
Exactly Computing the Local Lipschitz Constant of
ReLU networks

Matt Jordan
UT Austin

mjordan@cs.utexas.edu

Alexandros G. Dimakis
UT Austin

dimakis@austin.utexas.edu

Abstract

The local Lipschitz constant of a neural network is a useful metric with applications
in robustness, generalization, and fairness evaluation. We provide novel analytic
results relating the local Lipschitz constant of nonsmooth vector-valued functions
to a maximization over the norm of the generalized Jacobian. We present a
sufficient condition for which backpropagation always returns an element of the
generalized Jacobian, and reframe the problem over this broad class of functions.
We show strong inapproximability results for estimating Lipschitz constants of
ReLU networks, and then formulate an algorithm to compute these quantities
exactly. We leverage this algorithm to evaluate the tightness of competing Lipschitz
estimators and the effects of regularized training on the Lipschitz constant.

1 Introduction

We are interested in computing the Lipschitz constant of neural networks with ReLU activations.
Formally, for a network f with multiple inputs and outputs, we are interested in the quantity

sup
x6=y

||f(x)− f(y)||β
||x− y||α

. (1)

We allow the norm of the numerator and denominator to be arbitrary and further consider the case
where x, y are constrained in an open subset of Rn leading to the more general problem of computing
the local Lipschitz constant.

Estimating or bounding the Lipschitz constant of a neural network is an important and well-studied
problem. For the Wasserstein GAN formulation [1] the discriminator is required to have a bounded
Lipschitz constant, and there are several techniques to enforce this [1–3]. For supervised learning
Bartlett et al. [4] have shown that classifiers with lower Lipschitz constants have better generalization
properties. It has also been observed that networks with smaller gradient norms are more robust
to adversarial attacks. Bounding the (local) Lipschitz constant has been used widely for certifiable
robustness against targeted adversarial attacks [5–7]. Lipschitz bounds under fair metrics may also be
used as a means to certify the individual fairness of a model [8, 9].

The Lipschitz constant of a function is fundamentally related to the supremal norm of its Jacobian
matrix. Previous work has demonstrated the relationship between these two quantities for functions
that are scalar-valued and smooth [10, 11]. However, neural networks used for multi-class classifica-
tion with ReLU activations do not meet either of these assumptions. We establish an analytical result
that allows us to formulate the local Lipschitz constant of a vector-valued nonsmooth function as
an optimization over the generalized Jacobian. We access the generalized Jacobian by means of the
chain rule. As we discuss, the chain rule may produce incorrect results [12] for nonsmooth functions,
even ReLU networks. To address this problem, we present a sufficient condition over the parameters
of a ReLU network such that the chain rule always returns an element of the generalized Jacobian,
allowing us to solve the proposed optimization problem.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Exactly computing Lipschitz constants of scalar-valued neural networks under the `2 norm was shown
to be NP-hard [13]. In this paper we establish strong inapproximability results showing that it is hard
to even approximate Lipschitz constants of scalar-valued ReLU networks, for `1 and `∞ norms.

A variety of algorithms exist that estimate Lipschitz constants for various norms. To the best of our
knowledge, none of these techniques are exact: they are either upper bounds, or heuristic estimators
with no provable guarantees. In this paper we present the first technique to provably exactly compute
Lipschitz constants of ReLU networks under the `1, `∞ norms. Our method is called LipMIP and
relies on Mixed-Integer Program (MIP) solvers. As expected from our hardness results, our algorithm
runs in exponential time in the worst case. At any intermediate time our algorithm may be stopped
early to yield valid upper bounds.

We demonstrate our algorithm on various applications. We evaluate a variety of Lipschitz estimation
techniques to definitively evaluate their relative error compared to the true Lipschitz constant. We
apply our algorithm to yield reliable empirical insights about how changes in architecture and various
regularization schemes affect the Lipschitz constants of ReLU networks.

Our contributions are as follows:

• We present novel analytic results connecting the Lipschitz constant of an arbitrary, possibly
nonsmooth, function to the supremal norm of generalized Jacobians.

• We present a sufficient condition for which the chain rule will always yield an element of
the generalized Jacobian of a ReLU network.

