
A Preliminaries for Deferred Proofs

A.1 Rényi Divergence Facts

We state additional facts about Rényi divergences that are needed in our proofs.
Fact 17 (Monotonicity [van Erven and Harremos, 2014, Theorem 3]). For any distributions P,Q
and 0 ≤ α1 ≤ α2 we have Dα1

(P ||Q) ≤ Dα2
(P ||Q).

Fact 18 (Post-Processing [van Erven and Harremos, 2014, Theorem 9]). For any sample spaces
X ,Y , distributions X1, X2 over X , and any function f : X → Y we have Dα(f(X1)||f(X2)) ≤
Dα(X1||X2).

Fact 19 (Gaussian Divergence [van Erven and Harremos, 2014, Example 3]).

Dα(N(0, σ2Id)||N(x, σ2Id)) ≤
α‖x‖22
2σ2

.

Fact 20 (Adaptive Composition Theorem [Mironov, 2017, Proposition 1]). Let X0, X1, . . . ,Xk be
arbitrary sample spaces. For each i ∈ [k], let ψi, ψ′i : ∆(Xi−1)→ ∆(Xi) be maps from distributions
over Xi−1 to distributions over Xi such that for any point mass distribution (a distribution whose
support contains a single value) Xi−1 over Xi−1, Dα(ψi(Xi−1)||ψ′i(Xi−1)) ≤ εi. Then, for Ψ,Ψ′ :
∆(X0) → ∆(Xk) defined as Ψ(·) = ψk(ψk−1(. . . ψ1(·) . . .) and Ψ′(·) = ψ′k(ψ′k−1(. . . ψ′1(·) . . .)
we have Dα(Ψ(X0)||Ψ′(X0)) ≤

∑k
i=1 εi for any X0 ∈ ∆(X0).

Fact 21 (Weak Triangle Inequality [Mironov, 2017, Proposition 11]). For any α > 1, p, q > 1
satisfying 1/p+ 1/q = 1 and distributions P,Q,R with the same support:

Dα(P ||R) ≤ α− 1/p

α− 1
Dpα(P ||Q) +Dq(α−1/p)(Q||R).

A.2 Gaussians and Brownian Motion

We give some standard tail bounds on Gaussians and Brownian motion that will be useful:
Fact 22 (Univariate Gaussian Tail Bound). For X ∼ N(0, σ2) and any x ≥ 0, we have

Pr[X ≥ x] = Pr[X ≤ −x] ≤ exp

(
− x2

2σ2

)
.

Fact 23 (Isotropic Multivariate Normal Tail Bound). For X ∼ N(0, Id) and any x ≥ 0, we have

Pr[‖X‖2 ≥
√
d+ x] ≤ exp

(
−x

2

2

)
.

Fact 24 (Univariate Brownian Motion Tail Bound). LetBt be a standard (one-dimensional) Brownian
motion. For any 0 ≤ a ≤ b, we have:

Pr

[
sup
t∈[a,b]

[Bt −Ba] ≥ x

]
= 2 · Pr[N(0, b− a) ≥ x] ≤ 2 exp

(
− x2

2(b− a)

)
The preceding fact is also known as the reflection principle.
Fact 25 (Multivariate Brownian Motion Tail Bound). Let Bt be a standard d-dimensional Brownian
motion. For any 0 ≤ a ≤ b, we have:

Pr

[
sup
t∈[a,b]

‖Bt −Ba‖2 ≥
√
b− a

(√
d+ x

)]
≤ 2 exp(−x2/4).

A.3 Gradient Descent

For completeness, we recall the contractivity properties of gradient descent.
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Fact 26 (Discrete Gradient Descent Contracts). Let f : Rd → R be a 1-strongly convex, L-smooth
function. Then for η ≤ 2

L+1 , we have ‖x− η∇f(x)− x′ + η∇f(x′)‖2 ≤ (1− ηL
L+1 )‖x− x′‖2 ≤

(1− η
2 )‖x− x′‖2 for any x, x′ ∈ Rd.

See e.g. [Hardt et al., 2016, Lemma 3.7] for a proof of this fact.

Since we assume f ’s global minimum is at 0 (and thus ∇f(0) = 0), as a corollary we have
‖x− η∇f(x)‖2 ≤ (1− η/2)‖x‖2. We also have as a corollary:

Fact 27 (Continuous Gradient Descent Contracts). Let f : Rd → R be a 1-strongly convex, L-
smooth function. Then for any x0, x′0 ∈ Rd and xt, x′t that are solutions to the differential equation
dxt = −∇f(xt)dt we have ‖xt − x′t‖2 ≤ e−t/2‖x0 − x′0‖2.

Proof. This follows by noting that the xt is the limit as integer k goes to∞ of applying k discrete
gradient descent steps to x0 with η = t/k. So, the contractivity bound we get for xt is ‖xt‖2 ≤
limk→∞(1− t/2k)k‖x0‖2 = e−t/2‖x0‖2.

