Self-Supervised Few-Shot Learning on Point Clouds

Supplementary Material

Charu Sharma and Manohar Kaul
Department of Computer Science & Engineering
Indian Institute of Technology Hyderabad, India

charusharmal991@gmail.com, mkaul@iith.ac.in

A Additional Experimental Results

Visualization of ball covers The cover-tree approach of using the balls to group the points in a
point cloud is visualized in Figure[I] The visualization shows the process of considering balls shown
as transparent spheres at different scales with different densities in a cover-tree. Fig[Ia|represents the
top level (root) of cover-tree which covers the point cloud in a single ball i.e., at level . Fig|1bjand
Fig shows the balls at lower level with smaller radiuses as the tree is descended. Thus, we learn
local features using balls at various levels with different packing densities.

A.1 3D Object Classification

Training This section provides the implementation details of our proposed self-supervised network.
For each point cloud, we first scale it to a unit cube and then built a cover-tree with the base of the
expansion constant e = 2.0 for all the classification and segmentation experiments. To generate
self-supervised labels, we consider upto 3 levels of cover-tree and form possible ball pairs for both the
self-supervised tasks R and C'. To train our self-supervised network, point clouds pass through our
feature extractor which consists of three MLP layers (32, 64, 128) and a shared fully connected layer.
Similarly, for both the tasks, we use three MLP layers (64,128, 256) and shared fully connected
layers in two separate branches. Dropout with keep probability of 0.5 is used in fully connected
layers. All the layers include batch normalization and LeakyReLu with slope 0.2. We train our
model with Adam optimizer with an initial learning rate of 0.001 for 200 epochs and batch size 8.
For downstream classification and segmentation tasks, we chose default parameters of DGCNN and
PointNet for their training. We consider default parameters of all the baselines mentioned in their
papers to train their respective networks.

Effect of Point Cloud Density We investigate the robustness of our self-supervised method using
point cloud density experiment on ModelNet40 dataset with 1024 points in original. We randomly
pick input points during supervised training with K’ = 5 and m = 20 for support set S and 20
unseen samples from each of the K classes as a query set () during testing. The results are shown in
Figure [2]in which we start with picking 128 points and go upto 1024 points for DGCNN, DGCNN
pre-trained with VoxelNet and DGCNN and PointNet pre-trained with our self-supervised method.
Figure [2| shows that even with very less number of points i.e., 128, 256, 512 etc. points, our method
achieves comparable results and still outperform the DGCNN with random init and pre-trained with
VoxelNet.

T-SNE Visualization To verify the classification results, Fig[3| show T-SNE visualization of point
cloud embeddings in feature space of two datasets (Sydney and ModelNet40) with 10 classes for
DGCNN as classification network with random initialization, pre-trained with VoxelNet and our
self-supervised network in a few-shot setup. We observe that DGCNN pre-trained with our method
shows decent separation for both the datasets as compared to pre-training with VoxelNet which

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

(a) (A1)

(b) (A2)

(c) (A3)

Figure 1: Ball coverings of point cloud of object Aeroplane is visualized using cover-tree 7. Here,
balls are taken from cover-tree to cover parts of the point cloud at different levels (¢, (¢ — 1) and
(i — 2)) as the tree is descended for (A1, A2, A3), respectively.

2

ModelNet40
100

80 1

Accuracy (%)

—A— DGCNN

20 4 -+- VoxelNet+DGCNN
o Our+DGCNN
—e— Our+PointNet

128 256 384 512 768 1024
Number of points

Figure 2: Results with randomly picked points in a point cloud on ModelNet40 dataset in a 5-way
20-shot setting.

& 1
44 ®
ﬁrn” T
-
(@ (b) ©
2-.%'»;' g ¢ Wa .
e s Tt % . ; o .
¥ Vg Lo, et e g’ vl
FIRE . P &ty FEACDR WY o
R I, 0 © N ’ s, ¢ 2 s & ss Y
s '3&-,5”"? 7 G .‘:}g : 2 RN ¥
R Y. i ¥ ‘2‘. >

(@ (e) ®

Figure 3: T-SNE visualization of point cloud classification for DGCNN network pre-trained with
VoxelNet ((a), (d)), with random initialization ((b), (e)) and pre-trained with our self-supervised
method ((c), (f)) in a few-shot setup for Sydney (first row) and ModelNet40 (second row) datasets.

is a self-supervised method and our main baseline. We also show better separation than DGCNN
for Sydney dataset and nearly comparable separation to DGCNN with random initialization for
ModelNet40 dataset in a few-shot learning setup.