• We show that that it is provably hard to approximate the Lipschitz constant of a network to
within a factor that scales almost linearly with input dimension.
• We present a Mixed-Integer Programming formulation (LipMIP) that is able to exactly

compute the local Lipschitz constant of a scalar-valued ReLU network over a polyhedral
domain.

• We analyze the efficiency and accuracy of LipMIP against other Lipschitz estimators. We
provide experimental data demonstrating how Lipschitz constants change under training.

2 Gradient Norms and Lipschitz Constants

First we define the problem of interest. There have been several recent papers that leverage an
analytical result relating the Lipschitz constant of a function to the maximal dual norm of its gradient
[6, 10, 14]. This analytical result is limited in two aspects: namely it only applies to functions that
are both scalar-valued and continuously differentiable. Neural networks with ReLU nonlinearities
are nonsmooth and for multi-class classification or unsupervised learning settings, typically not
scalar-valued. To remedy these issues, we will present a theorem relating the Lipschitz constant to
the supremal norm of an element of the generalized Jacobian. We stress that this analytical result
holds for all Lipschitz continuous functions, though we will only be applying this result to ReLU
networks in the sequel.

The quantity we are interested in computing is defined as follows:

Definition 1 The local (α, β)-Lipschitz constant of a function f : Rd → Rm over an open set
X ⊆ Rd is defined as the following quantity:

L(α,β)(f,X) := sup
x,y∈X

||f(y)− f(x)||β
||x− y||α

(x 6= y) (2)

And if L(α,β)(f,X) exists and is finite, we say that f is (α, β)-locally Lipschitz over X .

If f is scalar-valued, then we denote the above quantity Lα(f,X) where || · ||β = | · | is implicit. For
smooth, scalar-valued f , it is well-known that

Lα(f,X) = sup
x∈X
||∇f(x)||α∗ , (3)

where ||z||α∗ := sup||y||α≤1 y
T z is the dual norm of || · ||α [10, 11]. We seek to extend this result

to be applicable to vector-valued nonsmooth Lipschitz continuous functions. As the Jacobian is not

2

well-defined everywhere for this class of functions, we recall the definition of Clarke’s generalized
Jacobian [15]:

Definition 2 The (Clarke) generalized Jacobian of f at x, denoted δf (x), is the convex hull of the
set of limits of the form lim

i→∞
∇f(xi) for any sequence (xi)

∞
i=1 such that∇f(xi) is well-defined and

xi → x.

Informally, δf (x) may be viewed as the convex hull of the Jacobian of nearby differentiable points.
We remark that for smooth functions, δf (x) = {∇f(x)} for all x, and for convex nonsmooth
functions, δf (·) is the subdifferential operator.

The following theorem relates the norms of the generalized Jacobian to the local Lipschitz constant.

Theorem 1 Let || · ||α, || · ||β be arbitrary convex norms over Rd,Rm respectively, and let f : Rd →
Rm be (α, β)-Lipschitz continuous over an open set X . Then the following equality holds:

L(α,β)(f,X) = sup
G∈δf (X)

||GT ||α,β (4)

where δf (X) := {G ∈ δf (x) | x ∈ X} and ||M ||α,β := sup
||v||α≤1

||Mv||β .

This result relies on the fact that Lipschitz continuous functions are differentiable almost everywhere
(Rademacher’s Theorem). As desired our result recovers equation 3 for scalar-valued smooth
functions. Developing techniques to optimize the right-hand-side of equation 4 will be the central
algorithmic focus of this paper.

3 ReLU Networks and the Chain Rule

Theorem 1 relates the Lipschitz constant to an optimization over generalized Jacobians. Typically
we access the Jacobian of a function through backpropagation, which is simply an efficient imple-
mentation of the familiar chain rule. However the chain rule is only provably correct for functions
that are compositions of continuously differentiable functions, and hence does not apply to ReLU
networks [12]. In this section we will provide a sufficient condition over the parameters of a ReLU
network such that any standard implementation of the chain rule will always yield an element of the
generalized Jacobian.

