
A Table of Notation

Description

k Number of latent dimensions in hidden layer of autoencoder

m Number of dimensions of input data

n Number of datapoints

W1 ∈ Rk×m Encoder weight matrix

W2 ∈ Rm×k Decoder weight matrix

X ∈ Rm×n Data matrix, with n m-dimensional

‖ · ‖F The Frobenius matrix norm

σ2
i The ith eigenvalues of the empirical covariance matrix 1

nXX
>

S Diagonal matrix with entries σ1, . . . , σk

U Matrix whose columns are the eigenvectors of 1
nXX

>, in descending
order of corresponding eigenvalues

L Linear autoencoder reconstruction loss function

Lλ Linear autoencoder loss function with uniform `2 regularization

Lσ′ Linear autoencoder loss function with uniform `2 regularization

Λ Diagonal matrix containing non-uniform regularization weights,
diag(λ1, . . . , λk)

H The Hessian matrix of the non-uniform regularized loss (unless other-
wise specified)

smax(H) The largest eigenvalue of H

smin(H) The smallest eigenvalue of H

fA(v) The Rayleigh quotient, fA(v) = v>Av/v>v

LND Linear autoencoder with nested dropout loss function

Y Y = W1X , latent representation of linear autoencoder

α Learning rate of gradient descent optimizer

(·) / (·) Operator that sets the lower or upper triangular part (excluding the
diagonal) to zero of a matrix (respectively)

Table 1: Summary of notation used in this manuscript, ordered according to introduction in main text.

B Conditioning analysis for the regularized LAE

Our goal here is to show that the regularized LAE objective is ill-conditioned, and also to provide
insight into the nature of the ill-conditioning. In order to demonstrate ill-conditioning, we will prove
a lower bound on the condition number of the Hessian at a minimum, by providing a lower bound
on the largest singular value of the Hessian and an upper bound on the smallest singular value. The
largest eigenvalue limits the maximum stable learning rate, and thus if the ratio of these two terms is
very large then we will be forced to make slow progress in learning the correct rotation. Throughout
this section, we will assume that the data covariance is full rank and has unique eigenvalues.

Since the Hessian H is symmetric, we can compute bounds on the singular values through the
Rayleigh quotient, fH(v) = v>Hv/v>v. In particular, for any vector v of appropriate dimensions,

smin(H) ≤ fH(v) ≤ smax(H). (7)
Thus, if we exhibit two vectors with Rayleigh quotients fH(v1) and fH(v2), then the condition
number is lower bounded by fH(v1)/fH(v2).
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In order to compute the Rayleigh quotient, we compute the second derivatives of auxiliary functions
parameterizing the loss over paths in weight-space, about the globally optimal weights. This can be
justified by the following Lemma,

Lemma 1. Consider smooth functions ` : Rn → R, and g : R → Rn, with h = ` ◦ g : R → R.
Assume that g(0) is a stationary point of `, and let H denote the Hessian of ` at g(0). Writing fH(v)
for the Rayleigh quotient of H with v, we have,

fH(v) =
h′′(0)

Jg(0)>Jg(0)
,

where Jg denotes the Jacobian of g.

Proof. The proof is a simple application of the chain rule and Taylor’s theorem. Let u = g(α), then,

d2h

dα2
= J>g

∂2`

∂2u
Jg +

d`

du

> d2g

dα2
.

Thus, by Taylor expanding h about α = 0,

h(α) = h(0) + α
dh

dα

∣∣∣∣
α=0

+
α2

2

d2h

dα2

∣∣∣∣
α=0

+ o(α3) (8)

= h(0) + α

(
d`

du

>
Jg

)∣∣∣∣∣
α=0

+
α2

2

(
J>g

∂2`

∂2u
Jg +

d`

du

> d2g

dα2

)∣∣∣∣∣
α=0

+ o(α3) (9)

Now, note that as g(0) is a stationary point of `, thus d`
du

∣∣
α=0

= 0. Differentiating the Taylor
expansion twice with respect to α, and evaluating at α = 0 gives,

h′′(0) = Jg(0)>HJg(0)

Thus, dividing by Jg(0)>Jg(0) we recover the Rayleigh quotient at H .

