
We thank the reviewers for very helpful comments. This letter addresses the major questions raised by the reviewers.1

Learning rates. To address the reviewers’ comments on learning rates, we will add results with easy-to-implement2

learning rates, without compromising sample complexities. Specifically, for some constant c > 0 let3

ηt = min
{
1, c exp

(⌊
log

log t

µ̂min,t(1− γ)γ2t

⌋)}
(an epoch-based choice) (1)

which can be viewed as a “piecewise approximation” of the rescaled linear stepsizes ηt = min
{
1, c log t

µ̂min,t(1−γ)γ2t

}
.4

Here, µ̂min,t is the minimum entry of certain empirical state-action visitation probability vector.1. Clearly, this choice5

does not rely on the mixing time tmix, minimum state-action occupancy probability µmin, and target accuracy ε.6

Encouragingly, our current theory can be easily extended to cover this easier-to-implement learning rate choice:7

Theorem 5 (`∞ sample complexity for achieving ε accuracy). Consider asynchronous Q-learning with learning8

rates (1). There exists some universal constant C > 0 such that: for any 0 < δ < 1 and 0 < ε ≤ 1
1−γ , one has9

‖QT −Q?‖∞ ≤ ε with probability at least 1− δ, provided that the sample size (or number of iterations) T obeys10
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}
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)
. (2)

Similarly, our theory for variance-reduced Q-learning can also be extended to a stepsize that does not depend on tmix.11

More specifically, this requires two changes: (1) the epoch length needs to keep increasing (i.e. at the end of every12

epoch, run tepoch ← 2tepoch); (2) set ηt =
c log tepoch

µ̂min,t(1−γ)tepoch . This can be analyzed via a similar argument.13

Proof of Theorem 5. We sketch the proof for the piecewise choice (1), which follows easily from our Theorem 1.14

1) Set T0 = T/2. Given that ηt ≤ 1, it is easily seen that ‖QT0 −Q?‖∞ . T0. To simplify presentation, we assume15

here that T is the point where ηt undergoes a change (we can easily cover general cases via epoch-based analysis).16

2) Choose ε̃ s.t. µmin(1−γ)T/2
log(

|S||A|T/2
δ ) log T2

= C
(1−γ)4ε̃2 , which obeys ε̃ ≤ ε under Condition (2). Combining the piecewise17

choice (1) and Condition (2) implies: ηt ≡ c′

log(
|S||A|T

δ )
min

{
(1− γ)4ε̃2, 1

tmix

}
, ∀t ∈ [T0, T ], where c′ is some constant.18

3) With the above learning rate condition in mind, invoking Theorem 1 of our paper with initialization QT0
ensures that19

‖QT −Q?‖∞ ≤ ε̃ ≤ ε with probability at least 1− δ, provided that the sample size condition (2) holds.20

Specific questions by Reviewer 1: 1. “Implementable learning rates”: See our response above on “learning rates”.21

While the constant c in ηt can also be specified explicitly (by using specific constants in Bernstein inequality, etc),22

we caution that such a theoretical constant might be overly conservative in practice, given that our theory focuses on23

orderwise sample complexity bounds and does not strive to sharpen the constant. We will clarify this in the revision.24

2. “Main contributions”: In comparison to the state-of-the-art [33] which unveiled tight scaling w.r.t. the important25

factors 1
1−γ and 1

ε , our main focus is towards sharpening the dependency on the problem dimension |S||A| through26

improving the dependency on µmin. Specifically, we improve prior sample complexity bound by a factor of 1/µmin ≥27

|S||A|. Given that |S||A| is often enormous in practice, our theory potentially leads to a notable improvement.28

Specific questions by Reviewer 2: 1. “Dependency of stepsizes on tmix”: See the response above on “learning rates”.29

2. “Bounds in expectation”. A bound on expectation can also be extracted by (1) using the boundedness nature of the30

Q-update and (2) choosing δ to be sufficiently small. We will add this in the revision.31

Specific questions by Reviewer 3: “Asynchronous Q-learning vs. A3C”: We’d like to clarify a possible source of32

confusion due to the different use of terminology in two different topics. The word “asynchronous” in Q-learning33

was often used in classical Q-learning literature (e.g. Tsitsiklis [41]) to indicate that: at every time only a single state-34

action pair in the Q-function is updated. This is in stark contrast to another line of recent literature on asynchronous35

optimization, which studies asynchronous updates of multiple CPU threads in parallel/multi-agent optimization (for36

instance, the A3C paper uses asynchronous SGD to simultaneously deploy/coordinate multiple CPU threads). Hence,37

the two settings are indeed quite different, although the Q-learning algorithm studied here might be used in any single38

thread to perform some component of an RL algorithm. We will clarify this in the revision to avoid confusion.39

Specific questions by Reviewer 5: 1. “Dependency of stepsizes on tmix”: See the response above on “learning rates”.40

2. “Advantages of model-free methods:” Thanks for raising concerns about our statements on model-based vs. model-41

free RL. We will rephrase these statements in the revision based on the reviewer’s suggestion.42

1Using concentration bounds in the supplement, we can ensure µ̂min,t = (1 + o(1))µmin for all t & tmix/µmin (up to log factor).


