof of Lemma C.2 is similar to Lemma 5.2 in [29] hence omitted here. Because of the above
484 two differences, we have a replacement of Proposition B.4:

ags  Proposition C.3 We let

}.

1 1 62(]9 — L)2 o1 (p— L)2

3L,c< —— in{—— N B e A
p> ,C p—i—L’Oé<mln{llL,4L(1+C(p+L)N3/2+C(p—L))2}’mln{207ﬂ 384p(p+L)2

(C.2)

486 Then we have
¢r — o't (C.3)
1
> @th — "
Tl gt — g P+ et — 2 (C4)
4o + 83
—24pfla* (") — x(y ("), 2| (C.5)

487 The proof of Proposition C.3 is similar to Proposition B.4 hence omitted.
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D Proof of the error bound lemmas

D.1 Proof of lemma B.10

Let
2+(y,2) = Px(z - eV, K(z, 2y))
and
y+(2) = Py (y + oV K(x(y, 2), ;9))-
Then Lemma B.10 can be written as

Lemma D.1 We have

(p = D)llz* (2) = 2(y+(2), 2)|I? (1+al)lly —y+ (2)[| - dist(y(2), Y(2)).

<

< (1+aD)y s () DY),
where D(Y) is the diameter of Y.

Proof By the strong convexity of K (-, z;y), we have

=L ays (), 2) ~ 2" )P D)

iy
s
2

K(2"(2), 2,5 94(2)) = K(2(y+(2), 2)z94(2)) >

K(x(y+(2),2), z9(2)) — K(27(2), z39(2)) >

(y4(2),2) —z*(2)], (D.2)

where y(z) is an arbitrary vector in Y (z). Notice that y; (z) is the maximizer of the following
problem:

max{ K (x(y+(2), 2), % 9) - 0 (y, y+ (2): )7},
where
6y, y+(2);2) = (y+(2) + aVyK(2(y4(2), 2), 2:4+(2))) — (¥ + g K (2(y4(2), 2), 23 9))
satisfies
16y, y+(2); 2)| < (1 + al)lly —y+ (2,
by the Lipschitz-continuity of V,K = V, f. Hence, we have

K(x(y1(2),2), 2:9(2)) — 67 (y, y+(2); 2)y(2)
< K(2(ys(2),2), 294 (2) = 67 (4, 4+ (2); 2)y4(2).

Then, we have the following estimates:

K(z(y+(2),2), 259(2)) — K(2(y4(2), 2), 23 ¥4 (2)) (D.3)
< (y(2) =y (2) T8y, v (2); 2) (D4)
< v+ () =yl - A+ al)lly —y+ (). (D.5)

Also because y(z) maximizes

K(z*(2),
max ("(2), 95 2),

we have
K(2%(2), z9(2)) = K(2"(2), 2,9+ (2))- (D.6)
Since y(z) is an arbitrary vector in Y'(z), combining (D.1), (D.3), (D.6), we have
(p = L)||z*(2) = 2(y+(2), 2)II” < (1 + aL)|ly — y+(2)] - dist(y+ (), Y (2)),

which is the desired result. |
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D.2 Proof of Lemma B.13

For a pair of min-max solution of (1.2), the KKT conditions in the following hold:

JTF(z*)y =0, (D.7)
> yi=1, (D.8)
i=1

yi > 0,Vi € [m] (D.9)
uw—v; = fi(x),Vi € [m], (D.10)
v; > 0,vy;, =0,Vi € [m], (D.11)

where . is the multiplier of the equality constraint ) ;" y; = 1 and v; is the multiplier for the

inequality constraint y; > 0.
Definition D.2 Fory € Y, we define the active set
Alyl = {i € [m] | y: = 0}.
We also define the inactive set of y as follows:
Iyl = {i € [m] [ y: > 0}.
Definition D.3 For an x € R™, we define the top coordinate set T () as the collection of all indexes
of the top coordinates of F(x), i.e., fi(x) > f;(z)ifi € T(x),j ¢ T(x) and fi(z) = f;(z) if
i,j € T(x).
According to the KKT conditions, it is easy to see that for (z,y) € W*,
Ily] € T ().
Recall that we have the following strict complementarity condition:
Assumption D.4 For any (z,y) satisfying (D.7), we have
v; > 0,Vi € Aly].
It is easy to see that if the strict complementarity assumption holds,
Iyl = T(x)

for (z,y) € W*. Then we can prove the following “dual error bound”.

