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Table S1: Summary of notation.

Notation Description
KL Kullback-Leibler divergence
Tr matrix trace
E(X) expected value of X
V(X) variance of X
—3v-m) K (y-m)
N(y;m,K) or y ~ N(m,K) y is normally distributed with mean m and covariance K, p(y) = &2 TR
I identity matrix
1=(1,.,1)7" vector of ones
n number of training data points
d dimensionality of inputs
m number of inducing points / neurons in first layer
f latent function
k(x,x") covariance function
o? noise variance
52 signal variance
{le}e_, length-scales / width of tuning curves along each dimension
X ={x:}, (d-dimensional) training inputs
y={vi}, (real, scalar) training outputs
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latent function values at input points

test point

inducing point locations / tuning curve centers
covariance matrix at input locations X
covariance matrix at inducing point locations Z

covariance matrix between input locations X and inducing point locations Z

covariance vector between input locations X and test point x

covariance vector between inducing point locations Z and test point x«

Nystrom approximation of Kg

predictive mean and variance for test point x, / activity of the two output neurons

tuning curves / activations of 1st layer neurons

activations of 2nd layer neurons
synaptic weights

bias

learning rate

prediction error

squared prediction error

non-normalized variance of f. / activity of 3rd layer neuron in Fig.

perturbation of inducing point location / tuning curve center
baseline, control variate to reduce variance of the gradient estimate
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Figure S1: Neural network for GP regression. The network outputs mean IE(y.) and variance V(y.)
of the predictive distribution for a test point x,.. The nodes and arrows are annotated with the neural
activations and synaptic weights respectively. (-)©? denotes element-wise square. The special case of
full GP regression is obtained for u = f and m = n.
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Figure S2: Biological plausible neuronal network for GP regression. In the prediction phase the
network outputs mean IE(y) and variance V (y) of the predictive distribution for a test point x. During
learning these nodes encode the prediction errors, that are required for the synaptic updates, rather
than plain predictions. The nodes are annotated with the neural activations. Plastic synapses are drawn
as squiggly arrows and annotated with the synaptic anti-Hebbian learning rules. The weights of the
static synapses are described in the legend. Dashed connections are only active during learning when
a target value y is actually present. (-)®? denotes element-wise square and |- | ; linear rectification,
ie. |z]+ = max(z,0).



1 GP initialized neural network

For deeper networks the quality of Dropout (and PBP) predictions increases slightly, but even then
my ANN remains competitive and does not suffer from long prediction times needed to draw multiple
MC samples, cf. Fig.[S3]

We used the fast C++ implementation of [[1]] from the GitHub repo https://github.com/HIPS/
Probabilistic—Backpropagatiorﬂ for PBP and the updated improved code of [2] from the
GitHub repo https://github.com/yaringal/ DropoutUncertaintyExpf] that replaced the
Bayesian optimisation implementation (which was used to find hypers) with a grid-search over
the hypers and used longer training times of 4,000 epochs. The evaluation was performed on a Linux
workstation with Intel Xeon CPU E5-2643 v4 @ 3.40 GHz, 128 GB RAM, and NVIDIA Quadro
M4000 GPU.
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Figure S3: Average predictive log likelihood with Std. Errors as function of prediction time. The
sparse Gaussian Process (VFE, [3]]) and an artificial neural network (ANN) with architecture corre-
sponding to a sparse GP are compared to Probabilistic Back-propagation [1]] with 1 or 2 hidden layers
(PBP 1, PBP 2) and Monte Carlo Dropout [2] with 1 or 2 hidden layers (Dropout 1, Dropout 2). For
the latter results for 1, 10, 100, 1 000 and 10 000 MC samples are shown.

2 Annular water maze task

I applied the adaptation of tuning curves to data simulated to mimic a task in which rats were trained
to find a hidden platform at a constant location in an annular watermaze [4], cf. Fig.[S4] I modeled
each location on the hidden platform as delivering the same fixed reward, while all other locations
were unrewarded. In reinforcement learning [15] the expected cumulative (exponentially) discounted
future reward is known as value function. Following [16], I assumed the rat imposes a GP prior over
the value function. Further, values were assumed to be only available with some noise and spatially
sampled according to the time in each segment. Therefore I roughly matched the number of simulated
data points in each segment to the time the rat spent there in the actual experiment, cf. Fig. and
C. Panel D shows the true value function, which is constant on the platform and decays exponentially
away from the platform due to exponential discounting of future reward. The panel also shows the
fits obtained using full GP, VFE, BioNN, and BioNN with optimized place field centers. Notably, the
distribution of firing fields shows the experimentally observed accumulation of place fields at the goal
location [4 7] for VFE, and even more pronounced for the BioNN with optimized place field centers.
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Figure S4: Spatial learning in the annular watermaze task. A Division of the corridor into six equally
large segments, with the platform in the center of segment 0. B Time in the platform segment (filled
circles) and each of the remaining segments (open circles). C Distribution of simulated data has been
matched to (B). D Ground truth (black) and fits (colored) for full GP, VFE, BioNN, and BioNN with
optimized place field centers. Full GP and VFE overlap. Grey numbers and vertical lines indicate the
six segments. E Color coded (dark red to white) kernel functions ¢;(x) = k(z;, x) for four inducing
input locations z; (blue dots) obtained using VFE. The remaining inducing input locations z;; are
shown as green dots. F Spatial distribution of local firing rates of four place cells for the network with
optimized place field locations. G Percentage of firing fields (inducing inputs) in each 60° segment
of the corridor for VFE, a BioNN with optimized place field locations, and H for experimental data.
Experimental data panels A, B and H are copy-pasted from [4].
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Figure S5: Online learning without revisiting data points. Here every data point is a new random
sample from the generative model underlying the Snelson dataset [8], instead of performing multiple
epochs over a fixed training set (Fig 2). A Root mean square error (RMSE) and B Negative log
predictive density (NLPD) for the biologically plausible neuronal network (BioNN) and the Streaming
Sparse Gaussian Process (streamingGP) [9]. For comparison the result for a sparse GP (VFE) trained
offline on all 10.000 samples is shown as well.
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