
A Proofs of Propositions

Lemma 4 Let ✓ 2 ⇥ be some parameter, consider a random variable s 2 S , and fix f : S ⇥⇥ ! R,
where f(s, ✓) is continuously differentiable with respect to ✓ and integrable for all ✓. Assume for
some random variable X with finite mean that |

@
@✓ f(s, ✓)|  X holds almost surely for all ✓. Then:

@
@✓E[f(s, ✓)] = E[ @

@✓f(s, ✓)] (17)

Proof. @
@✓E[f(s, ✓)] = lim�!0

1
� (E[f(s, ✓ + �)] � E[f(s, ✓)]) = lim�!0 E[ 1� (f(s, ✓ + �)�f(s, ✓))]

= lim�!0 E[ @
@✓ f(s, ⌧(�))] = E[lim�!0

@
@✓f(s, ⌧(�))] = E[ @

@✓ f(s, ✓)], where for the third equality
the mean value theorem guarantees the existence of ⌧(�) 2 (✓, ✓+ �), and the fourth equality uses the
dominated convergence theorem where |

@
@✓ f(s, ⌧(�))|  X by assumption. Note that generalizing

to the multivariate case (i.e. gradients) simply requires that the bound be on maxi |
@

@✓i
f(s, ✓)| for

elements i of ✓. Note that most machine learning models (and energy-based models) meet/assume
these regularity conditions or similar variants; see e.g. discussion presented in Section 18.1 in [68].

Proposition 1 (Surrogate Objective) Define the “occupancy” loss L⇢ as the difference in energy:

L⇢(✓)
.
= Es⇠⇢DE✓(s) � Es⇠⇢✓E✓(s) (11)

Then r✓L⇢(✓) = �Es⇠⇢Dr✓ log ⇢✓(s). In other words, differentiating this recovers the first term in
Equation 9. Therefore if we define a standard “policy” loss L⇡(✓)

.
= �Es,a⇠⇢D log ⇡✓(a|s), then:

Lsurr(✓)
.
= L⇢(✓) + L⇡(✓) (12)

yields a surrogate objective that can be optimized, instead of the original L. Note that by relying on
the offline energy-based model, we now have access to the gradients of the terms in the expectations.

Proof. For each s, first write the state occupancy measure as ⇢✓(s) = e
�E✓(s)/

R
S e

�E✓(s)ds, so:

� log ⇢✓(s) = E✓(s) + log
R

S e
�E✓(s)ds (18)

with gradients given by:

�r✓ log ⇢✓(s) = r✓E✓(s) + r✓ log
R

S e
�E✓(s)ds

= r✓E✓(s) �

R
S r✓E✓(s)e�E✓(s)dsR

S e�E✓(s)ds

= r✓E✓(s) � Es⇠⇢✓r✓E✓(s) (19)

Then taking expectations over ⇢D and substituting in the energy term per Equation 10, we have that:

�r✓Es⇠⇢D log ⇢✓(s) = Es⇠⇢D

⇥
r✓E✓(s) � Es⇠⇢✓r✓E✓(s)

⇤

= Es⇠⇢Dr✓E✓(s) � Es⇠⇢✓r✓E✓(s)

= Es⇠⇢✓r✓

�
log

P
a e

f✓(s)[a]
�

� Es⇠⇢Dr✓

�
log

P
a e

f✓(s)[a]
�

= r✓

�
Es⇠⇢✓ log

P
a e

f✓(s)[a] � Es⇠⇢D log
P

a e
f✓(s)[a]

�

= r✓L⇢(✓) (20)

where the fourth equality uses Lemma 4. Hence we can define L⇢(✓)
.
= Es⇠⇢DE✓(s) � Es⇠⇢✓E✓(s)

in lieu of the first term in Equation 8. However, note that the (gradient-based) implementation of
Algorithm 1 works even without first obtaining an expression for L⇢(✓) per se, and is correct due
to a simpler reason: The batched (empirical loss) r✓L̂⇢ portion of the update (Line 9) is directly
analogous to the gradient update in standard contrastive divergence; see e.g. Section 18.2 in [68]. ⇤
Propositions 2–3 first require an additional lemma that allows moving freely between the space of
(soft) Q-functions and reward functions. Recall the (soft) Bellman operator B⇤