Lemma D.5 If the strict complementarity assumption holds for (1.2), there exists § > 0, such that

if
2]l < R(2,4°, 2°),
and
max{||lz — x4 (y, 2)Il, |y — v+ (2 llz4(y, 2) — ]I} <6
we have

[2(y+(2),2) — 2" (2)[| < oslly —y4(2)||
for some constant o5 > 0.

To prove this, we need the following lemmas. First, we prove that if the residuals go to zero, the
iteration points converge to a solution.

Lemma D.6 If {2*} is a sequence with || 2| < R(z°,4°, 2°) and
max{[la® — 2 (y*, M), 1" = 5 P, N2h (vF, 2%) = 25} — o,
there exists a sub-sequence of {z*} converging to some z € X*.

Proof It is just a direct corollary of Lemma B.11. [ ]
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Lemma D.7 Let
M(m) = {JT(I)F(LB) 1} .
Then if (x,y) € W*, the matrix M (x)(x) is of full row rank.

Proof We prove it by contradiction. If for some (z*, y*, pu*, v*) satisfying (D.7), M (x*) is not of

full row rank. Without loss of generality, we assume that 7 (z*) = {1,2,--- ,|7 (z*)|} Then there
exists a nonzero vector v € RI7 ()| such that
MT(z*)v = 0.

Let d = min, 7y, {y:/|vi|}. Then we define a vector y’ € R™ as:

yi =y* —dv;, when i€T;

y; =0, when otherwise.
Notice that y7 = 0 for any i ¢ T (z*). Then ¢’ satisfies
JTF(a)y =0,

m
doyi=1,
i=1

Y >0,i€ T(z*),
yz/‘ =0,1 g—f T(x*)

Therefore, (z*,y', 1, v) still satisfies (D.7) . Moreover, let ig € Z satisfying d = y;. /v;,. Then
ygo = v;, = 0. This is a contradiction to the strict complementarity assumption. [ ]

We then have the following corollary from the above lemma and (D.7):

Corollary D.8 For any x* € X*, there exists only one y € Y such that (z*,y) € W* and there
exists only one (i, v) such that (z*,y, p, v) satisfies (D.7).

Proof First, this (y, u, v) must exist due to the existence of a solution. Next, the solution y must
satisfy

MT(x*)y = (05 07 e 707 1)T
By LemmaD.7, M T (2*) is of full column rank hence the solution of y is unique. Furthermore, since
Z;’;l y; = 1, there is at least one ¢ such that y; > 0,v; = 0. Without loss of generality, we assume
that y; > 0,7 = 0. Then p = f1(«*) by (3.5). Further by (3.5), v; = fi(z*) — p,i =2,3,--- ,m.
Hence, u, v; are uniquely defined. [ ]

Lemma D.9 If the strict complementarity assumption holds for (1.2) , there exists 6 > 0,y > 0,
such that if
2]l < R(2y°, 2°),

and
max{ |z — z4(y, 2)I[, |y — v+ (), lz4(y, 2) — ]I} <6
V(M (z*(2))) = v and v(M (z(y, 2))) > 7.

Proof We prove it by contradiction. Suppose it is not true, there exists {z*} C B(R(2?,3°, %))
such that (M (z*(2*))) — 0 and

max{|[a® — 2% (", M), ly* = (M) [l28 (", 2%) = 2"} = 0.

Since 7 (z) has only finite choice, without loss of generality, we assume that 7 (z*(2%)) = T for
any k(passing to a sub-sequence if necessary). By Lemma D.6, there exists a Z € X* such that
2P — Z. We let

M(z) = lim M(z*(2%)) = {Jr(z*(2)) 1}.

k—o0
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532

By the continuity of z*(-)((B.3) of Lemma B.2) and the continuity of the function of taking the least
singular value, we know that

V(M (2)) =0,

where we also use the fact that ©*(Z) = Z by Lemma B.8. Moreover, according to the definition
of T[z], we have fi(x*(2*)) > f;(z*(z*)) for any k with i € T,j ¢ T. Therefore, we have
fi(z2) > fj(2) fori € T,j ¢ T. Consequently, we have

T CTlz).

