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Table S1: Summary of notation.

Notation Description

KL Kullback-Leibler divergence
Tr matrix trace
E(X) expected value of X
V(X) variance of X

N (y;m,K) or y ∼ N (m,K) y is normally distributed with mean m and covariance K, p(y) = e
− 1

2
(y−m)>K−1(y−m)√

|2πK|
I identity matrix
1 = (1, ..., 1)> vector of ones
n number of training data points
d dimensionality of inputs
m number of inducing points / neurons in first layer
f latent function
k(x,x′) covariance function
σ2 noise variance
s2 signal variance
{lc}dc=1 length-scales / width of tuning curves along each dimension
X = {xi}ni=1 (d-dimensional) training inputs
y = {yi}ni=1 (real, scalar) training outputs
f = {f(xi)}ni=1 latent function values at input points
x∗ test point
Z = {zj}mj=1 inducing point locations / tuning curve centers
Kff covariance matrix at input locations X
Kuu covariance matrix at inducing point locations Z
Kfu = K>uf covariance matrix between input locations X and inducing point locations Z
kf∗ covariance vector between input locations X and test point x∗
ku∗ covariance vector between inducing point locations Z and test point x∗
Qff = KfuK

−1
uuKuf Nyström approximation of Kff

µ∗,Σ∗ predictive mean and variance for test point x∗ / activity of the two output neurons
φ(·) = {φj(·)}mj=1 = {k(zj , ·)}mj=1 tuning curves / activations of 1st layer neurons
ψ(·) = {ψj(·)}mj=1 activations of 2nd layer neurons
w,U, wΣ synaptic weights
bΣ bias
η learning rate
δ = µ− y prediction error
χ = δ2 squared prediction error
ρ(x∗) non-normalized variance of f∗ / activity of 3rd layer neuron in Fig. S2
ξ perturbation of inducing point location / tuning curve center
B baseline, control variate to reduce variance of the gradient estimate
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Figure S1: Neural network for GP regression. The network outputs mean E(y∗) and variance V(y∗)
of the predictive distribution for a test point x∗. The nodes and arrows are annotated with the neural
activations and synaptic weights respectively. (·)�2 denotes element-wise square. The special case of
full GP regression is obtained for u = f and m = n.
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Figure S2: Biological plausible neuronal network for GP regression. In the prediction phase the
network outputs mean E(y) and varianceV(y) of the predictive distribution for a test point x. During
learning these nodes encode the prediction errors, that are required for the synaptic updates, rather
than plain predictions. The nodes are annotated with the neural activations. Plastic synapses are drawn
as squiggly arrows and annotated with the synaptic anti-Hebbian learning rules. The weights of the
static synapses are described in the legend. Dashed connections are only active during learning when
a target value y is actually present. (·)�2 denotes element-wise square and b·c+ linear rectification,
i.e. bxc+ = max(x, 0).
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1 GP initialized neural network

For deeper networks the quality of Dropout (and PBP) predictions increases slightly, but even then
my ANN remains competitive and does not suffer from long prediction times needed to draw multiple
MC samples, cf. Fig. S3.

We used the fast C++ implementation of [1] from the GitHub repo https://github.com/HIPS/
Probabilistic-Backpropagation1 for PBP and the updated improved code of [2] from the
GitHub repo https://github.com/yaringal/DropoutUncertaintyExps2 that replaced the
Bayesian optimisation implementation (which was used to find hypers) with a grid-search over
the hypers and used longer training times of 4,000 epochs. The evaluation was performed on a Linux
workstation with Intel Xeon CPU E5-2643 v4 @ 3.40 GHz, 128 GB RAM, and NVIDIA Quadro
M4000 GPU.
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Figure S3: Average predictive log likelihood with Std. Errors as function of prediction time. The
sparse Gaussian Process (VFE, [3]) and an artificial neural network (ANN) with architecture corre-
sponding to a sparse GP are compared to Probabilistic Back-propagation [1] with 1 or 2 hidden layers
(PBP 1, PBP 2) and Monte Carlo Dropout [2] with 1 or 2 hidden layers (Dropout 1, Dropout 2). For
the latter results for 1, 10, 100, 1 000 and 10 000 MC samples are shown.