B Deferred Proofs From Section 3

B.1 Proof of Lemma 5

Proof. We prove the bound for Dα(X0:Tk||X ′0:Tk), the bound for Dα(X ′0:Tk||X0:Tk) follows simi-
larly. Let a tuple {xiη/k}0≤i≤j be good if each xiη/k satisfies either (i) ‖xiη/k − xbi/kcη‖2 ≤ r (i.e.,
Er) or (ii) {x`η/k}i≤`≤j are all ⊥. We claim that for each j, for any point mass distribution X0:j

over good (j + 1)-tuples:

Dα(ψ(X0:j), ψ
′(X0:j)) ≤

α(Lrηk )2

2 · 2ηk
. (3)

By Fact 18, we can instead bound the divergence between ψ̃(X0:j), ψ̃
′(X0:j) which are defined

equivalently to ψ,ψ′ except without the step of replacing the last entry with ⊥ if Er is violated. If
X0:j is a point mass on a good tuple containing⊥, thenDα(ψ̃(X0:j)||ψ̃′(X0:j)) = 0. ForX0:j that is
a point mass on a good tuple not containing⊥,Dα(ψ̃(X0:j)||ψ̃′(X0:j)) is just the divergence between
the final values of ψ̃(X0:j), ψ̃

′(X0:j). The distance between the final values in ψ̃(X0:j), ψ̃
′(X0:j)

prior to the addition of Gaussian noise in ψ̃, ψ̃′ is the value of ηk‖∇f(xjη/k)−∇f(xbj/kcη)‖2 for
the single tuple in the support of X0:j , which is at most Lrηk by smoothness and because Er holds for
all good tuples not containing ⊥. (3) now follows by Fact 19.

Then, X0:Tk, X
′
0:Tk are arrived at by a composition of Tk applications of ψ,ψ′ to the same initial

distribution X0. Note that X0 and the distributions arrived at by applying ψ or ψ′ any number of
times to X0 have support only including good tuples. Then combining Fact 20 (with the sample
spaces being good tuples) and (3) we have:

Dα(X0:Tk||X ′0:Tk) ≤ Tk ·
α
(
Lrη
k

)2
2 · 2ηk

=
TαL2r2η

4
.

C Deferred Proofs From Section 4

C.1 Proof of Lemma 7

Proof. We consider the discrete chain first. For each timestep starting at t that is a multiple of η,
using smoothness we have:
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max
t′∈[t,t+η)

‖xt′ − xt‖2 = max
t′∈[t,t+η)

‖−(t′ − t)∇f(xt) +
√

2

∫ t′

t

dBs‖2

≤ η‖∇f(xt)‖2 +
√

2 max
t′∈[t,t+η)

‖
∫ t′

t

dBs‖2

≤ ηL‖xt‖2 +
√

2 max
t′∈[t,t+η)

‖
∫ t′

t

dBs‖2.

Using the tail bound for multivariate Brownian motion, maxt′∈[t,t+η)‖
∫ t′
t

dBs‖2 is at most
c

2
√
2

(√
d+

√
ln(T/δ)

)√
η with probability at least 1 − δ

2T for each timestep. So it suffices to

show that with probability at least 1 − δ
2 , for all 0 ≤ t < Tη that are multiples of η, ‖xt‖2 ≤

c
2
√
η

(√
d+

√
ln(T/δ)

)
. From (2), with probability 1 − δ

T+1 , ‖x0‖2 ≤ c
2
√
η

(√
d+

√
ln(T/δ)

)
.

We will show that if ‖xt‖2 ≤ c
2
√
η

(√
d+

√
ln(T/δ)

)
then with probability 1 − δ

T+1 we have

‖xt+η‖2 ≤ c
2
√
η

(√
d+

√
ln(T/δ)

)
, completing the proof for the discrete case by a union bound.

This follows because by Fact 26 the gradient descent step is (1 − η/2)-Lipschitz for the range of
η we consider. This gives that after the gradient descent step but before adding Gaussian noise,
xt+η has norm at most (1 − η/2)‖xt‖2 ≤ (1 − η/2) c

2
√
η

(√
d+

√
ln(T/δ)

)
. Then, ‖xt+η‖2 >

c
2
√
η

(√
d+

√
ln(T/δ)

)
only if

√
2‖
∫ t+η
t

dBs‖2 is larger than c
√
η
(√

d+
√

ln(T/δ)
)

, which

happens with probability at most δ
T+1 by the multivariate Gaussian tail bound.

We now consider the continuous chain. For all t that are multiples of η:

max
u∈[t,t+η)

‖x′u − x′t‖2 = max
u∈[t,t+η)

‖
∫ u

t

−∇f(x′s)ds+
√

2dBs‖2

≤ ηL max
u∈[t,t+η)

‖x′u‖2 + max
u∈[t,t+η)

‖
√

2

∫ u

t

dBs‖2.