The chain rule for nonsmooth functions: To motivate the discussion, we turn our attention to
neural networks with ReLU nonlinearities. We say that a function is a ReLU network if it may be
written as a composition of affine operators and element-wise ReLU nonlinearities, which may be
encoded by the following recursion:

f(x) = cTσ(Zd(x)) Zi(x) = Wiσ(Zi−1(x)) + bi Z0(x) := x (5)

where σ(·) here is the ReLU operator applied element-wise. We present the following example
where the chain rule yields a result not contained in the generalized Jacobian. The univariate identity
function may be written as I(x) := 2x− σ(x) + σ(−x). Certainly at every point x, δI(x) = {1}.
However as Pytorch’s automatic differentiation package defines σ′(0) = 0, Pytorch will compute
I ′(0) as 2 [16]. Indeed, this is exactly the case where naively replacing the feasible set δf (X) in
Equation 4 by the set of Jacobians returned by the chain rule will yield an incorrect calculation of
the Lipschitz constant. To correctly relate the set of generalized Jacobians to the set of elements
returnable by an implementation of the chain rule, we introduce the following definition:

Definition 3 Consider any implementation of the chain rule which may arbitrarily assign any element
of the generalized gradient δσ(0) for each required partial derivative σ′(0). We define the set-valued
function ∇#f(·) as the collection of answers yielded by any such chain rule.

The subdifferential of the ReLU function at zero is the closed interval [0, 1], so the chain rule as
implemented in PyTorch and Tensorflow will yield an element contained in∇#f(·). Our goal will
be to demonstrate that, for a broad class of ReLU networks, the feasible set in Equation 4 may be
replaced by the set {G ∈ ∇#f(x) | x ∈ X}.

3

General Position ReLU Networks: Taking inspiration from hyperplane arrangements, we refer
to this sufficient condition as general position. Letting f : Rd → Rm be a ReLU network with n
neurons, we can define the function gi(x) : Rd → R for all i ∈ [n] as the input to the ith ReLU of
f at x. Then we consider the set of inputs for which each gi is identically zero: we refer to the set
Ki := {x | gi(x) = 0} as the ith ReLU kernel of f . We say that a polytope P is k-dimensional if the
affine hull of P has dimension exactly k. Then we define general position ReLU networks as follows:

Definition 4 We say that a ReLU network with n neurons is in general position if, for every subset
of neurons S ⊆ [n], the intersection ∩i∈SKi is a finite union of (d− |S|)-dimensional polytopes.

We emphasize that this definition requires that particular ReLU kernel is a finite union of (d− 1)-
dimensional polytopes, i.e. the ‘bent hyperplanes’ referred to in [17]. For a general position neural
net, no (d+ 1) ReLU kernels may have a nonempty intersection. We now present our theorem on the
correctness of chain rule for general position ReLU networks.

Theorem 2 Let f be a general position ReLU network, then for every x in the domain of f , the set
of elements returned by the generalized chain rule is exactly the generalized Jacobian:

∇#f(x) = δf (x) (6)

In particular this theorem implies that, for general position ReLU nets,

L(α,β)(f,X) = sup
G∈∇#f(X)

||GT ||α,β (7)

We will develop algorithms to solve this optimization problem predicated upon the assumption that
a ReLU network is in general position. As shown by the following theorem, almost every ReLU
network satisfies this condition.

Theorem 3 The set of ReLU networks not in general position has Lebesgue measure zero over the
parameter space.

4 Inapproximability of the Local Lipschitz Constant

In general, we seek algorithms that yield estimates of the Lipschitz constant of ReLU networks with
provable guarantees. In this section we will address the complexity of Lipschitz estimation of ReLU
networks. We show that under mild complexity theoretic assumptions, no deterministic polynomial
time algorithm can provably return a tight estimate of the Lipschitz constant of a ReLU network

Extant work discussing the complexity of Lipschitz estimation of ReLU networks has only shown
that computing L2(f,Rd) is NP-hard [13]. This does not address the question of whether efficient
approximation algorithms exist. We relate this problem to the problem of approximating the maximum
independent set of a graph. Maximum independent set is one of the hardest problems to approximate:
if G is a graph with d vertices, then assuming the Exponential Time Hypothesis1, it is hard to
approximate the maximum independent set of G with an approximation ratio of Ω(d1−c) for any
constant c. Our result achieves the same inapproximability result, where d here refers to the encoding
size of the ReLU network, which scales at least linearly with the input dimension and number of
neurons.