2 Annular water maze task

I applied the adaptation of tuning curves to data simulated to mimic a task in which rats were trained
to find a hidden platform at a constant location in an annular watermaze [4], cf. Fig. S4. I modeled
each location on the hidden platform as delivering the same fixed reward, while all other locations
were unrewarded. In reinforcement learning [5] the expected cumulative (exponentially) discounted
future reward is known as value function. Following [6], I assumed the rat imposes a GP prior over
the value function. Further, values were assumed to be only available with some noise and spatially
sampled according to the time in each segment. Therefore I roughly matched the number of simulated
data points in each segment to the time the rat spent there in the actual experiment, cf. Fig. S4B and
C. Panel D shows the true value function, which is constant on the platform and decays exponentially
away from the platform due to exponential discounting of future reward. The panel also shows the
fits obtained using full GP, VFE, BioNN, and BioNN with optimized place field centers. Notably, the
distribution of firing fields shows the experimentally observed accumulation of place fields at the goal
location [4, 7] for VFE, and even more pronounced for the BioNN with optimized place field centers.
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swim time) than in the other segments (7–17%), more cells could
have been detected at the goal location simply as a result of better
bidirectional sampling. To control for this possibility, we sorted
the data with regard to swim direction and retained only those
trial fragments that were sampled in the preferred direction of
movement (87.6% of the total data set). The sorting procedure
did not attenuate the over-representation of the platform seg-
ment. The number of cells with peak activity in the goal segment
was now 24 compared with between 9 and 14 in the other
segments. Again, the second largest number (14) was in the
segment preceding the platform segment (Fig. 4B). Statistical
analysis showed that the distribution of the unidirectional data
remained nonuniform (!2

5 ! 11.7; two-sided test; p " 0.05) and
that the number of cells with firing fields in the goal segment was
larger than expected by chance (binomial test; Z ! 4.4; p "
0.001). The number of cells with fields in the preceding segment
was not significantly larger than in the succeeding segment in this
analysis (binomial test; Z ! 0.9).

The accumulation of firing fields in the platform segment was
maintained in a separate analysis of those cells that had single
fields according to our criteria (platform segment, 20 cells; non-
target segments, from six to eight cells). The distribution was
nonuniform (!2

5 ! 15.1; two-sided test; p " 0.01), with more

fields in the platform segment than expected by chance (binomial
test; Z ! 3.8; p " 0.001). Cells with no distinct field or with
multiple fields were not associated with any particular segment of
the corridor (no field, one cell in the platform segment and zero
to three cells in the other segments; multiple fields, three cells in
the platform segment and one to five cells in the other segments).

To determine how exactly the accumulation of firing fields
corresponded to the location of the platform, we doubled the
number of segments. Segment boundaries were defined so that
the platform position was in the middle of one of the segments.
After directional sorting, 19 of the 80 cells exhibited peak activity
within the 30° of arc that now defined the platform segment (Fig.
4C). The corresponding numbers in the remaining 11 segments
ranged from three to nine, with nine in the segment that preceded
the platform position and three in the segment that succeeded it
(the others ranged from four to seven). The distribution was
clearly nonuniform (!2

11 ! 29.2; two-sided test; p " 0.001), with
a sharp increase in the number of cells that had firing fields just
where the platform used to be located. The increase in the
number of fields in the platform segment was highly significant
(binomial test; Z ! 5.0; p " 0.001). In addition, with the increased
resolution added by finer segmentation, there was now a larger

Figure 2. Spatial learning in the annular watermaze task. A, Division of the corridor into six equally large segments (60° each), with the platform in
the center of segment 0 . Segments were numbered with respect to preferred swim direction (arrows), so that segment #1 was entered before the platform
segment and segment $1 was entered after the platform segment. B, Time in the platform segment ( filled circles) and each of the remaining segments
(open circles) on three probe trials (means % SEM). Unit activity was recorded on all trials. The rats had received &40 trials in the corridor at this stage.
C, Time distribution on four probe trials in rats that had not been exposed to the environment before. Preference for the platform segment developed
gradually. Symbols are as described in B.