Therefore M (x*(Z)) is a row sub-matrix of M (Z). Consequently, M () is not of full row rank. This
is a contradiction! For z(y, z), it is similar to prove the desired result. Hence the details are omitted.
|

The following lemma shows that if the residuals are small, the active set of y4 (z) and y(z) € Y (2)
are the same.

Lemma D.10 [f the strict complementarity assumption holds for (1.2), there exists § > 0, such that

if
2]l < R(2%4°, 2°),
and
max{||z — 24 (y, 2) ||, |y — y+ ) 24 (y, z) — 2[I} <4,
we have

Aly+(2)] = Aly(2)], for some y(z) € Y (2).
Proof We prove it by contradiction. Suppose that there exists a sequence {(z*,4*, z¥)} such that
max{[|z* — 2§ (5", 27, Iy — o5 O ll2h (%, 25) = 2° )1} = 0

and
Al ()] # Aly(29)].

Since {y% (2*)}, {z*} are bounded, we assume that y* (2*) — ¢, z2¥ — z. We write down the KKT
condition for (z(y¥ (2%), 2%), y* (2*)) as follows:

JTF(x(ys (27), )k (%) + p(a (v (29), 2%) — 2F) =0, (D.12)
i(yf)m’“) =1, (D.13)
@Mz’“) > 0,Vi € [m] (D.14)
é(yfﬂ(zk) - éyf + filx(yF, 29) + ub = vf = fi(z(yh(29), 2M), Vi € [m],(D.15)
vl > 0,05 (yl) 4 () = 0,¥i € [m], (D.16)

It is not hard to check that y, v are bounded. Hence, we assume that * — i and ¥ — 7. We take
limit to (D.12) and make use of the fact that
ly* =95 ()l =0

together with Lemma B.2. We then attain that (z(g, Z),y) is a min-max solution of (1.2), i.e.,
(x(g, barz),y, i, v) satisfies (D.7). By the strict complementarity assumption, ; > 0 for i € A[J]
and §; > 0 for i ¢ A[y]. Hence, for k sufficiently large, we have A[y¥ (z*)] = A[y]. Similarly,
when £ is sufficiently large, we have
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We also write down the KKT conditions for z*(z) for some z.

JEF(a*(2))y + p(a*(2) = 2) = 0, (D.17)
> yi=1, (D.18)
yi>0 Vi € [m) (D.19)
-V, = fz( ) VZ € [m]7 (DZO)
v; 2 0,v;y; = 0,Vi € [m], (D.21)
Lemma D.11 [fthe strict complementarity assumption holds for (1.2), there exists § > 0, such that
if
2] < R(°,y°,2°),
and
max{[|lz — x4 (y, 2)|, Iy —y+ (), 24 (y, 2) = 2[[} <&
we have

dist(y+(2),y(2)) < Allz"(2) — 2(y+(2), 2

534 for some constant A > 0.
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Proof By Lemma D.10, if the strict complementarity assumption holds for (1.2), there exists § > 0,
such that if
2] < R(2°,4°, 2°),
and
max{||z — x4 (y, 2)[I, |y — y+ () 24 (y, 2) — 2]} <6,

Aly+(2)] = Aly(2)];
for some y(z) € Y (z). Hence, we have
T(27(2)) = T(2(y+(2), 2)).
Let T = T(a"(2)). Then for i ¢ T, yi(2) = (y+(2))i = 0and |ly(2) -y (2)] = lI(y(2)
(y+(2))7||- Using the optimality conditions for x(y+( ) ) (D.12) and z*(z) (D.17), we have

MT 2y (2), 2)) (9+ ()7 + {p(x )} 0.1), (D.22)

we have

and
M (x*(2)) (y(2)) T + {p(m*(g) N z)} = (0,0,---,0,1). (D.23)