As with the discrete chain, the multivariate Brownian motion tail bound gives that

max
u∈[t,t+η)

‖
√

2

∫ u

t

dBs‖2 ≤
c

2

(√
d+

√
ln(T/δ)

)√
η,

with probability at least 1 − δ
2T . So it suffices to show that at all times between 0 and Tη,

‖x′u‖2 ≤ c
2
√
η

(√
d+

√
ln(T/δ)

)
with probability at least 1− δ

2 . We first claim that with probability

at least 1− δ
4 , for all t that are multiples of η, ‖x′t‖2 ≤ c

4
√
η

(√
d+

√
ln(T/δ)

)
. This is true for x′0

with probability at least 1 − δ
4(T+1) by (2). By contractivity of continuous gradient descent, x′t+η

is equal to Ax′t +
√

2
∫ t+η
t

A′sdBs for some A which has eigenvalues in [−e−η/2, e−η/2] and a set
of matrices {A′s|s ∈ [0, η]} with eigenvalues in [−e−(η−s)/2, e−(η−s)/2]4. Then conditioning on the
claim holding for x′t, ‖x′t+η‖2 exceeds c

4
√
η

(√
d+

√
ln(T/δ)

)
only if the norm of

√
2
∫ t+η
t

A′sdBs

exceeds c(1−e−η/2)
4
√
η

(√
d+

√
ln(T/δ)

)
≥ c(1−e−.5))√η

4

(√
d+

√
ln(T/δ)

)
. Since Brownian mo-

tion is rotationally symmetric, and all A′s have eigenvalues in [−1, 1], this occurs with probability
upper bounded by the probability

√
2
∫ t+η
t

dBs exceeds this bound, which is at most δ
4(T+1) by the

4In particular, recalling the proof of Facts 26 and 27, we can write A explicitly as limk→∞
∏k−1
j=0 (Id −

η
k
∇2f(zj)), where zj is some point on the path from 0 to x′

t+ jη
k

. Each As can be written similarly, except only

considering the gradient descent process from time t+ s to t+ η.
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Brownian motion tail bound. The claim follows by taking a union bound over all t that are multiples
of η.

Then, conditioning on the event in the claim, for each corresponding interval [t, t+ η) since gradient
descent contracts we have

max
u∈[t,t+η)

‖x′u‖2 ≤ ‖x′t‖2 + max
u∈[t,t+η)

‖
√

2

∫ u

t

dBs‖2

≤ c

4
√
η

(√
d+

√
ln(T/δ)

)
+ max
u∈[t,t+η)

‖
√

2

∫ u

t

dBs‖2.

We conclude by using the multivariate Brownian motion tail bound to observe that

max
u∈[t,t+η)

‖
√

2

∫ u

t

dBs‖2 ≤
c

4
√
η

(√
d+

√
ln(T/δ)

)
,

with probability at least 1− δ
4T , and then taking a union bound over all intervals.

C.2 Proof of Lemma 8

Proof. Let z be an arbitrary parameter, η : [z,∞) → (0, 1/2) be an arbitrary map, and Eδ be the
event specified in the lemma statement for δ ∈ (0, 1). Using the definition of expectation, we have:

E[Y ] =

∫ ∞
0

Pr[Y ≥ y]dy

≤
∫ z

0

1 dy +

∫ ∞
z

Pr[Y ≥ y]dy

≤ z +

∫ ∞
z

η(y) + (1− η(y)) Pr[Y ≥ y|Eη(y)]dy

≤ z +

∫ ∞
z

η(y) + Pr[Y ≥ y|Eη(y)]dy

= z +

∫ ∞
z

η(y) + Pr[Y θ ≥ yθ|Eη(y)]dy

≤ z +

∫ ∞
z

η(y) +
E[Y θ|Eη(y)]

yθ
dy

≤ z +

∫ ∞
z

η(y) +
β

η(y)γyθ
dy.

We now choose η(y) =
(
γβ
yθ

) 1
1+γ

to minimize the value of the expression in the integral. We will
eventually choose z such that 0 < η(y) < 1/2 for all y ≥ z as is required of η. Plugging in this
choice of η gives the upper bound:

E[Y ] ≤ z + β
1

1+γ (γ
1

1+γ + γ−
γ

1+γ )

∫ ∞
z

y−
θ

1+γ dy

= z + β
1

1+γ (γ
1

1+γ + γ−
γ

1+γ )

(
1

θ
1+γ − 1

)[
y1−

θ
1+γ

]z
∞

= z + β
1

1+γ (γ
1

1+γ + γ−
γ

1+γ )

(
1

θ
1+γ − 1

)
z1−

θ
1+γ .
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We finish by choosing z = β
1
θ

(
γ

1
1+γ + γ−

γ
1+γ

) 1+γ
θ

. This gives the upper bound on E[Y ] in the

lemma statement. We also verify that η(y) is a map to (0, 1/2): η(y) ∝ y−
θ

1+γ , giving that η(y) > 0.
For all y ≥ z, since γ < 1 we have η(y) ≤ η(z) = γ

γ+1 < 1/2.

C.3 Proof of Theorem 9

Proof. We bound Dα(P ||Q), the bound on Dα(Q||P ) follows similarly. We first need the following
corollary of Lemma 5, which follows from that lemma by taking the limit as k goes to infinity and
applying Fact 18:

Corollary 28. For any L-smooth f and η > 0, and any initial distribution X0 let Xt be the
distribution over positions xt arrived at by running the discretized underdamped Langevin dynamics
with step size η on f from X0 for continuous time t, except that Xt = ⊥ if Er does not hold at time t
for this chain. Let X ′t be the same but for the continuous underdamped Langevin dynamics. Then for
any integer T ≥ 0:

Dα(XTη||X ′Tη), Dα(X ′Tη||XTη) ≤ TαL2r2η

4
.