R : RS⇥A
! RS⇥A:

(B⇤
RQ)(s, a) = R(s, a) + �ET [softmaxa0Q(s0

, a
0)|s, a] (21)

where softmaxaQ(s, a)
.
= log

P
a e

Q(s,a). We know that B⇤
R is contractive with Q

⇤
R its unique fixed

point [10,11]. Now, let us define the (soft) inverse Bellman operator J⇤ : RS⇥A
! RS⇥A such that:

(J⇤
Q)(s, a) = Q(s, a) � �ET [softmaxaQ(s0

, a
0)|s, a] (22)
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Lemma 5 The operator J⇤ is bijective: Q = Q
⇤
R , J⇤

Q = R, hence we can write (J⇤)�1
R = Q

⇤
R.

This is the “soft” version of an analogous statement made for “hard” optimality first shown in [32].

Proof. By the uniqueness of the fixed point of B⇤
R, we have that R = J⇤

Q , B⇤
RQ = Q , Q = Q

⇤
R.

Therefore the inverse image of every singleton R 2 RS⇥A must exist, and is uniquely equal to Q
⇤
R.

This argument is the direct counterpart to Theorem 2 in [32]—which uses argmax instead of softmax.

Proposition 2 (Classical Objective) Consider the classical IL objective in Equation 1, with policies
parameterized as Equation 6. Choosing L to be the (forward) KL divergence yields the following:

argmaxR

�
Es⇠⇢⇤

R
Ea⇠⇡D(·|s)Q

⇤
R(s, a) � Es⇠⇢⇤

R
V

⇤
R(s)

�
(14)

where Q
⇤
R : S ⇥ A ! R is the (soft) Q-function given by Q

⇤
R(s, a) = R(s, a) + �ET [V ⇤

R(s
0)|s, a],

V
⇤(s) 2 RS is the (soft) value function V

⇤
R(s) = log

P
a e

Q⇤
R(s,a), and ⇢

⇤
R is the occupancy for ⇡

⇤
R.

Proof. From Equations 1 and 6, choosing L to be the forward KL divergence yields the following:

argmax✓

�
Es⇠⇢✓Ea⇠⇡D(·|s)f✓(s)[a] � Es⇠⇢✓ log

P
a e

f✓(s)[a]
�

(23)

Now, observe that we are free to identify the logits f✓(s)[a] 2 RS⇥A with a (soft) Q-function.
Specifically, define Q(s, a)

.
= f✓(s)[a] for all s, a 2 S ⇥ A. Then by Lemma 5 we know there exists

a unique R 2 RS⇥A that J⇤ takes Q to. Hence f✓(s)[a] = Q
⇤
R(s, a) for some R, and we can write:

argmaxR

�
Es⇠⇢⇤

R
Ea⇠⇡D(·|s)Q

⇤
R(s, a) � Es⇠⇢⇤

R
log

P
a e

Q⇤
R(s,a)

�
(24)

where ⇡
⇤
R(a|s) = e

Q⇤
R(s,a)�V ⇤

R(s). Then Proposition 2 follows, since V
⇤
R(s) = log

P
a e

Q⇤
R(s,a). ⇤

Proposition 3 (From BC to EDM) The behavioral cloning objective is equivalently the following,
where—compared to Equation 14—expectations over states are now taken w.r.t. ⇢D instead of ⇢

⇤
R:

argmaxR

�
Es⇠⇢DEa⇠⇡D(·|s)Q

⇤
R(s, a) � Es⇠⇢DV

⇤
R(s)

�
(15)

In contrast, by augmenting the (behavioral cloning) “policy” loss L⇡ with the “occupancy” loss L⇢,
what the EDM surrogate objective achieves is to replace one of the expectations with the learned ⇢✓:

argmaxR

�
Es⇠⇢DEa⇠⇡D(·|s)Q

⇤
R(s, a) � Es⇠⇢✓V

⇤
R(s)

�
(16)

Proof. By definition of behavioral cloning, the only difference is that the expectation in Equation 1 is
taken over ⇢D; then the same argument for Proposition 2 applies. As for EDM, from Equation 12:

Lsurr(✓) = L⇢(✓) + L⇡(✓)

= Es⇠⇢DE✓(s) � Es⇠⇢✓E✓(s) � Es,a⇠⇢D log ⇡✓(a|s)