Note that (D.22) can be written as

M () ()7 = MY ) =M (ol (), o (1)~ { PO =9

(D.24)
By (D.23) and (D.24), we have

M@ )T~ (D7) = (1 ol (2 2) - @ D) s () { P G2 = D,
Therefore, taking norms to the above and the Lemma D.9, we have

Wy+@)7 = W7l < VmLla(ys(2), 2) — 2" @)+ ()7l + plla(ys (), 2) — 2" (2)||
< (VmL+p)la7(2) = z(y+(2), 2);

where the first inequality uses the Lipschitz-continuity of V, f; and the second is because ||y (2)]| <

1. Hence, we finish the proof with A = (p + /mL)/~. [ |

Proof [Proof of Lemma B.13] By Lemma B.10 and Lemma D.11, we have

le(ys (=), 2) — <>||_;(+—QL)Hy v ()],

which finishes the proof with o5 = Al(;ff) ) [ |
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E Discussion of the strict complementarity condition

In this section, we discuss some issues about the strict complementarity assumption. First, notice
that the min-max problem (1.1) and (1.2) are both variational inequalities. As mentioned in the main
text of the paper, the strict complementarity assumption is common in the field of variation inequality
[36,37]. While this assumption is popular, it is still interesting to weaken the assumption. Inspired
by Lemma D.7, we prove Theorem 3.6 and Lemma 4.2 using a weaker regularity assumption rather
than the strict complementarity assumption:

Assumption E.1 For any (x*,y*) € W*, the matrix M (x*) is of full column rank.

Here recall that
M(e") = {Jr@ 1}
We say that Assumption E.1 is weaker since the strict complementarity assumption (Assumption

D.4) can imply Assumption E.1 according to Lemma D.7. For this assumption, we have the follow-
ing two claims:

1. If we replace Assumption D.4 by Assumption E.1 in Theorem 3.6, we can attain a same
result;

2. In a robust regression problem (will define in E.2), if the data is joint from a continuous
distribution, this regularity assumption holds with probability 1.

E.1 Replacing Assumption D.4 by Assumption E.1 in Theorem 3.6

In this section, we will see that we can prove the dual error bound (Lemma 4.2) using Assumption
E.1 instead of Assumption D.4.

Lemma E.2 Let
24 (y,2) = Px(x — V. K(x, z;9)).
If Assumption E.1 and the bounded level set assumption hold for (1.2), there exists § > 0, such that
i
! 2] < R(z°,y°,2°),
and
max{ ||z — x4 (y, 2) |l |y = v+ ()| 4 (y, 2) = 2[|} <6
we have
2(y+(2),2) — 2" (2)[| < oslly —y+(2)||

for some constant o5 > 0.
Using this Lemma, we can prove Theorem 3.6 using Assumption E.1:

Theorem E.3 Consider solving Problem 1.2 by Algorithm 2 or Algorithm 3. Suppose that As-
sumption E.1 holds and either Assumption 3.5 holds or assume {z'} is bounded. Then there exist
constants' B’ and 5" depending on the problem such that the following holds.

1. (One-block case) If we choose the parameters in Algorithm 2 as in (C.2) and further let
B < B, then we have:

(a) Every limit point of (x*,y') is a solution of (1.2).
(b) The iteration complexity of Algorithm 2 to attain an e-solution is O(1/€?).

2. (Multi-block case) Consider using Algorithm 3 to solve Problem 1.2. If we replace the
c(p—L)®
1+c(p+L)N3/24c2(p—L
B < 1/VT,8 < 1/VT and 3 < B", then we have the same results as in the one-block

case.

condition for ovin (C.2) by v < min{ i1, T Bl } and further require

!These two constants, 3’ and 8", are independent of € and T and will be discussed in the appendix.
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E.2 The rationality of Assumption E.1

Intuitively, the assumption E.1 holds for “generic problem”. We rigorously justify this intuition
for a simple problem. More specifically, we prove that this regularity assumption is generic for a
robust regression problem using square loss, i.e., the regularity condition holds with probability 1 if
the outputs of the data points are joint from some continuous distribution. Consider the following
problem:

1
1 Z (2 ) E.l
min max oy, (b — (x,&))? E.1

where Y is the probability simplex , ¥(-) is a smooth function used to fit the data (for example the
neural network) and &;, ¢; are the input and the output of the i-th data point. We define ¥;(z) =
U(x, &;) for convenience. We further make the following mild assumptions:

Assumption E.4 /; is joint independently from a continuous distribution over a positive measure
set L; C R.