For arbitrary δ1, δ2, plugging in r = cL(
√
d +

√
ln(T/δ1) +

√
ln(T/δ2))

√
η into Corollary 28

(where c is the constant specified in Lemma 7) and using the definition T = τ/η we get that

Dα′(XTη||X ′Tη) ≤
3τα′L4c2(d+ ln( τ

ηδ1
) + ln( τ

ηδ2
))η

4

for all k ∈ Z+ and XTη, X
′
Tη as defined in Corollary 28. Using the definition of Rényi divergence,

this gives:

∫
Rd

XTη(x)α
′

X ′Tη(x)α′−1
dx ≤

∫
Rd

XTη(x)α
′

X ′Tη(x)α′−1
dx+

Prx∼XTη [x = ⊥]α
′

Prx∼X′Tη [x = ⊥]α′−1
≤ c1(α′)

δ1
c2(α′)δ

c3(α′)
2

,

where:

c1(α′) = exp

(
3τα′(α′ − 1)L4c2(d+ 2 ln( τη ))η

4

)
,

c2(α′) = c3(α′) =
3τα′(α′ − 1)L4c2η

4
.

Removing the conditioning on the continuous chain: Let Eδ1 denote the (at least probability 1−δ1)
event that the conditions in Lemma 7 are satisfied for the discrete chain and Eδ2 denote the (at least
probability 1− δ2) event that the conditions in Lemma 7 are satisfied for the continuous chain. By
Lemma 7, we have Q(x) ≥ X ′Tη(x), Q(x|Eδ2) ≤ 1

1−δ2X
′
Tη(x). Then for δ2 < 1/2:

Ex∼Q

[
XTη(x)α

′

Q(x)α′

∣∣∣∣Eδ2
]

=

∫
Rd
Q(x|Eδ2)

XTη(x)α
′

Q(x)α′
dx

≤ 1

1− δ2

∫
Rd

XTη(x)α
′

X ′Tη(x)α′−1
dx

≤ 2 · c1(α′)

δ1
c2(α′)δ

c3(α′)
2

.

This statement holds independent of δ2. We will eventually choose α′ such that for the choice
of η specified in the lemma statement, c1(α′) < 2, c3(α′) < 1. Then applying Lemma 8 with

Y =
XTη(x)

α′/2

Q(x)α′/2
θ = 2, β = 2c1(α

′)

δ
c2(α′)
1

, γ = c3(α′), we get:
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Ex∼Q

[
XTη(x)α

′/2

Q(x)α′/2

]
≤ 8

δ
c2(α′)/2
1

.

Removing the conditioning on the discrete chain: We now turn to removing the conditioning on
Eδ1 . Here we need to be a bit more careful since unlike with X ′Tη(x), XTη(x) is in the numerator
and so the inequality XTη(x) ≤ P (x) is facing the wrong way. Since P,Q have the same support,
we note that:

Ex∼Q

[
XTη(x)α

′/2

Q(x)α′/2

]
= Ex∼P

[
XTη(x)α

′/2−1

Q(x)α′/2−1

]
(?)

≥ α′

2
Ex∼P,y∼Unif(0,P (x))

[
yα
′/2−1

Q(x)α′/2−1
· I [y ≤ XTη(x)]

]

=
α′

2
Ex∼P,y∼Unif(0,P (x))

[
yα
′/2−1

Q(x)α′/2−1

∣∣∣∣y ≤ XTη(x)

]
· Pr
x∼P,y∼Unif(0,P (x))

[y ≤ XTη(x)]

≥ α′

2
Ex∼P,y∼Unif(0,P (x))

[
yα
′/2−1

Q(x)α′/2−1

∣∣∣∣Eδ1
]
· (1− δ1).

(?) follows as for any given any x, we have:

XTη(x)α
′/2−1 =

1

XTη(x)
XTη(x)α

′/2

=

∫ XTη(x)

0

1

XTη(x)

α′

2
yα
′/2−1dy

≥
∫ XTη(x)

0

1

P (x)

α′

2
yα
′/2−1dy

=

∫ P (x)

0

1

P (x)

α′

2
yα
′/2−1 · I [y ≤ XTη(x)] dy

=
α′

2
Ey∼Unif(0,P (x))

[
yα
′/2−1 · I [y ≤ XTη(x)]

]
.

In turn, for all δ1 < 1/2, we have

Ex∼P,y∼Unif(0,P (x))

[
yα
′/2−1

Q(x)α′/2−1

∣∣∣∣Eδ1
]
≤ 32

α′δ
c2(α′)/2
1

.

If c2(α′)/2 < 1/2 (which is equivalent to c2(α′) = c3(α′) < 1), by applying Lemma 8 for θ = 2

with X = yα
′/4−1/2

Q(x)α′/4−1/2 , β = 32
α′ , γ = c2(α′)/2 we get:

Ex∼P,y∼Unif(0,P (x))

[
yα
′/4−1/2

Q(x)α′/4−1/2

]
≤ 19√

α′
=⇒
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Ex∼Q

[
P (x)α

′/4+1/2

Q(x)α′/4+1/2

]
=

(
α′

4
+

1

2

)
Ex∼P,y∼Unif(0,P (x))

[
yα
′/4−1/2

Q(x)α′/4−1/2

]

≤ 19(α′/4 + 1/2)√
α′

≤ 15
√
α′.