= Es⇠⇢✓ log
P

a e
f✓(s)[a] � Es⇠⇢D log

P
a e

f✓(s)[a]

+ Es,a⇠⇢D log
P

a e
f✓(s)[a] � Es,a⇠⇢Df✓(s)[a]

= Es⇠⇢✓ log
P

a e
f✓(s)[a] � Es,a⇠⇢Df✓(s)[a] (25)

Therefore minimizing Lsurr(✓) is equivalent to:

argmax✓

�
Es⇠⇢DEa⇠⇡D(·|s)f✓(s)[a] � Es⇠⇢✓ log

P
a e

f✓(s)[a]
�

(26)

From this point onwards, the same strategy for Proposition 2 again applies, completing the proof. ⇤

B Experiment Details

Gym Environments Environments used for experiments are from OpenAI gym [56]. Table 3 shows
environment names and version numbers, dimensions of each observation space, and cardinalities
of each action space. Each environment is associated with a true reward function (unknown to all
imitation algorithms). In each case, the “expert” demonstrator is obtained using a pre-trained and
hyperparameter-optimized agent from the RL Baselines Zoo [61] in Stable OpenAI Baselines [62];
for all environments, demonstration datasets D are generated using the PPO2 agent [69] trained on
the true reward function, with the exception of CartPole, for which we use the DQN agent (which
we find performs better than PPO2). Performance of demonstrator and random policies are shown:
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Environments Observation Space Action Space Demonstrator Random Perf. Demonstrator Perf.

CartPole-v1 Continuous (4) Discrete (2) DQN Agent 19.12 ± 1.76 500.00 ± 0.00
Acrobot-v1 Continuous (6) Discrete (3) PPO2 Agent -439.92 ± 13.14 -87.32 ± 12.02
LunarLander-v2 Continuous (8) Discrete (4) PPO2 Agent -452.22 ± 61.24 271.71 ± 17.88
BeamRider-v4 Cont. (210⇥160⇥3) Discrete (9) PPO2 Agent 954.84 ± 214.85 1623.80 ± 482.27
MIMIC-III-2a Continuous (56) Discrete (2) Human Agent - -
MIMIC-III-4a Continuous (56) Discrete (4) Human Agent - -

Table 3: Details of Environments. Demonstrator and random performances are computed using 1,000 episodes.

Healthcare Environments MIMIC-III is a real-world medical dataset consisting of patients treated
in intensive care units from the Medical Information Mart for Intensive Care [63], which records phys-
iological data streams for over 22,000 patients. We extract the records for ICU patients administered
with antibiotic treatment and/or mechanical ventilation (5,833 in total). For each patient, we define
the observation space to be the 28 most frequently measured patient covariates from the past two
days, including vital signs (e.g. temperature, heart rate, blood pressure, oxygen saturation, respiratory
rate, etc.) and lab tests (e.g. white blood cell count, glucose levels, etc.), aggregated on a daily
basis during their ICU stay. Each patient trajectory has up to 20 time steps. In this environment, the
action space consists of the possible treatment choices administered by the doctor every day over the
course of the patient’s ICU stay, and the “expert” demonstrations are simply the trajectories of states
and actions recorded in the dataset. We consider two versions of MIMIC-III; one with 2 actions:
with ventilator support, or no treatment (MIMIC-III-2a), and another with 4 actions: with ventilator
support, antibiotics treatment, ventilator support plus antibiotics, or no treatment (MIMIC-III-4a).

Detailed Results Exact experiment results are shown in Table 4. For each combination of gym
environment, imitation algorithm, and dataset size, we follow convention for randomization in our
experiment setup by rolling out multiple trajectories (ntraj) per trained policy, seeding the experiment
multiple times with different expert demonstrations (ndemo), and training multiple such policies
from different random initializations (ninit); see e.g. [12]. Here we set ntraj=300, ndemo=10, and
ninit=5. Table 4 shows the means of performance metrics, as well as their standard errors; for
ease of comparison, all numbers for gym environments are scaled (according to the performance of
demonstrator and random policies given in Table 3) such that the demonstrator attains a return of 1
and the random policy attains a return of 0. For the real-world healthcare environments, we have no
access to the ground-truth reward function, and we cannot perform live policy rollouts. We therefore
assess imitation performance according to action-matching on held-out test trajectories; see e.g. [64].
In each of ndemo=10 folds, we use an 80%-20% train-test split (i.e. 4,666 patients for training, and
1,167 held out for testing). In each instance, we report accuracy of action selection (ACC), area under
the receiving operator characteristic curve (AUC), and area under the precision-recall curve (APR).