Here a continuous distribution over £; means that for any zero measure set S C R, Pr(z € SN
L;) = 0. With assumption, for any zero measure set S C R™, Pr((¢1, -+ ,4,,)" € SN2, E ) =
0.

Assumption E.5 Let U(z) = (Vy(z), -+, U, (z))T. Then O(R™) N2, L; = Q, where Qisa
zero measure set in [ [~ | L;.

This assumption means that min, maxycy f;(x) > 0 with probability 1. This assumption is reason-
able. If there exists an 2* such that max; f;(z*) = 0, then becaus f;(x) > 0, we have f;(z*) =0
for all 7. In this case, we do not need the min-max fomulation! We just need to solve the finite sum

problem min, ZZL fi(x). However, in many cases, the uncertainty is large, we do need the robust
optimization formulation. So in these cases, Assumption E.5 is reasonable.

Moreover, we have the following lemma:

Lemma E.6 Suppose that Assumption E.4 holds. If m > n, Assumption E.5 holds with probability
1.

Proof It is direct from the claim that a smooth map ¥ maps a zero measure set into a zero measure
set. Specializing to this lemma, the map ¥ maps R™ into R™, hence the image W(R™) is of zero
measure since R™ is a zero measure set of R™. Therefore, ¥(R™)N[];~, £; is zero measure in R™.
|

Then we have the following result:

Proposition E.7 Suppose that Assumption E.4 and Assumption E.5 hold. Then with probability 1,
every solution of (E.1) satisfies Assumption E. 1.

E.3 Proof of Lemma E.2 and Theorem E.3

For a set S C [m], we define
Ms(z) = {Jsp(ws) 1},
where JsF(x;ls) = ((¥;(x) — Ei)Vw\Ilz( )|i€S).

Similar to the proof of Theorem 3.6, to prove Theorem E.3, we only to prove Lemma E.2. Hence,
in this section, we only prove Lemma E.2. The proof is similar to the proof of Lemma 4.2. Hence
we only give the main steps. First, similar to Lemma D.9, we have the following:

Lemma E.8 If Assumption E.1 holds for Problem (E.1), there exists 6 > 0,y > 0, such that if
2] < R(z°, 9, 2°),
and
max{||z — 24 (y, 2)|; ly — y+ (), |24 (y, 2) — 2]} <6,
then (M, - (2 ())) = 7 and /(M 2 (2(y+4 (2), 2))) = 7, where

T(y,2z) = T(2"(2)) U T (2(y+(2), 2))-
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Proof We prove it by contradiction. Suppose it is not true, there exist {z*}, {y*} C Y and

{z*} € B(R(2,1°, 2%)) such that 5 (M« (2™ (%)), v (M (2(y} (2*), 2%))) — 0 and
max{||z" — 2 (y*, 2P, ly" = yE GO, N2 (%, 2%) =281} =0,

where 7% = T(2*(z%)) U T (2(y% (%), 2"%)). Since T* has only finite choice, without loss of

generality, we assume that 7% = T for any k(passing to a sub-sequence if necessary). By Lemma
D.6, there exists a Z € X* such that z* — z. Hence, by Lemma B.2 and Lemma B.8, we have

¥ (2F) = 2*(2) = 2.
Therefore by the definition of 7 (), when k is sufficiently large, 7 (z*(2*) C T(2*(2)) = T (2)).
Moreover, since ||y* — y* (z¥)|| — 0, by Lemma B.10, we have
(7 (%), 2°) = 2* (M) = 0.
and hence 7 (z(y% (2*),2%)) C T(z). Then T* C T(z) and v(M)y+ = 0, which contradicts
Assumption E.1. [ ]

We then can attain a result similar to Lemma D.11.