Theorem 4 Let f be a scalar-valued ReLU network, not necessarily in general position, taking
inputs in Rd. Then assuming the exponential time hypothesis, there does not exist a polynomial-
time approximation algorithm with ratio Ω(d1−c) for computing L∞(f,X) and L1(f,X), for any
constant c > 0.

5 Computing Local Lipschitz Constants With Mixed-Integer Programs

The results of the previous section indicate that one cannot develop any polynomial-time algorithm to
estimate the local Lipschitz constant of ReLU network with nontrivial provable guarantees. Driven

1This states that 3SAT cannot be solved in sub-exponential time [18]. If true, this would imply P 6= NP .

4

by this negative result, we can instead develop algorithms that exactly compute this quantity but do
not run in polynomial time in the worst-case. Namely we will use a mixed-integer programming
(MIP) framework to formulate the optimization problem posed in Equation 7 for general position
ReLU networks. For ease of exposition, we will consider scalar-valued ReLU networks under the
`1, `∞ norms, thereby using MIP to exactly compute L1(f,X) and L∞(f,X). Our formulation may
be extended to vector-valued networks and a wider variety of norms, which we will discuss in the
supplementary.

While mixed-integer programming requires exponential time in the worst-case, implementations
of mixed-integer programming solvers typically have runtime that is significantly lower than the
worst-case. Our algorithm is unlikely to scale to massive state-of-the-art image classifiers, but we
nevertheless argue the value of such an algorithm in two ways. First, it is important to provide a
ground-truth as a frame of reference for evaluating the relative error of alternative Lipschitz estimation
techniques. Second, an algorithm that provides provable guarantees for Lipschitz estimation allows
one to make accurate claims about the properties of neural networks. We empirically demonstrate
each of these use-cases in the experiments section.

We state the following theorem about the correctness of our MIP formulation and will spend the
remainder of the section describing the construction yielding the proof.

Theorem 5 Let f : Rd → R be a general position ReLU network and let X be an open set that is the
neighborhood of a bounded polytope in Rd. Then there exists an efficiently-encodable mixed-integer
program whose optimal objective value is Lα(f,X), where || · ||α is either the `1 or `∞ norm.

Mixed-Integer Programming: Mixed-integer programming may be viewed as the extension of
linear programming where some variables are constrained to be integral. The feasible sets of
mixed-integer programs, may be defined as follows:

Definition 5 A mixed-integer polytope is a set M ⊆ Rn × {0, 1}m that satisfies a set of linear
inequalities:

M := {(x, a) ⊆ Rn × {0, 1}m | Ax+Ba ≤ c} (8)

Mixed-integer programming then optimizes a linear function over a mixed-integer polytope.

From equation 7, our goal is to frame∇#f(X) as a mixed-integer polytope. More accurately, we aim
to frame {||GT ||α | G ∈ ∇#f(X)} as a mixed-integer polytope. The key idea for how we do this is
encapsulated in the following example. Suppose X is some set and we wish to solve the optimization
problem maxx∈X (g ◦ f)(x). Letting Y := {f(x) | x ∈ X} and Z := {g(y) | y ∈ Y}, we see that

max
x∈X

(g ◦ f)(x) = max
y∈Y

g(y) = max
z∈Z

z (9)

Thus, if X is a mixed-integer polytope, and f is such that f(X) is also a mixed-integer polytope and
similar for g, then the optimization problem may be solved under the MIP framework.

From the example above, it suffices to show that∇#f(·) is a composition of functions fi with the
property that fi maps mixed-integer polytopes to mixed-integer polytopes without blowing up in
encoding-size. We formalize this notion with the following definition:

Definition 6 We say that a function g is MIP-encodable if, for every mixed-integer polytope M , the
image of M mapped through g is itself a mixed-integer polytope.