Implementations Wherever possible, policies trained by all imitation algorithms share the same
policy network architecture: two hidden (fully connected) layers of 64 units each, followed by ELU
activations, or—for Atari—a convolutional neural network with 3 (convolutional) layers of 32-64-64
filters, followed by a fully connected layer with 64 units, with all layers followed by ReLU activations.
For all environments, we use the Adam optimizer with batch size 64, 10k iterations, and learning rate
1e-3. Except explicitly standardizing policy networks across imitation algorithms, all comparators
are implemented via the original publicly available source code. Where applicable, we use the
optimal hyperparameters in the original implementations. The source code for EDM is found at
https://bitbucket.org/mvdschaar/mlforhealthlabpub/, and https://github.com/danjarrett/EDM.

Hyperparameters for EDM Algorithm 1 is implemented using the source code for joint EBMs [47]
publicly available at https://github.com/wgrathwohl/JEM. Instead of Wide-Resnet, for Acrobot,
Cartpole, LunarLander, MIMIC-III-2a, and MIMIC-III-4a we use the fully-connected policy
network above, and for BeamRider the convolutional neural network above. Specific to EDM are the
joint EBM training hyperparameters, which we inherit from [47,66]: noise coefficient �=0.01, buffer
size =10000, length ◆=20, and reinitialization �=0.05. We find that these default settings work
well with SGLD step size ↵=0.01; for further EBM training-related discussions, we refer to [47, 48].

Hyperparameters for VDICE We take the original source code of [43], which is publicly available
at https://github.com/google-research/google-research/tree/master/value_dice. In order to adapt
the model to work with discrete action spaces, we use a Gumbel-softmax parameterization for
the last layer of the actor network. For Acrobot, Cartpole, LunarLander, MIMIC-III-2a, and
MIMIC-III-4a both the actor architecture and the discriminator architecture has two hidden (fully
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BC RCAL DSFN VDICE EDM

Demos Average Returns

Acrobot-v1 1 0.796 ± 0.078 0.422 ± 0.082 0.062 ± 0.141 0.857 ± 0.045 0.896 ± 0.064
3 0.976 ± 0.028 0.832 ± 0.066 0.227 ± 0.128 0.947 ± 0.033 0.998 ± 0.026
7 0.981 ± 0.028 0.975 ± 0.034 0.489 ± 0.075 0.953 ± 0.036 0.999 ± 0.026

10 0.986 ± 0.029 0.990 ± 0.030 0.601 ± 0.076 0.967 ± 0.032 0.999 ± 0.025
15 0.994 ± 0.028 0.997 ± 0.028 0.825 ± 0.050 0.976 ± 0.031 1.000 ± 0.026

CartPole-v1 1 0.321 ± 0.026 0.233 ± 0.036 0.317 ± 0.013 0.324 ± 0.018 0.428 ± 0.019
3 0.607 ± 0.048 0.586 ± 0.043 0.373 ± 0.073 0.738 ± 0.028 0.900 ± 0.029
7 0.819 ± 0.041 0.894 ± 0.027 0.523 ± 0.081 0.867 ± 0.022 0.982 ± 0.011

10 0.932 ± 0.026 0.991 ± 0.007 0.458 ± 0.047 0.967 ± 0.013 1.000 ± 0.001
15 0.997 ± 0.003 0.998 ± 0.001 0.653 ± 0.074 0.995 ± 0.004 0.998 ± 0.002

LunarLander-v2 1 0.575 ± 0.071 0.540 ± 0.090 0.229 ± 0.104 0.255 ± 0.071 0.633 ± 0.081
3 0.869 ± 0.055 0.875 ± 0.055 0.698 ± 0.050 0.385 ± 0.063 0.889 ± 0.069
7 0.938 ± 0.035 0.914 ± 0.057 0.776 ± 0.053 0.411 ± 0.063 0.956 ± 0.044