Table 1. Discharge characteristics of pyramidal cells during spatial and nonspatial training (estimated median values and 95% confidence intervals)

Average
firing rate (Hz)

Peak
firing rate (Hz)

Relative
field size (%)

Absolute field
size (m2)

Rats trained with constant platform
Water corridor 1.46 (1.23–1.77) 9.0 (7.9–10.3) 18.2 (16.6–20.3) 0.19
Open field 1.16 (0.93–1.44) 13.3 (11.2–15.6) 7.8 (6.8–9.6) 0.08

Rats trained with variable platform
Water corridor 1.29 (0.97–1.62) 10.7 (8.4–13.8) 15.6 (13.2–17.9) 0.17
Open field 1.06 (0.77–1.66) 12.2 (9.8–15.7) 8.3 (5.5–13.5) 0.08

1638 J. Neurosci., March 1, 2001, 21(5):1635–1644 Hollup et al. • Place Fields after Spatial Learning in the Watermaze

B

swim time) than in the other segments (7–17%), more cells could
have been detected at the goal location simply as a result of better
bidirectional sampling. To control for this possibility, we sorted
the data with regard to swim direction and retained only those
trial fragments that were sampled in the preferred direction of
movement (87.6% of the total data set). The sorting procedure
did not attenuate the over-representation of the platform seg-
ment. The number of cells with peak activity in the goal segment
was now 24 compared with between 9 and 14 in the other
segments. Again, the second largest number (14) was in the
segment preceding the platform segment (Fig. 4B). Statistical
analysis showed that the distribution of the unidirectional data
remained nonuniform (! 2

5 ! 11.7; two-sided test; p " 0.05) and
that the number of cells with firing fields in the goal segment was
larger than expected by chance (binomial test; Z ! 4.4; p "
0.001). The number of cells with fields in the preceding segment
was not significantly larger than in the succeeding segment in this
analysis (binomial test; Z ! 0.9).

The accumulation of firing fields in the platform segment was
maintained in a separate analysis of those cells that had single
fields according to our criteria (platform segment, 20 cells; non-
target segments, from six to eight cells). The distribution was
nonuniform (!2

5 ! 15.1; two-sided test; p " 0.01), with more

fields in the platform segment than expected by chance (binomial
test; Z ! 3.8; p " 0.001). Cells with no distinct field or with
multiple fields were not associated with any particular segment of
the corridor (no field, one cell in the platform segment and zero
to three cells in the other segments; multiple fields, three cells in
the platform segment and one to five cells in the other segments).

To determine how exactly the accumulation of firing fields
corresponded to the location of the platform, we doubled the
number of segments. Segment boundaries were defined so that
the platform position was in the middle of one of the segments.
After directional sorting, 19 of the 80 cells exhibited peak activity
within the 30° of arc that now defined the platform segment (Fig.
4C). The corresponding numbers in the remaining 11 segments
ranged from three to nine, with nine in the segment that preceded
the platform position and three in the segment that succeeded it
(the others ranged from four to seven). The distribution was
clearly nonuniform (!2

11 ! 29.2; two-sided test; p " 0.001), with
a sharp increase in the number of cells that had firing fields just
where the platform used to be located. The increase in the
number of fields in the platform segment was highly significant
(binomial test; Z ! 5.0; p " 0.001). In addition, with the increased
resolution added by finer segmentation, there was now a larger

Figure 2. Spatial learning in the annular watermaze task. A, Division of the corridor into six equally large segments (60° each), with the platform in
the center of segment 0 . Segments were numbered with respect to preferred swim direction (arrows), so that segment #1 was entered before the platform
segment and segment $1 was entered after the platform segment. B, Time in the platform segment ( filled circles) and each of the remaining segments
(open circles) on three probe trials (means % SEM). Unit activity was recorded on all trials. The rats had received &40 trials in the corridor at this stage.
C, Time distribution on four probe trials in rats that had not been exposed to the environment before. Preference for the platform segment developed
gradually. Symbols are as described in B.