From moderate α′-Rényi divergence to small α-Rényi divergence: If ε ≥ 3 lnα
α−1 , without loss of

generality we can assume e.g. α ≥ 4 (by monotonocity of Rényi divergences, if α < 4 it suffices
to bound the 4-Rényi divergence instead of the α-Rényi divergence at the loss of a constant in the
bound for η). Then for α′ = 4α− 2 this inequality lets us conclude the lemma holds. Otherwise, for
1 < κ < α′/4 + 1/2, for α = α′/4+1/2

κ , by Jensen’s inequality we get:

1

α− 1
lnEx∼Q

[
P (x)α

Q(x)α

]
≤ 1

α− 1
ln

(
Ex∼Q

[
P (x)ακ

Q(x)ακ

]1/κ)
≤

ln 15 + 1
2 lnα+ 1

2 lnκ

(α− 1)κ
.

Choosing κ = 3 lnα·ln 1/ε
(α−1)ε then gives Dα(P ||Q) ≤ ε as desired (note that for ε < 3 lnα

α−1 we have
κ > 1 as is required). Now, we just need to verify that c1(α′) < 2, c2(α′) = c3(α′) < 1 holds for
α′ = 12α lnα·ln 1/ε

(α−1)ε − 2. Since c2(α′) = c3(α′) < ln(c1(α′))/d, it just suffices to show c1(α′) < 2.
This holds if:

3τα′(α′ − 1)L4c2(d+ 2 ln( τη ))η

4
< ln 2,

which is given by choosing η = Õ( 1
τL4 ln2 α

· ε
2

d ) with a sufficiently small constant hidden in Õ.

C.4 Proof of Lemma 10

Proof. This follows from Lemma 4 in Vempala and Wibisono [2019], which gives the bound
Dα(N(0, 1

LId)||R) ≤ f(0) + d
2 ln L

2π . We then note that the 1-strongly convex, L-smooth f with

the maximum f(0) is given when R is N(0, Id), which has density R(x) = e−( d2 ln(2π)+ 1
2x
>x).

C.5 Proof of Theorem 6

Proof. We will prove the bound for α ≥ 3/2 - the bound for 1 ≤ α < 3/2 follows by just applying
monotonicity to the bound for α = 3/2, at the loss of a multiplicative constant on τ, η, and the
iteration complexity.

Let R be the distribution arrived at by running continuous overdamped Langevin dynamics using
f for time τ from initial distribution N(0, 1

LId). N(0, 1
LId) satisfies (2), so from Theorem 9 we

have D2α(P ||Q) ≤ ε/3. From Lemmas 10 and 11 we have D2α(Q||R) ≤ ε/3. Then, we use weak
triangle inequality of Rényi divergence with p, q = 2 to conclude that Dα(P ||R) ≤ ε.

C.6 Proof of Theorem 12

We have the following radius tail bound:
Lemma 29. For all η ≤ 1 and any B-Lipschitz, L-smooth f , let xt be the random variable given by
running the discretized overdamped Langevin dynamics starting from an arbitrary initial distribution
for continuous time t. Then with probability 1− δ over {xt : t ∈ [0, Tη]}, for all t ≤ Tη and for a
sufficiently large constant c:

‖xt − xbt/ηcη‖2 ≤ c(B +
√
d+

√
ln(T/δ))

√
η).

Similarly, if x′t is the random variable given by running continuous overdamped Langevin dynamics
starting from an arbitrary initial distribution for time t, with probability 1− δ over x′t for all t ≤ Tη:
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‖x′t − x′bt/ηcη‖2 ≤ c(B +
√
d+

√
ln(T/δ))

√
η).

Proof. By B-Lipschitzness of f , the movement in any interval of length η due to the gradient step
in both the discrete and continuous case is at most 2Bη. By the multivariate Brownian motion tail
bound, in both the discrete and continuous cases the maximum movement due to the addition of
Gaussian noise is at most c(

√
d+

√
ln(T/δ))

√
η with probability at least 1− δ

T in each interval of
length η, and then the lemma follows by a union bound and triangle inequality.

Now Theorem 12 follows identically to Theorem 9, except using Lemma 34 instead of Lemma 7

D Deferred Proofs From Section 5

D.1 Proof of Lemma 13

To prove Lemma 13, we modify the proofs of Lemma 4 and 5 of Vempala and Wibisono [2019]. To
describe the modifications, we reintroduce the following definitions from that paper:

Definition 30. We say that a distributionQ has LSI constant κ if for all smooth functions g : Rn → R
for which Ex∼Q[g(x)2] <∞:

Ex∼Q
[
g(x)2 log

(
g(x)2

)]
− Ex∼Q

[
g(x)2

]
log
(
Ex∼Q

[
g(x)2

])
≤ 2

κ
Ex∼Q

[
‖∇g(x)‖2

]
.

Definition 31. We define for α 6= 0, 1:

Fα(Q||R) = Ex∼R
[
Q(x)α

R(x)α

]
,

Gα(Q||R) = Ex∼R
[
Q(x)α

R(x)α
‖∇ log

Q(x)

R(x)
‖22
]

=
4

α2
Ex∼R

[
‖∇
(
Q(x)

R(x)

)α/2
‖22

]
.

For α = 0, 1 these quantities are defined as their limit as α goes to 0, 1 respectively.