10 0.961 ± 0.035 0.952 ± 0.047 0.887 ± 0.042 0.418 ± 0.059 0.966 ± 0.040
15 0.968 ± 0.028 0.970 ± 0.028 0.913 ± 0.032 0.417 ± 0.054 0.970 ± 0.033

BeamRider-v4 1 0.124 ± 0.168 0.304 ± 0.195 0.000 ± 0.340 0.180 ± 0.159 0.486 ± 0.235
3 0.147 ± 0.179 0.461 ± 0.227 0.008 ± 0.376 0.332 ± 0.205 0.790 ± 0.277
7 0.270 ± 0.179 0.547 ± 0.239 0.140 ± 0.463 0.312 ± 0.175 0.839 ± 0.289

10 0.308 ± 0.168 0.668 ± 0.279 0.153 ± 0.329 0.534 ± 0.227 0.925 ± 0.278
15 0.401 ± 0.169 0.721 ± 0.202 0.082 ± 0.301 0.513 ± 0.211 0.991 ± 0.272

Metrics Action-Matching

MIMIC-III-2a ACC 0.861 ± 0.013 0.872 ± 0.007 0.865 ± 0.007 0.875 ± 0.004 0.891 ± 0.004
AUC 0.914 ± 0.003 0.911 ± 0.007 0.906 ± 0.003 0.915 ± 0.001 0.922 ± 0.004
APR 0.902 ± 0.005 0.898 ± 0.006 0.885 ± 0.001 0.904 ± 0.002 0.912 ± 0.005

MIMIC-III-4a ACC 0.696 ± 0.006 0.701 ± 0.007 0.682 ± 0.005 0.707 ± 0.005 0.720 ± 0.007
AUC 0.859 ± 0.003 0.864 ± 0.003 0.857 ± 0.002 0.864 ± 0.002 0.873 ± 0.002
APR 0.659 ± 0.007 0.667 ± 0.006 0.665 ± 0.003 0.673 ± 0.003 0.681 ± 0.008

Table 4: Detailed Results for Gym and Healthcare Environments. Bold numbering indicates best performance.

connected) layers of 64 units each with ReLU activation, and—for Atari—the actor and discriminator
are replaced with convolutional neural networks with 3 (convolutional) layers of 32-64-64 filters
followed by a fully connected layer with 64 units, with all layers followed by ReLU activations. Per
the original design, the output is concatenated with the action; this is then passed through 2 additional
hidden layers with 64 units each. In addition, to enable strictly batch learning, we set the “replay
regularization” coefficient to zero. Furthermore, the actor network is regularized with an “orthogonal
regularization” coefficient of 1e-4, actor learning rate of 1e-5, and discriminator learning rate of 1e-3.

Hyperparameters for DSFN We take the original source code of [43], which is publicly avail-
able at https://github.com/dtak/batch-apprenticeship-learning. Per [37], for Acrobot, Cartpole,
LunarLander, MIMIC-III-2a, and MIMIC-III-4a we use a “warm-start” policy network with two
shared layers of 128 and 64 dimensions and tanh activation. The hidden layer of size 64 is used as the
feature map in the IRL algorithm. Each multitask head in the warm-start policy network has a hidden
layer with 128 units and tanh activation. The DQN network (i.e. for learning the optimal policy given
a set of reward weights) has 2 hidden (fully-connected) layers with 64 units each, and likewise the
DSFN network for estimating feature expectations also has 2 hidden (fully-connected) layers with
64 units. For BeamRider, the first hidden layer in the warm-start policy network is replaced by a
convolutional neural network with 3 layers of 32-64-64 filters, and the DQN and DSFN networks are
also replaced by the convolutional neural network above. For all environments, the warm-start policy
network is trained for 50k steps with the Adam optimizer, learning rate 3e-4, and batch size 64. The
DQN network is trained for 30k steps with learning rate 3e-4 and batch size 64 (Adam). Finally, the
DSFN network is trained for 50,000 iterations with the learning rate 3e-4 and batch size 32 (Adam).

Hyperparameters for RCAL This augments the policy loss with an additional sparsity-based loss
on the implied rewards R̂(s, a)

.
= f✓(s)[a] � �softmaxa0f✓(s0)[a0] obtained by inverting the Bellman

equation [9,32]. For Acrobot, Cartpole, LunarLander, MIMIC-III-2a, and MIMIC-III-4a we use
the fully-connected policy network described above, and for BeamRider the convolutional neural
network above. Specific to RCAL is its sparsity-based regularization coefficient, which is set at 1e-2.