Lemma E.9 [f Assumption E.1 holds for (1.2), there exists § > 0, such that if
2] < R(°,4°,2°),

and
max{|lz — x4 (y, 2)Il, |y — v+ (2 lz4(y, 2) — ]I} <6

dist(y+(2),y(2)) < Allz"(2) — 2(y+(2), )|
for some constant A > 0.

we have

Proof By Lemma E.8, we can find ad > 0 and a y > 0, such that if
2]l < R(2%y°, 2°),
and
max{[lz — x4 (y, 2)[|, Iy — y+ ()|, |2+ (y, 2) — ]I} <9,
then y(M (... (2*())) > 7 and (M (y.2) (@(y+(2), 2))) > 7. where
T(y,z) = T(x"(2)) UT(x(y+(2),2))-

Let T = T(y,z). Then fori & T, yi(2) = (y+(2)): = 0and [ly(2) —y1(2)]| = [l(y(2))7 —
(y+(2))7]|. Using the optimality conditions for x( +(2),2) (D.12) and z*(z) (D.17), we have
(2

MF Gl (s + PO o on @2
and
M@+ {7 = 000, ©3)
Note that (E.2) can be written as

MF ()0 ()7 = M D)o (e MF el (2, ) s () { PO (1) =)

(E4)
By (E.3) and (E.4), we have

M (2" (2)) (y(2) —y+(2)) = (M7 (2(y4(2), 2)) = M7 (" (2))) (y+ ()7 =P (y+ (2), 2) =27 (2)).

Therefore, taking norms to the above and the Lemma D.9, we have

My )7 = W7l < VmLllz(y(2), 2) — 2" ()[4 ()7l + plleys (2), 2) — 27 (2)]
< (VmL+p)lla™(2) — 2(y+(2), 2],

where the first inequality uses the Lipschitz-continuity of V, f; and the second is because ||y+(z)|| <
1. Hence, we finish the proof with A = (p + /mL) /7. [ |

Then Lemma E.9 and Lemma 4.3 yield Theorem E.3.
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E.4 Proof of Proposition E.7

For a set S C [m], we define
Ms(z;ls) = {Jsr@es) 1},
where JsF(x;ls) = (V;(x) — )V, U (x) |1 € S).
Proof Define the event £ p to be: there exists a solution (x*,y*) € W* , such that M (z*) is not
of full row rank, 7 (2*) = 7 and ¥;(z*) — ¢; > 0fori € P and ¥;(z*) — ¢; for i ¢ P. Then
Proposition E.7 is equivalent to the claim:
Pr(Urcim),pcrér.p) = 0.

Since there are only finite choice of the sets 7 and P, we only need to prove that for any 7 C [m)]
and P C T, &7 p holds with probability 0, Without loss of generality, we let 7 = {1,2,--- , k}
and P = {1,2,--- ,p} with p < k. We define §; fori € [k] as §; = 1fori € Pand §; = —1

otherwise. Then if £7 p holds, there exists an z* = (z7,--- ,z%)T € X* and 7,11 € R, such that

Lo(x3,---,25)T € X*;

2. 25,4 2> 0;

3. 7(@*)=T;

4. Vi(x*) —l; =5, > 0fori € Pand W;(z*) — 4; = —a;,; < Ofori ¢ P.

5. My(xf,--- ,xk; 4y, -+, L) is row rank deficient.
Define X;‘-’p(ﬁl, -+« ,lx) to be the set of all z* € X* satisfying the above conditions. Consider the
map G : R"*1 — R* defined as

Gy, ang1) = (Wa(zr, - an) = G1pgr, - U@y, -, @0) — Opngn)”

Then G(x3,--- 25 ) = (1, , L) forany (z7,--- ,25,1)" € X5 p(l1,- -, €y). Define the
set X7 p C R"*1 be the collection of all (21, - -+ ,x,41) satisfying:

1. Tn41 > 0.

2. there exist £y, --- , £ with W; (2, ,2,) — € = 2,41 fori € Pand Wy(xy, - ,2,) —

l; = —xpyq fori ¢ P.
3. My (21, - ,&n;f1,- -+, L) is rank deficient.
4. (G- )T € TTi Lo

Therefore, if £ p holds, we have

k m
(El,“- ,€m>T S (G(XTJJ)HHACJ X H L; U,
i=1 i=k+1
For (21, -+ ,2n41)? € Xﬁp, notice that JG(xq,--- ,EL'nH) is attained by doing elemen-
tary matrix transformation to the matrix My (xy, -+, 2,41, -+ ,{k), i.e., multiplying the first

k columns of My(xy1, -+ ,&n; 1, -+ ,€) by 1/x, 1 and multiplying the & + 1-th column of
My(z1, - ,xn; b1, - ,£) by —1 and then multiplying the i-th row by d; for ¢ € [n]. There-
fore, My (21, ,&n; 1, , k) is also rank deficient.