Heatmap Visualization We visualize the distance in original and final feature space as a heatmap
in Fig.[P [6]and [7] It shows the distance between red point to all the other points (from yellow to
dark green) in original 3D space in first row first column and final feature space for DGCNN with
random init (first row second column), pre-trained with VoxelNet (second row first column) and our
method (second row second column). Since this is a few-shot setup, the learning is not as good as it
happens in a setting with all the point clouds but we observe that the parts of aeroplane in first and
second rows of Fig. f] such as both the wings are at the same distance and main body is far away
from wings for our method whereas it differs for other methods. Similarly, in third and fourth row
of Fig.[5]in table, the red point is on one of the legs of the table and all the other legs of the table
are close to the red point in feature space (yellow) whereas table top is far away from the red point

in feature space (dark green) which is not the case with DGCNN with random initialization and
DGCNN pre-trained with VoxelNet.

A.2 Part Segmentation

We extend our model to perform part segmentation on ShapeNet dataset with 2048 points in each
point cloud. We evaluate part segmentation with K’ = {5, 10} and m = {5, 10, 20} for support set
S and pick 20 samples for each of the K’ classes for query set Q). Table 4] |5|and E] show
mean IoU (mloU) for each of the 16 categories separately and their mean over all the categories.
From Table([T] 2] [3]] we observe that DGCNN and PointNet pre-trained with our model outperform
baselines in overall IoU and in majority of the categories while Table [5|and [6] shows either the
best or the second best for our method in most of the cases. Our results for 10-way 10-shot setup
is shown in main paper. Along with mloU results, we also visualize part segmentation results for
DGCNN with random init, pre-trained with VoxelNet and our method in Figure[9]and [§for various
object categories. We can see from the figures that segmentation shown in our method have far better
results than VoxelNet and DGCNN with random initialization. However, in some cases we observe
comparable results for both DGCNN with random init and pre-trained with our method. For example,
the objects like Laptop and Bag have almost similar segmented parts for both DGCNN with random
init and pre-trained with our method. On the other hand, our method produces properly segmented
parts for more complex objects such as Car, Guitar, etc., as compared to the DGCNN with random
initialization.

Table 1: Part Segmentation results (mloU % on points) on ShapeNet dataset. Bold represents the best
result and underlined represents the second best.

Mean Aero Bag Cap Car Chair Earphone Guitar Kanife
5-way 5-shot

PointNet 26.35 1831 28.80 30.12 694 28.60 36.06 11.27 3031
PointNet++ 23.57 15.01 3249 31.18 5.83 24.68 34.51 11.53 27.26
PointCNN 245 1745 2793 3142 625 2542 29.86 7.84 32.65
DGCNN 3048 21.36 38.58 34.80 12.25 40.58 32.5 13.45 43.75
VoxelNet 22.51 17.01 3041 3138 855 21.78 27.49 8.88 27.01
Our+PointNet 33.67 20.02 40.18 39.97 12.64 41.16 37.82 21.86 59.29
Our+DGCNN 30.78 26.82 34.09 33.53 16.05 48.46 30.9 19.39 47.67

Table 2: Part Segmentation results (mloU % on points) on ShapeNet dataset. Bold represents the best
result and underlined represents the second best.

Mean Lamp Laptop Motor Mug Pistol Rocket Skate Table

5-way 5-shot
PointNet 26.35 3832 2870 11.25 27.33 17.65 39.04 29.85 39.04
PointNet++ 23.57 2897 273 9.76 27.06 18.68 24.16 26.68 32.07
PointCNN 245 29.88 32.13 142 29.06 20.14 16.01 30.11 41.66
DGCNN 3048 283 56.62 10.87 30.82 31.58 2596 29.36 36.83
VoxelNet 22.51 2742 250 1133 7.76 17.83 18.71 2422 3495
Our+PointNet 33.67 33.79 45.73 1455 3592 29.14 27.85 33.82 45.05
Our+DGCNN 30.78 29.25 34.04 16.48 3495 3494 26.63 28.84 30.43

Table 3: Part Segmentation results (mloU % on points) on ShapeNet dataset. Bold represents the best
result and underlined represents the second best.

Mean Aero Bag Cap Car Chair Earphone Guitar Khnife
5-way 10-shot

PointNet 259 15.02 3437 3296 840 27.76 34.15 932 282

PointNet++ 2748 3149 32.16 27.41 9.06 4542 21.8 11.15 29.33
PointCNN 2439 1848 3346 29.21 427 2251 313 10.73 27.69
DGCNN 245 1795 30.57 27.03 7.56 2835 34.8 9.53 27.65
VoxelNet 249 1742 302 3285 624 30.77 34.87 7.62 2597

Our+PointNet 34.67 23.55 47.84 49.28 12.85 38.99 32.26 31.16 51.69
Our+DGCNN 3244 35.75 37.69 34.94 16.94 46.74 33.88 15.75 49.95

Table 4: Part Segmentation results (mloU % on points) on ShapeNet dataset. Bold represents the best
result and underlined represents the second best.