Unlike Vempala and Wibisono [2019], we extend this definition to negative values of α, which allows
us to swap the arguments Q,R:

Fact 32. F1−α(Q||R) = Fα(R||Q), G1−α(Q||R) = Gα(R||Q).We also recall thatD1−α(Q||R) =
1−α
α Dα(R||Q).

Proof of Lemma 13. Bakry and Émery [1985] shows that since the initial distribution satisfies that
− logQ0 is 1-strongly convex, Q0 has LSI constant 1. Consider instead running the discrete over-
damped Langevin dynamics with step size η starting with Q0. In one step, we apply a gradient
descent step that is (1 − η/2)-Lipschitz (see e.g. [Hardt et al., 2016, Lemma 3.7]), and then add
Gaussian noise N(0, 2ηId). Lemma 16 in Vempala and Wibisono [2019] shows that applying a
(1−η/2)-Lipschitz map to a distribution with LSI constant c results in a distribution with LSI constant
at least c/(1− η/2)2. Adding Gaussian noise N(0, 2ηId) to a distribution with LSI constant c results
in a distribution with LSI constant at least 1

1/c+2η (see e.g. [Wang and Wang, 2016, Proposition
1.1]). Putting it together, we get that after one step of the discrete dynamics, the LSI constant of the
distribution goes from c to at least:

1
(1−η/2)2

c + 2η
=

c

1− (1− 2c)η + η2/4
.

Then, we have that 1− (1− 2c)η + η2/4 ≤ 1, i.e. the LSI constant does not decrease after one step,
as long as η ≤ 4(1− 2c). Taking the limit as η goes to 0, we conclude that Qt’s LSI constant can
never decrease past 1/2, i.e. Qt has LSI constant at least 1/2 for all t ≥ 0.
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Now, since Qt has LSI constant at least 1/2, we can repeat the proof of Lemma 5 in Vempala and
Wibisono [2019] with the distributions swapped to show that Gα(R||Qt)Fα(R||Qt) ≥

1
α2Dα(R||Qt). Applying

Fact 32 to the proof of Lemma 6 in Vempala and Wibisono [2019], we can show that d
dtDα(R||Qt) =

−αGα(R||Qt)Fα(R||Qt) . Combining these two inequalities and integrating gives the lemma.

D.2 Proof of Lemma 15

The proof of Lemma 15 follows similarly to that of Lemma 10.

Proof of Lemma 15. Since f is 1-strongly convex and L-smooth, we have:

f(0) +
1

2
‖x‖22 ≤ f(x) ≤ f(0) +

L

2
‖x‖22.

Then:

exp((α− 1)Dα(R||Q0)) =

∫
Rd

R(x)α

Q0(x)α−1
dx

= (2π)d(α−1)/2
∫
Rd

exp

(
−αf(x) +

α− 1

2
‖x‖22

)
dx

≤ (2π)d(α−1)/2

eαf(0)

∫
Rd

exp

(
−1

2
‖x‖22

)
dx

=
(2π)dα/2

eαf(0) .

Taking logs and using that the L-smooth f that minimizes f(0) is N(0, 1
LId) with density

exp(−d2 log(2π/L)− L‖x‖22):

Dα(R||Q0) ≤ α

α− 1
·
(
d

2
log 2π − f(0)

)
≤ α

α− 1
· d

2
logL.

For α ≥ 2, the above bound is thus at most d logL as desired, and for 1 ≤ α ≤ 2 we can just use
monotonicity of Rényi divergences to bound Dα(R||Q0) by D2(R||Q0).

Similarly:

exp((1/L)D1+1/L(Q0||R)) =

∫
Rd

Q0(x)1+1/L

R(x)1/L
dx

= (2π)−d(1+1/L)/2

∫
Rd

exp

(
−1 + 1/L

2
‖x‖22 + f(x)/L

)
dx

≤ ef(0)/L

(2π)d(1+1/L)/2

∫
Rd

exp

(
− 1

2L
‖x‖22

)
dx

=
ef(0)/LLd/2

(2π)d/2L
.

Taking logs, and using that the 1-strongly convex f that maximizes f(0) is N(0, Id) with density
exp(−d2 log(2π)− L‖x‖22):

D1+1/L(Q0||R) ≤ L
[
f(0)/L+

d

2
logL− d

2L
log(2π)

]
≤ dL logL

2
.
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D.3 Proof of Theorem 1

Proof of Theorem 1. Let Qt be the distribution of the continuous overdamped Langevin dynamics
using f run from initial distribution N(0, Id) for time t. Assume without loss of generality that
α ≥ 2. If τ is at least a sufficiently large constant times α ln d lnL

ε , Lemma 15 and Lemma 13 give
that D2α(R||Qτ ) ≤ ε/3. Theorem 9 gives that D2α(Qτ ||P ) ≤ ε/3. Fact 21 with p, q = 2 gives that
Dα(R||P ) ≤ ε.
Similarly, Lemma 14 and Lemma 15 give that at time t = 1

2 log((2α− 1)L), D2α(Qt||R) ≤ d logL.
Then Lemma 11 gives that, D2α(Qτ ||R) ≤ ε/3. Theorem 9 gives that D2α(P ||Qτ ) ≤ ε/3. Fact 21
with p, q = 2 again gives that Dα(P ||R) ≤ ε.