Consequently, G (21, -+ ,@py1) With (21, ,2n41)T € X7 p is a critic value of G (see [40]).
Then by Sard’s Theorem [40], G(X7 p) is a zero measure set in R¥. Hence, G(X7 ) N[5, £;
is a zero measure set in Hle L;. Recall that if £ p holds, we have

k m
(b )T € 2= (G Xrp)N ][ L) x ] Live
i=1 i=k+1

By the above analysis, G(X7 ) N Hle L; is a zero measure set in Hle L;. Hence, (G(X7.p) N
Hle L;) x [Ti%) .1 Li is a zero measure set in [[", £;. Also by Assumption E.5,  is a zero
measure set in [ [}, £;. Consequently, Z is a zero measure set in [[/"; £;. Then by the continuity
of the distribution of ¢, we finish the proof. |
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F Details in Experiments

Recall the procedure of training a robust neural network against adversarial attacks can be formu-
lated as a min-max problem:

min 25 max _ L(f (@i + 65 w), i), (E1)

iy St |0i] oo <€

where w is the parameter of the neural network, the pair (x;, y;) denotes the i-th data point, and ¢;
is the perturbation added to data point i.

As (F.1) is nonconvex-nonconcave and thus difficult to solve directly, researchers introduce an ap-
proximation of (F.1) [20] where the approximated problem has a concave inner problem. The ap-
proximation is first replacing the inner maximization problem in F.1 with a finite max problem:

N
H‘lhi,n Z max {Z(f(fzo(“’% W)7 yi)v s aé(f(j“z%)(w)a W)? yz)} ’ (F2)

where each &;;(w) is the result of a targeted attack on sample x; by changing the output of the
network to label j.

To obtain the targeted attack Z;;(w), we need to introduce an additional procedure. Recall the
images in MNIST have 10 classifications, thus the last layer of the neural network architecture for
learning classification have 10 different neurons. To obain any targeted attack Z;;(w), we perform
gradient ascent for K times:

25 = Projp, ) [:p +aV,(Z(ak, w) — Z,, (aF, w))}, k=0, K1,

1) z YR 179
and let &;;(w) = x . Here, Z; is the network logit before softmax corresponding to label j; oo > 0

is the step-size; and Proj B(z,a)[] is the projection to the infinity ball with radius € centered at x.

Using the same setting in [20], we set the iteration number as K = 40, the stepsize as o = 0.01,
and the perturbation level e chosen from {0.0,0.1,0.2,0.3,0.4}.

Now we can replace the finite max problem (F.2) with a concave problem over a probabilistic sim-
plex, where the entire problem is non-convex in w, but concave in t:

9

manmaX (f(xfj,w) ) T=A{(ty, - ,t |Zt =1,t; > 0}. (E.3)
=0

tET

We use Convolutional Neural Network(CNN) with the architecture detailed in Table 3 in the exper-
iments. This setting is the same as in [20].

Layer Type Shape
Convolution + ReLU 9 x5 x20
Max Pooling 2x2
Convolution + ReLU 5 X 5 x50
Max Pooling 2x2

Fully Connected + ReLU 800
Fully Connected + ReLU 500
Softmax 10

Table 3: Model Architecture for the MNIST dataset.

The results are listed in Table 2. The first three lines are the results obtained from [20] and the fourth
line is obtained by using the code provided in [20] to train their algorithm. As for comparison, we run
our algorithm 2 for the same number of iterations (100 iterations) with parameter p = 0.2, 5 = 0.8
and o = 0.5. In the experiment, to compute the projection of a vector of dimension d over the
probability simplex, we use the algorithm from [41] which has a complexity O(d log d).
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