As an example, we show that the affine function g(x) := Dx + e is MIP-encodable, where g is
applied only to the continuous variables. Consider the canonical mixed-integer polytope M defined
in equation 8, then g(M) is the mixed-integer polytope over the existing variables (x, a), with the
dimension lifted to include the new continuous variable y and a new equality constraint:

g(M) := {(y, a) | (Ax+Ba ≤ c) ∧ (y = Dx+ e)}. (10)

To represent {||GT ||α | x ∈ ∇#f(X)} as a mixed-integer polytope, there are two steps. First
we must demonstrate a set of primitive functions such that ||∇#f(x)||α may be represented as a
composition of these primitives, and then we must show that each of these primitives are MIP-
encodable. In this sense, the following construction allows us to ‘unroll’ backpropagation into a
mixed-integer polytope.

5

MIP-encodable components of ReLU networks: We introduce the following three primitive
operators and show that ||∇#f ||α may be written as a composition of these primitive operators.
These operators are the affine, conditional, and switch operators, defined below:
Affine operators: For some fixed matrix W and vector b, A : Rn → Rm is an affine operator if it is
of the form A(x) := Wx+ b.
The conditional operator C : R→ P({0, 1}) is defined as

C(x) =

{1} if x > 0

{0} if x < 0

{0, 1} if x = 0.

(11)

The switch operator S : R× {0, 1} → R is defined as
S(x, a) = x · a. (12)

Then we have the two following lemmas which suffice to show that ∇#f(·) is a MIP-encodable
function:

Lemma 1 Let f be a scalar-valued general position ReLU network. Then f(x), ∇#f(x), || · ||1,
and || · ||∞ may all be written as a composition of affine, conditional and switch operators.

This is easy to see for f(x) by the recurrence in Equation 5; indeed this construction is used in the
MIP-formulation for evaluating robustness of neural networks [19–24]. For ∇#f , one can define the
recurrence:

∇#f(x) = WT
1 Y1(x) Yi(x) = WT

i+1Diag(Λi(x))Yi+1(x) Yd+1(x) = c (13)

where Λi(x) is the conditional operator applied to the input to the ith layer of f . Since Λi(x) takes
values in {0, 1}∗, Diag(Λ(x))Yi+1(x) is equivalent to S(Yi+1(x),Λi(x)).

Lemma 2 Let g be a composition of affine, conditional and switch operators, where global lower
and upper bounds are known for each input to each element of the composition. Then g is a
MIP-encodable function.

As we have seen, affine operators are trivially MIP-encodable. For the conditional and switch
operators, global lower and upper bounds are necessary for MIP-encodability. Provided that our
original set X is bounded, there exist several efficient schemes for propagating upper and lower
bounds globally. Conditional and switch operators may be incorporated into the composition by
adding only a constant number of new linear inequalities for each new variable. These constructions
are described in full detail in the supplementary.

Formulating LipMIP: To put all the above components together, we summarize our algorithm.
Provided a bounded polytope P , we first compute global lower and upper bounds to each conditional
and switch operator in the composition that defines ||∇#f(·)||α by propagating the bounds of P . We
then iteratively move components of the composition into the feasible set as in Equation 9 by lifting
the dimension of the feasible set and incorporating new constraints and variables. This yields a valid
mixed-integer program which can be optimized by off-the-shelf solvers to yield Lα(f,X) for either
the `1 or `∞ norms.

Extensions: While our results focus on evaluating the `1 and `∞ Lipschitz constants of scalar-valued
ReLU networks, we note that the above formulation is easily extensible to vector-valued networks
over a variety of norms. We present this formulation, including an application to untargeted robustness
verification through the use of a novel norm in the supplementary. We also note that any convex
relaxation of our formulation will yield a provable upper bound to the local Lipschitz constant.
Mixed-integer programming formulations have natural linear programming relaxations, by relaxing
each integral constraint to a continuous constraint. We denote this linear programming relaxation as
LipLP. Most off-the-shelf MIP solvers may also be stopped early, yielding valid upper bounds for the
Lipschitz constant.

6 Related Work

Related Theoretical Work: The analytical results in section 2 are based on elementary analytical
techniques, where the formulation of generalized Jacobians is famously attributed to Clarke [15].