E Deferred Proofs From Section 6

E.1 Proof of Theorem 16

Proof. The proof follows similarly to that of Theorem 9. Similarly to the overdamped Langevin
dynamics we have:

Lemma 33. For any L-smooth f and X0:Tk, X
′
0:Tk as defined in Section 6, we have:

Dα(X0:Tk||X ′0:Tk), Dα(X ′0:Tk||X0:Tk) ≤ TαL2r2η

4
· µ
γ
.

The proof follows almost exactly as did the proof of Lemma 5: we note that the updates to position
are deterministic, and so by Fact 18 we just need to control the divergence between velocities, which
can be done using the same analysis as in Lemma 5. The multiplicative factor of µ/γ appears because
the ratio of the Gaussian’s standard deviation to the gradient step’s multiplier is

√
γ/µ times what it

was in the overdamped Langevin dynamics. Next, similar to Lemma 7, we have the following tail
bound on r:

Lemma 34. Fix any γ ≥ 2, and define

vmax := c
√
γµ
(√

τd+
√

ln(1/δ)
)
.

Fix any η ≤ γ
µL , and any distribution over x0, v0 satisfying that

Pr

[
µf(x0) +

‖v0‖22
2
≤ 1

2
v2max

]
≥ 1− δ, (4)

let xt, vt be the random variable given by running the discretized underdamped Langevin dynamics
starting from x0, v0 drawn from this distribution for time t. Then with probability 1 − δ over
{(xt, vt) : t ∈ [0, τ ]}, for all t ≤ τ that are multiples of η and for a sufficiently large constant c:

‖xt+η − xt‖2 ≤ vmaxη.

Similarly, if xt is the random variable given by running continuous underdamped Langevin dynamics
starting from x0, v0 drawn from this distribution for time t, with probability 1 − δ over {(x′t, v′t) :
t ∈ [0, τ ]} for all t ≤ τ :

‖xt − xbt/ηcη‖2 ≤ vmaxη.

We give the proof in the following subsection. We note that the correct tail bound likely has a
logarithmic dependence on τ and not a polynomial one. However, based on similar convergence
bounds (e.g. Vempala and Wibisono [2019], Ma et al. [2019]), we conjecture that the time τ needed
for continuous underdamped Langevin dynamics to converge in Rényi divergence has a logarithmic
dependence on d, 1/ε. So, improving the dependence on τ in this tail bound will likely not improve
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the final iteration complexity’s dependence on d, 1/ε by more than logarithmic factors. In addition,
settling for a polynomial dependence on τ makes the proof rather straightforward.

Finally, from Lemma 33, plugging in the tail bound of Lemma 34 for r (which holds since we assume
η ≤ γ

µL ) we get the divergence bound:

Dα′(X0:Tk, X
′
0:Tk) ≤

3µτα′L2c2(τd+ ln( 1
δ1

) + ln( 1
δ2

))η2

4

We can then just follow the proof of Theorem 9 as long as:

c1(α′) = exp

(
3µτ2dα′(α′ − 1)L2c2η2

4

)
< 2,

For α′ = 12α lnα ln 1/ε
(α−1)ε − 2. This follows if η = Õ( 1

Lτµ lnα ·
ε√
d
) as assumed in the lemma

statement.

E.2 Proof of Lemma 34

Proof. We can assume δ < 1/2, at a loss of a multiplicative constant. We first focus on the continuous
chain. It suffices to show the maximum norm of the velocity over [0, τ) is vmax with the desired
probability. We will instead focus on bounding the Hamiltonian, defined as follows:

φt = µf(x′t) + ‖v′t‖22/2.

Analyzing the rate of change, by Ito’s lemma we get

dφt =
∂φt
∂x′t
· dx′t +

∂φt
∂v′t
· dv′t +

1

2

 ∑
i,j∈[d]

∂2φt
∂(v′t)i∂(v′t)j

d(v′t)i
dBt

d(v′t)j
dBt

 dt

= µ∇f(x′t) · v′tdt+ v′t · (−µ∇f(x′t)dt− γv′tdt+
√

2γµdBt) + 2γµd · dt
= γ(2µd− ‖v′t‖22)dt+

√
2γµ(v′t · dBt).

So, we can write the Hamiltonian at any time as a function of the initial Hamiltonian φ0 and the
random variables Bt and v′t as:

φt = φ0 − γ
∫ t

0

‖v′s‖22ds+
√

2γµ

∫ t

0

‖v′s‖2
v′s
‖v′s‖2

· dBs + 2γµdt.

Let Vt denote
∫ t
0
‖v′s‖22ds. By scalability of Brownian motion, we can define a Brownian motion B′t

jointly distributed with Bt such that dBt = 1
‖v′t‖2

d
dt

∫ Vt
0

dB′s. Then, we have:

φt = φ0 − γVt +
√

2γµ

∫ Vt

0

v′g(s)

‖v′g(s)‖2
· dB′s + 2γµdt,

Where g(r) is the value r′ such that
∫ r′
0
‖v′s‖22ds = r. We can then use the rotational symmetry

of Brownian motion to define another Brownian motion B′′t jointly distributed with B′t such that

u · dB′′t =
v′g(t)
‖v′
g(t)
‖2 · dB

′
t for a fixed unit vector u, giving:

φt = φ0 − γVt +
√

2γµ

∫ Vt

0

u · dB′′s + 2γµdt.