Hyperparameters for BC The only difference between BC and EDM is the presence of L⇢, which
we remove for our implementation of BC. (Unlike e.g. [32], we do not consider more primitive
methods such as linear classifiers/trees to serve as BC, which would not make for a fair comparison/

16

https://github.com/dtak/batch-apprenticeship-learning


ablation). For Acrobot, Cartpole, LunarLander, MIMIC-III-2a, and MIMIC-III-4a we use the
fully-connected policy network above, and for BeamRider the convolutional neural network above.

Figure 3: Semi-Supervised Learning.

Semi-Supervised Learning While this is beyond the scope of
this work, we briefly note that—by analogy to joint energy-based
modeling in general [47]—the EDM algorithm can additionally
benefit from semi-supervised learning. Specifically, consider a
data-scarce setting where we only have access to limited state-
action pairs from the demonstrator—but may have access to
additional state-only data. Broadly, this situation arises when-
ever states are more conveniently observed than actions are. For
CartPole, Figure 3 shows the results of the original EDM trained
on one demonstrator trajectory’s worth of state-action pairs, but
with access to additional state-only data (EDM-1t+) shown in the
x-axis as multiples of the original amount of state-action data. For
comparison, we also reference the performance of EDM without
such additional state-only data (EDM-1t), as well as the perfor-
mance of its closest competitor (VDICE-1t), both trained on one trajectory’s worth of state-action
pairs alone. Notably, observe that (purely by dint of state-only distribution matching) EDM-1t+
manages to extract a sizable gain in performance as the amount of state-only data available increases
up to seven-fold. While this improvement is—as expected—less than that conferred by simply adding
more state-action trajectories (cf. EDM-3t, which is trained on 3 trajectories’ worth of state-action
pairs), simply adding state-only data manages to provide as much of a performance boost as the
original difference between EDM and VDICE (trained on one trajectory’s worth of state-action pairs).

C Further Related Work
Throughout this work, we discussed the goal of imitation learning [1–3] in the strictly batch setting,
behavioral cloning [4–7] and its relatives [9,30–33], and relationships with the apprenticeship learning
family of techniques, including classic (online) inverse reinforcement learning [13–20], (online)
adversarial imitation learning [12, 22–29], as well as their respective off-policy relatives [34–43, 54].
Table 1 summarizes the major aspects of these works as pertinent to our discussion and development.

Further to these works, we also note that another line of research on (online) imitation learning seeks
to incentivize the imitating policy to remain within the distribution/support of states encountered in
the expert demonstrations [50, 55, 70–75]. For instance, this is approached through random expert
distillation [72], through ensembles of agents [73], or the simple and elegant approach of assigning a
unit reward to all demonstrated actions that occur in demonstrated states, and zero otherwise [55]. In
general, these methods follow a “two-step” formula, where in the first step some notion of a surrogate
reward function is derived/defined, and in the second step this reward function is optimized by way
of environment interactions (and as such, they are inherently online techniques). In the same vein,
while [75] bears some superficial resemblance to our method by way of energy-based modeling, it
is an inherently online technique that depends on training an agent against an explicitly estimated
reward function: In the first step, their reward function is defined by modeling the negative energy
of the (joint) state-action distribution. However, as with the aforementioned two-step approaches,
this must then be followed by an online optimization of this reward function—and is therefore
inoperable in our strictly batch setting. Moreover, not unlike in adversarial imitation learning, their
KL-divergence minimization interpretation similarly requires the assumption that the optimal reward
function is indeed attained—an issue our formulation does not encounter. In contrast, EDM works
by decomposing the state-action distribution into an (explicit) policy term and an (implicit) state
visitation distribution term, resulting in a single optimization that works in an entirely offline manner.

Finally, tangentially related to our work is a family of inverse reinforcement learning methods
designed for reward learning in an offline, model-free setting [76–78]. However, they require access
to the demonstrator’s policy itself to begin with, and their objective is rather in the inverse problem per
se—that is, of explicitly recovering the underlying reward function in order to understand behavior.
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