6

The problems with automatic differentiation over nonsmooth functions have been noted several times
before [12, 25, 26]. In particular, in [12], the authors provide a randomized algorithm to yield an
element of the generalized Jacobian almost surely. We instead present a result where the standard
chain rule will return the correct answer everywhere for almost every ReLU network. The hardness
of Lipschitz estimation was first proven by [13], and the only related inapproximability result is the
hardness of approximating robustness to `1-bounded adversaries in [6].

Connections to Robustness Certification: We note the deep connection between certifying the
robustness of neural networks and estimating the Lipschitz constant. Mixed-integer programming has
been used to exactly certify the robustness of ReLU networks to adversarial attacks [19–24]. Broadly
speaking, the mixed-integer program formulated in each of these works is the same formulation we
develop to emulate the forward-pass of a ReLU network. Our work may be viewed as an extension
of these techniques where we emulate the forward and backward pass of a ReLU network with
mixed-integer programming, instead of just the forward pass. We also note that the subroutine we use
for bound propagation is exactly the formulation of FastLip [6], which can be viewed as a form of
reachability analysis, for which there is a deep body of work in the adversarial robustness setting
[27–30].

Lipschitz Estimation Techniques: There are many recent works providing techniques to estimate
the local Lipschitz constant of ReLU networks. These can be broadly categorized by the guarantees
they provide and the class of neural networks and norms they apply to. Extant techniques may
either provide lower bounds, heuristic estimates [13, 14], or provable upper bounds [6, 10, 31] to
the Lipschitz constant. These techniques may estimate Lα(f,X) for || · ||α being an arbitrary `p
norm [6, 13, 14], or only the `2 norm [31]. Several of these techniques provide only global Lipschitz
estimates [13, 31], where others are applicable to both local and global estimates [6, 10, 14]. Finally,
some techniques are applicable to neural networks with arbitrary nonlinearities [13, 14], neural
networks with only continuously differentiable nonlinearities [10], or just ReLU nonlinearities [6, 13].
We compare the performance of our proposed algorithm against the performance of several of these
techniques in the experimental section.

7 Experiments

We have described an algorithm to exactly compute the Lipschitz constant of a ReLU network. We
now demonstrate several applications where this technique has value. First we will compare the
performance and accuracy of the techniques introduced in this paper to other Lipschitz estimation
techniques. Then we will apply LipMIP to a variety of networks with different architectures and dif-
ferent training schemes to examine how these changes affect the Lipschitz constant. Full descriptions
of the computing environment and experimental details are contained in the supplementary. We have
also included extra experiments analyzing random networks, how estimation changes during training,
and an application to vector-valued networks in the supplementary.

Accuracy vs. Efficiency: As is typical in approximation techniques, there is frequently a tradeoff
between efficiency and accuracy. This is the case for Lipschitz estimation of neural nets. While
ours is the first algorithm to provide quality guarantees about the returned estimate, it is worthwhile
to examine how accurate the extant techniques for Lipschitz estimation are. We compare against
the following estimation techniques: CLEVER [14], FastLip [6], LipSDP [31], SeqLip [13] and
our MIP formulation (LipMIP) and its LP-relaxation (LipLP). We also provide the accuracy of a
random lower-bounding technique where we report the maximum gradient dual norm over a random
selection of test points (RandomLB) and a naive upper-bounding strategy (NaiveUB) where we
report the product of the operator norm of each affine layer and scale by

√
d due to equivalence

of norms. In Table 1, we demonstrate the runtime and relative error of each considered technique.
We evaluate each technique over the unit hypercube across random networks, networks trained on
synthetic datasets, and networks trained to distinguish between MNIST 1’s and 7’s.

Effect of Training On Lipschitz Constant: As other techniques do not provide reliable estimates
of the Lipschitz constant, we argue that these are insufficient for making broad statements about
how the parameters or training scheme of a neural network affect the Lipschitz constant. In Figure 1
(left), we compare the returned estimate from a variety of techniques as a network undergoes training
on a synthetic dataset. Notice how the estimates decrease in quality as training proceeds. On the

7

Binary MNIST Synthetic Dataset

Method Guarantee Time (s) Rel. Err. Time (s) Rel. Err.
RandomLB Lower 0.334± 0.019 −41.96% 0.297± 0.004 −32.68%