Table 1. Discharge characteristics of pyramidal cells during spatial and nonspatial training (estimated median values and 95% confidence intervals)

Average
firing rate (Hz)

Peak
firing rate (Hz)

Relative
field size (%)

Absolute field
size (m2)

Rats trained with constant platform
Water corridor 1.46 (1.23–1.77) 9.0 (7.9–10.3) 18.2 (16.6–20.3) 0.19
Open field 1.16 (0.93–1.44) 13.3 (11.2–15.6) 7.8 (6.8–9.6) 0.08

Rats trained with variable platform
Water corridor 1.29 (0.97–1.62) 10.7 (8.4–13.8) 15.6 (13.2–17.9) 0.17
Open field 1.06 (0.77–1.66) 12.2 (9.8–15.7) 8.3 (5.5–13.5) 0.08

1638 J. Neurosci., March 1, 2001, 21(5):1635–1644 Hollup et al. • Place Fields after Spatial Learning in the Watermaze

C

0 3
Segment no

0

20

40

60

80

Nu
m

be
r o

f d
at

a 
po

in
ts

D

-90° 0° 90° 180°
Angular position

Va
lu

e

-2 -1 0 1 2 3
GP
VFE
BioNN
BioNN opt. z
Truth
data

E

VFE

F

BioNN optimize z

G

−2 −1 0 1 2 3
Segment no

0

10

20

30

Pe
rc

en
ta

ge
 o

f c
el

ls

VFE
BioNN opt. z

H

number of units with fields in the segment preceding the goal than
in the segment after it (binomial test; Z ! 2.5; p ! 0.01).

The bias was independent of the actual position of the platform
in the room. Fifteen of the 80 cells in our sample were recorded
with a NE platform, 15 with a NW platform, 24 with a SW
platform, and 26 with a SE platform. In all four cases, the largest
percentage of place fields was found in the platform segment

(30°). The respective percentages were 33.3% (NE), 20.0%
(NW), 29.2% (SW), and 15.4% (SE). The chance level was at
8.3%.

Most cells with peak activity at the platform position during the
probe trial (12 of 19 units) became less active as the rat entered
the platform. In eight units (42%), the firing rate in the goal
segment was reduced to "30% of the rate at this location during

Figure 3. Place fields in the annular watermaze. A, Firing correlates of seven pyramidal cells (Fig. 1, C1 –C7 ) during the first 60 sec of a probe trial in
the annular watermaze. The platform was unavailable to the rat during this period. The rat had been trained with the platform set SW ( green). Spikes
(red squares) are superimposed on the swim path (black). Numbers indicate peak firing rates and location of peak activity. B, Firing in the platform area
before and after escape on the platform. The cell had a field at the goal location during swimming (0–81 sec) but ceased firing after the rat climbed onto
the platform (81–100 sec). Symbols are as described in A.

Figure 4. Distribution of firing fields after training with a constant platform location. A, Percentage of firing fields in each 60° segment of the corridor
(80 cells; average of 3 probe tests). Field location was defined as the segment with the maximal averaged firing rate. Firing fields accumulated in the
platform segment (segment 0 , black). The chance level was at 16.7%. Inset, Diagram of the corridor. Arrows indicate swim direction. B, Percentage of
firing fields in each 60° segment after directional sorting (same trials and same symbols as described in A). Only data sampled during swimming in the
preferred direction are retained. C, Percentage of firing fields in segments of 30° after directional sorting. The platform was in the middle of segment 0 .
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Figure S4: Spatial learning in the annular watermaze task. A Division of the corridor into six equally
large segments, with the platform in the center of segment 0. B Time in the platform segment (filled
circles) and each of the remaining segments (open circles). C Distribution of simulated data has been
matched to (B). D Ground truth (black) and fits (colored) for full GP, VFE, BioNN, and BioNN with
optimized place field centers. Full GP and VFE overlap. Grey numbers and vertical lines indicate the
six segments. E Color coded (dark red to white) kernel functions φi(x) = k(zi,x) for four inducing
input locations zi (blue dots) obtained using VFE. The remaining inducing input locations zj 6=i are
shown as green dots. F Spatial distribution of local firing rates of four place cells for the network with
optimized place field locations. G Percentage of firing fields (inducing inputs) in each 60◦ segment
of the corridor for VFE, a BioNN with optimized place field locations, and H for experimental data.
Experimental data panels A, B and H are copy-pasted from [4].
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Figure S5: Online learning without revisiting data points. Here every data point is a new random
sample from the generative model underlying the Snelson dataset [8], instead of performing multiple
epochs over a fixed training set (Fig 2). A Root mean square error (RMSE) and B Negative log
predictive density (NLPD) for the biologically plausible neuronal network (BioNN) and the Streaming
Sparse Gaussian Process (streamingGP) [9]. For comparison the result for a sparse GP (VFE) trained
offline on all 10.000 samples is shown as well.
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