23



We will show that with probability at least 1 − δ over B′′t , the maximum of φ′(V ) := φ0 − γV +√
2γµ

∫ V
0
u · dB′′s over V ∈ [0,∞) is at most 1

4v
2
max. Under this event, if c is sufficiently large then

for all t ∈ [0, τ) we have φt ≤ 1
4v

2
max + 2γµdτ ≤ 1

2v
2
max, giving the desired velocity bound.

We first claim that with probability at at least 1 − δ
2 . for all non-negative integers k, we have

φ′(kv2max) ≤ − (k−1)v2max

2 . For sufficiently large c, this holds for k = 0 with probability at least

1− δ
4 by (4). Conditioning on this event, for k > 0 if φ′(kv2max) ≥ − (k−1)v2max

2 , then:

√
2γµ

∫ kv2max

0

u · dB′′s = N(0, 2kγµv2max) ≥ − (k − 1)v2max

2
− φ0 + kγv2max ≥ (γ − 1)kv2max,

Which occurs with probability at most exp(− (γ−1)2k2v4max

4kγµv2max
) ≤ exp(−kv

2
max

8µ ). If the constant c in

vmax is sufficiently large, then this is less than δk+2

2 . Taking a union bound over all k, we get the
claim. Next, we claim that in each interval [kv2max, (k + 1)v2max), the maximum increase of φ′(V )

is more than (k+1
2 )v2max with probability at most δ

k+2

2 . Taking a union bound over all intervals,
this claim along with the previous claim this gives the desired bound on φ′(V ) with probability
1 − δ. This claim follows by observing that in the interval [kv2max, (k + 1)v2max), φ′(V ) increases
more than maxV ∈[kv2max,(k+1)v2max)

[∫ V
kv2max

u · dB′′s
]
, which is at most (k+1

2 )v2max with probability

at most exp(− ( k+1
2 )2v4max

8v2max
) ≤ δk+1

2 .

The discrete chain is analyzed similarly. We have:

dφt =
∂φt
∂xt
· dxt +

∂φt
∂vt
· dvt +

1

2

 ∑
i,j∈[d]

∂2φt
d(vt)id(vt)j

d(vt)i
dBt

d(vt)j
dBt

 dt

= µ∇f(xt) · vtdt+ vt · (−µ∇f(xb tη cη)dt− γvtdt+
√

2γµdBt) + 2γµd · dt

= µ(∇f(xt)−∇f(x0)) · vtdt− γ‖vt‖22dt+
√

2γµ(v · dBt) + 2γµd · dt
≤ µL‖xt − xb tη cη‖2‖vt‖2dt− γ‖vt‖22dt+

√
2γµ(v · dBt) + 2γµd · dt

= µL‖
∫ t

b tη cη
vsds‖2‖vt‖2dt− γ‖vt‖22dt+

√
2γµ(v · dBt) + 2γµd · dt

≤ µL

(∫ t

b tη cη
‖vs‖2‖vt‖2ds

)
dt− γ‖vt‖22dt+

√
2γµ(v · dBt) + 2γµd · dt

≤ µL

2

(∫ t

b tη cη
‖vs‖22 + ‖vt‖22ds

)
dt− γ‖vt‖22dt+

√
2γµ(v · dBt) + 2γµd · dt.

Integrating, we get:

φt ≤ φ0 − (γ − µLη

2
)

∫ t

0

‖vs‖22ds+
√

2γµ

∫ t

0

‖vs‖2
vs
‖vs‖2

· dBs + 2γµdt

≤ φ0 −
γ

2

∫ t

0

‖vs‖22ds+
√

2γµ

∫ t

0

‖vs‖2
vs
‖vs‖2

· dBs + 2γµdt.

At this point we repeat the analysis from the continuous case (only losing a multiplicative constant
due to the γ/2 multiplier not being γ).

F On Distance Measures between Distributions

Existing algorithms for sampling from logconcave distributions are known to output samples from a
distribution that is close to the intended distribution. The closeness is typically measured in statistical

24



distance, Wasserstein distance, or in KL divergence. Unfortunately, none of these distances are strong
enough to ensure differential privacy for the resulting algorithm. The more stringent choice of distance
in differential privacy is for a good reason: it is easy to construct examples of algorithms that ensure
privacy with respect to one of these weaker notions of distance but are clearly unsatisfactory from a
privacy point of view [Dwork and Roth, 2014]. This motivates the question of efficient sampling in
terms of a stronger measure of distance such as∞-divergence, or Rényi divergence (both of which
upper bound KL divergence and thus upper bound statistical distance and Wasserstein distances).
Different distance notions can be related to each other and Hardt and Talwar [2010] showed that an
exponentially small statistical distance guarantee suffices to derive a differentially private algorithm.
This allows for polynomial time algorithms using the classical logconcave samplers.

The faster sampling algorithms based on Langevin dynamics and relatives however have a polynomial
dependence on the distance. In this case, convergence under the various notions of distance is not
equivalent. None of the commonly used measures (Statistical distance, KL-divergence or Wasserstein
distance) can be polynomially related to common distances of interest from a privacy point-of-view
(∞-divergence, Rényi divergence). While (ε, δ)-DP can be related via a polynomial in δ−1, this
would lead to algorithms that are polynomial in δ−1, which is undesirable as we often want δ to be
sub-polynomial.
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