CLEVER Heuristic 20.574± 4.320 −36.97% 1.849± 0.054 +28.45%

LipMIP Exact 69.187± 70.114 0.00% 38.844± 34.906 0.00%

LipLP Upper 0.226± 0.023 +39.39% 0.030± 0.002 +362.43%

FastLip Upper 0.002± 0.000 +63.41% 0.001± 0.000 +388.14%

LipSDP Upper 20.570± 2.753 +113.92% 2.704± 0.019 +39.07%

SeqLip Heuristic 0.022± 0.005 +119.53% 0.016± 0.002 +98.98%

NaiveUB Upper 0.000± 0.000 +212.68% 0.000± 0.000 +996.96%

Table 1: Lipschitz Estimation techniques applied to networks of size [784, 20, 20, 20, 2] trained to distinguish
MNIST 1’s from 7’s evaluated over `∞ balls of size 0.1, and networks of size [10, 20, 30, 20, 2] trained on
synthetic datasets evaluated over the unit hypercube. Our method is the slowest, but provides a provably exact
answer. This allows us to reliably gauge the accuracy and efficiency of the other techniques.

other hand, in Figure 1 (right), we use LipMIP to provide reliable insights as to how the Lipschitz
constant changes as a neural network is trained on a synthetic dataset under various training schemes.
A similar experiment where we vary network architecture is presented in the supplementary.

Figure 1: (Left): We plot how the bounds provided by Lipschitz estimators as we train a neural network on
a synthetic dataset. We notice that as training proceeds, the absolute error of estimation techniques increases
relative to the true Lipschitz constant computed with our method (blue dots). (Right): We plot the effect
of regularization on Lipschitz constants during training. We fix a dataset and network architecture and train
with different regularization methods and evaluate the Lipschitz constant with LipMIP. Observe that these
values increase as training proceeds. Surprisingly, `2 weight regularization increases the Lipschitz constant
even compared to the no regularization baseline. Adversarial training (FGSM) is the most effective Lipschitz
regularizer we found in this experiment.

8 Conclusion and Future Work

We framed the problem of local Lipschitz computation of a ReLU network as an optimization over
generalized Jacobians, yielding an analytical result that holds for all Lipschitz continuous vector-
valued functions. We further related this to an optimization over the elements returnable by the
chain rule and demonstrated that even approximately solving this optimization problem is hard. We
propose a technique to exactly compute this value using mixed integer programming solvers. Our
exact method takes exponential time in the worst case but admits natural LP relaxations that trade-off
accuracy for efficiency. We use our algorithm to evaluate other Lipschitz estimation techniques
and evaluate how the Lipschitz constant changes as a network undergoes training or changes in
architecture.

There are many interesting future directions. We have only started to explore relaxation approaches
based on LipMIP and a polynomial time method that scales to large networks may be possible. The
reliability of an exact Lipschitz evaluation technique may also prove useful in developing both new
empirical insights and mathematical conjectures.

8

Acknowledgments and Disclosure of Funding

This research has been supported by NSF Grants CCF 1763702,1934932, AF 1901292, 2008710,
2019844 research gifts by Western Digital, WNCG IAP, computing resources from TACC and the
Archie Straiton Fellowship.

9 Broader Impact

As deep learning begins to see use in situations where safety or fairness are critical, it is increasingly
important to have tools to audit and understand these models. The Lipschitz computation technique
we have outlined in this work is one of these tools. As we have discussed, an upper bound on the
Lipschitz constant of a model may be used to efficiently generate certificates of robustness against
adversarial attacks. Lipschitz estimates have the advantage over other robustness certificates in
that they may be used to make robustness claims about large subsets of the input space, rather
than certifying that a particular input is robust against adversarial attacks. Lipschitz estimation, if
comuputable with respect to fair metrics, may be utilized to generate certificates of individual fairness
(see [8, 9] for examples of this formulation of fair metrics and individual fairness). Our approach
is the first to provide a scheme for Lipschitz estimation with respect to arbitrary norms, which may
include these fair metrics.