Mean Lamp Laptop Motor Mug Pistol Rocket Skate Table

5-way 10-shot
PointNet 259 3748 2743 1476 33.67 20.83 18.56 33.89 37.54
PointNet++ 27.48 40.27 29.01 19.26 4229 18.02 27.55 27.05 28.41
PointCNN 2439 30.16 31.25 1043 37.87 24.11 16.52 30.29 31.99

DGCNN 245 39.1 23.04 1249 32.67 1594 2134 2532 38.74
VoxelNet 249 40.82 2331 13.01 24.87 1942 24.02 27.09 39.98

Our+PointNet 34.67 3291 2994 16.82 422 34.84 28.14 3042 51.9
Our+DGCNN 3244 3091 3645 2037 315 2571 2353 37.85 41.05

Table 5: Part Segmentation results (mloU % on points) on ShapeNet dataset. Bold represents the best
result and underlined represents the second best.

Mean Aero Bag Cap Car Chair Earphone Guitar Knife
10-way 20-shot

PointNet 274 18.07 3794 3285 872 29.85 34.02 10.6 29.18
PointNet++ 39.15 3195 39.63 53.84 22.02 46.89 33.66 269 53.78
PointCNN 27.26 18.48 37.33 3398 445 243 3354 10.22 32.99
DGCNN 37.34 37.13 4205 5045 172 502 453 28.0 59.77
VoxelNet 2629 174 3136 302 821 29.53 38.84 852 27.04

Our+PointNet 36.85 22.77 52.41 44.77 1686 41.1 40.35 21.55 53.61
Our+DGCNN 3691 37.72 47.34 39.37 1136 44.34 40.88 25.77 61.71

Table 6: Part Segmentation results (mloU % on points) on ShapeNet dataset. Bold represents the best
result and underlined represents the second best.

Mean Lamp Laptop Motor Mug Pistol Rocket Skate Table
10-way 20-shot

PointNet 274 4323 2856 148 3402 17.6 1929 3579 43.87
PointNet++ 39.15 29.18 48.08 19.29 42.99 52.39 43.8 40.39 41.68
PointCNN 2726 35.18 31.83 12.14 42.54 228 219 29.1 45.25
DGCNN 37.34 3557 2522 20.69 404 3721 2693 3577 4554
VoxelNet 26.29 4492 26.79 11.56 2691 17.39 21.13 359 4495

Our+PointNet 36.85 38.15 54.01 19.16 34.46 34.67 2754 39.14 49.12
Our+DGCNN 3691 3694 56.24 15.82 3448 41.94 29.44 29.50 46.20

(L3) L4

Figure 4: Learned feature spaces are visualized as a distance between the red point to the rest of
the points (yellow: near, dark green: far) for (A)eroplane and (L)amp. A1, L1: input R? space. A2,
L2: DGCNN with random initialization. A3, L3: DGCNN network pre-trained with VoxelNet. And,
A4, L4: DGCNN pre-trained with our self-supervised model.

(L1) (L2)

(L3) (L4

(T1) (T2)

(T3) (T4)

Figure 5: Learned feature spaces are visualized as a distance between the red point to the rest of
the points (yellow: near, dark green: far) for (L)aptop and (T)able. L1, T1: input R? space. L2, T2:
DGCNN with random initialization. L3, T3: DGCNN network pre-trained with VoxelNet. And, L4,
T4: DGCNN pre-trained with our self-supervised model.

(ED) (E2)

(E3) (E4)

(GI) (G2)

(G3) (G4

Figure 6: Learned feature spaces are visualized as a distance between the red point to the rest of
the points (yellow: near, dark green: far) for (E)arphone and (G)uitar. E1, G1: input R? space. E2,
G2: DGCNN with random initialization. E3, G3: DGCNN network pre-trained with VoxelNet. And,
E4, G4: DGCNN pre-trained with our self-supervised model.

8

M1) (M2)

(M5) (M6)

M7) (M8)

Figure 7: Learned feature spaces are visualized as a distance between the red point to the rest of the
points (yellow: near, dark green: far) for (M)otorbikes. M1, M5: input R? space. M2, M6: DGCNN
with random initialization. M3, M7: DGCNN network pre-trained with VoxelNet. And, M4, M8:
DGCNN pre-trained with our self-supervised model.

(TD) (T2) (T3)

(C1) (C2) (C3)

(C4) (C5) (C6)

(T4) (T5) (T6)

(B1) (B2) (B3)

Figure 8: Part segmentation results are visualized for ShapeNet dataset for (T)ables, (C)ars and (B)ag
. For each row, first column (T1, C1, C4, T4, B1) shows DGCNN output, second column (T2, C2,
C5, TS, B2) represents DGCNN pre-trained with VoxelNet and third column (T3, C3, C6, T6, B3)
shows DGCNN pre-trained with our self-supervised method.

10

(GD) (G2) (G3)

(P1) (P2) (P3)

(L1) (L2) (L3)

Figure 9: Part segmentation results are visualized for ShapeNet dataset for (G)uitar, (P)istol and
(L)aptop. For each row, first column (G1, P1, L1) shows DGCNN output, second column (G2, P2,
L2) represents DGCNN pre-trained with VoxelNet and third column (G3, P3, L3) shows DGCNN
pre-trained with our self-supervised method.

11

	Additional Experimental Results
	3D Object Classification
	Part Segmentation