Exact verification of neural networks has the added benefit that we are guaranteed to be generate the
correct answer and not just a sound approximation. We argue that a fundamental understanding of
the behavior of these models needs to be derived from both theoretical results and accurate empirical
validation. As we have demonstrated, our technique is able to provide accurate measurements of the
Lipschitz constant of small-scale neural networks. The computational complexity of the problem
suggests that such accurate measurements are not tractably attainable for networks with millions
of hyperparameters. Our experiments demonstrate that our technique is scalable to networks large
enough that insights may be drawn, such as claims about how regularized training affects the Lipschitz
constant. Further, exact verification techniques may be used as benchmarks to verify the accuracy
of the more efficient verification techniques. Future Lipschitz estimation techniques, assuming that
they do not provide provable guarantees, will need to assert the accuracy of their reported answers: it
is our hope that this will be empirically done by comparisons against exact verification techniques,
where the accuracy claims may then be extrapolated to larger networks.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. January 2017.

[2] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier.
Parseval networks: Improving robustness to adversarial examples. April 2017.

[3] Henning Petzka, Asja Fischer, and Denis Lukovnicov. On the regularization of wasserstein
GANs. September 2017.

[4] Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. June 2017.

[5] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. December 2013.

[6] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning,
Inderjit S Dhillon, and Luca Daniel. Towards fast computation of certified robustness for ReLU
networks. April 2018.

[7] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kamalika
Chaudhuri. Adversarial robustness through local lipschitzness, 2020.

[8] Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with
sensitive subspace robustness. In International Conference on Learning Representations, Addis
Ababa, Ethiopia, 2020.

[9] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich Zemel. Fairness
through awareness, 2011.

9

[10] Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural
networks via sparse polynomial optimization. September 2019.

[11] Remigijus Paulavičius and Julius Žilinskas. Analysis of different norms and corresponding
lipschitz constants for global optimization. Ukio Technol. Ekonominis Vystymas, 12(4):301–306,
January 2006.

[12] Sham M Kakade and Jason D Lee. Provably correct automatic sub-differentiation for qualified
programs. In Advances in neural information processing systems, pages 7125–7135, 2018.

[13] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and
R Garnett, editors, Advances in Neural Information Processing Systems 31, pages 3835–3844.
Curran Associates, Inc., 2018.

[14] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Luca Daniel. Evaluating the
robustness of neural networks: An extreme value theory approach. January 2018.

[15] Frank H Clarke. Generalized gradients and applications. Transactions of the American Mathe-
matical Society, 205:247–262, 1975.

[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[17] Boris Hanin and David Rolnick. Deep ReLU networks have surprisingly few activation patterns.
June 2019.

[18] R. Impagliazzo and R. Paturi. Complexity of k-sat. In Proceedings. Fourteenth Annual
IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory
Conference) (Cat.No.99CB36317), pages 237–240, 1999.

[19] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
ReLU neural networks. June 2017.

[20] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, July 2018.

[21] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. November 2017.

[22] Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan, and Ashish Tiwari. Output range
analysis for deep neural networks. September 2017.

[23] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. April 2017.

[24] Kai Y Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry. Training for
faster adversarial robustness verification via inducing ReLU stability. September 2018.

[25] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation, volume 105. Siam, 2008.

[26] Kamil A Khan and Paul I Barton. Evaluating an element of the clarke generalized jacobian of
a composite piecewise differentiable function. ACM Transactions on Mathematical Software
(TOMS), 39(4):1–28, 2013.

[27] Singh, Gehr, Püschel, and Vechev. An abstract domain for certifying neural networks. Proceed-
ings of the ACM on Programming Languages, January 2019.

[28] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of deep
convolutional neural networks using imagestars, 2020.

[29] J Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex
outer adversarial polytope. November 2017.

[30] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. In Advances in Neural Information Processing Systems,
pages 10802–10813, 2018.

[31] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. In H Wallach,
H Larochelle, A Beygelzimer, F d Alche-Buc, E Fox, and R Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 11423–11434. Curran Associates, Inc., 2019.

10

	Introduction
	Gradient Norms and Lipschitz Constants
	ReLU Networks and the Chain Rule
	Inapproximability of the Local Lipschitz Constant
	Computing Local Lipschitz Constants With Mixed-Integer Programs
	Related Work
	Experiments
	Conclusion and Future Work
	Broader Impact