Scaling curvature The first vector for which we compute the Rayleigh quotient corresponds to
rescaling of the largest principal component at the global optimum. To do so, we define the auxiliary
function,

hZ(α) = Lσ′(W1 + αZ1,W2 + αZ2;X)

=
1

2n
‖X − (W2 + αZ2)(W1 + αZ1)X‖2F +

1

2
||Λ1/2(W1 + αZ1)||2F +

1

2
||(W2 + αZ2)Λ1/2||2F

Thus, by Lemma 1, we have h′′Z(0) = 1
2vec(

[
Z>1 Z2

]
)>Hvec(

[
Z>1 Z2

]
), that is, the curvature

evaluated along the direction
[
Z>1 Z2

]
. It is easy to see that hZ(α) is a polynomial in α, and thus

to evaluate h′′Z(0) we need only compute the terms of order α2 in hZ . Writing the objective using the
trace operation,

hZ(α) =
1

2n
Tr
[
(X −W2W1X − α(Z2W1 +W2Z1)X − α2Z2Z1X)>

(X −W2W1X − α(Z2W1 +W2Z1)X − α2Z2Z1X)
]

+
1

2
Tr
[
Λ((W1 + αZ1)(W1 + αZ1)> + (W2 + αZ2)>(W2 + αZ2))

]
Collecting the terms in α2:

α2
( 1

2n
Tr
[
X>(Z2W1 +W2Z1)>(Z2W1 +W2Z1)X − 2X>Z>1 Z

>
2 (X −W2W1X)

]
+

1

2
Tr
[
Λ(Z1Z

>
1 + Z>2 Z2)

] )
Above we have used permutation invariance of the trace operator to collect together two middle
terms.
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At this point, we proceed by analyzing the Rayleigh quotient along the direction corresponding to
scaling the leading principal component column, at the global optimum:

W>1 = W2 = W = U(I − ΛS−2)
1
2

where U are the eigenvectors of the data covariance, and S2 the diagonal matrix containing the
corresponding eigenvalues. Additionally, we choose Z1 and Z2 to contain the first column of the
decoder (w1), padded with zeros to match the dimension of W1 and W2,

Z>1 = Z2 = Z = ( w1 0 ) ,

We will require the following identities,

X −W2W1X = nU(S − (I − ΛS−2)S)V > = nUΛS−1V > (10)

U>W = (I − ΛS−2)
1
2 (11)

U>Z =

( √
1− λ1σ

−2
1 0

0 0

)
(12)

W>W = I − ΛS−2 (13)

Z>Z =

(
1− λ1σ

−2
1 0

0 0

)
(14)

Z>W =

(
1− λ1σ

−2
1 0

0 0

)
(15)

We now tackle each term in turn. Beginning with the first,

Tr
(
X>(Z2W1 +W2Z1)>(Z2W1 +W2Z1)X

)
= Tr

(
XX>(ZW> +WZ>)(ZW> +WZ>)

)
= nTr

(
S2U>(ZW> +WZ>)(ZW> +WZ>)U

)
= nTr

(
S2(U>ZW> + U>WZ>)(Z(U>W )> +W (U>Z)>)

)
= nTr

(
S2((U>Z)(W>Z)(U>W )> + (U>Z)(W>W )(U>Z)>

+ (U>W )(Z>Z)(U>W )> + (U>W )(Z>W )(U>Z)>
)

= 4nσ2
1(1− λ1σ

−2
1 )2

For the second term,

−2Tr
(
X>Z>1 Z

>
2 (X −W2W1X)

)
= −2nTr

(
V SU>ZZ>UΛS−1V >

)
= −2nTr

(
U>ZZ>UΛ

)
= −2nλ1(1− λ1σ

−2
1 )

For the final third term,

Tr
(
Λ(Z1Z

>
1 + Z>2 Z2)

)
= 2Tr

(
Λ(Z>Z)

)
= 2λ1(1− λ1σ

−2
1 )

Combining these,

h′′Z(0) = (1− λ1σ
−2
1 )

(
4σ2

1(1− λ1σ
−2
1 ) + 2λ1 − 2λ1

)
= 4σ2

1(1− λ1σ
−2
1 )2

Using Lemma 1, we see that to recover the Rayleigh quotient, we must divide by ‖
[
Z>1 Z2

]
‖2F =

2(1− λ1σ
−2
1 ). Thus, using Equation 7, we have

smax(H) ≥
vec(

[
Z>1 Z2

]
)>Hvec(

[
Z>1 Z2

]
)

‖vec(
[
Z>1 Z2

]
)‖2F

= 2σ2
1(1− λ1σ

−2
1 ) ≥ 2(σ2

1 − σ2
k).
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Rotation curvature To approximate the rotation curvature, we consider paths along the rotation
manifold. This corresponds to rotating the latent space of the LAE. Using Lemma 1, we will compute
the Rayleigh quotient fH(t) for vectors t on the tangent space to this rotation manifold.

Explicitly, we consider an auxiliary function of the form,

γR(θ) =
1

2n
‖X −W2R(θ)>R(θ)W1X‖2F +

1

2
||Λ1/2R(θ)W1||2F +

1

2
||W2R(θ)>Λ1/2||2F ,

where R(θ) is a rotation matrix parameterized by θ. The first term does not depend on θ, as R is
orthogonal. Thus, we need only compute the second derivative of the regularization terms. About the
global optimum, the regularization terms can be written as,

Tr
(
ΛR(θ)WTWR(θ)T

)
We will consider rotations of the ith and jth columns only (a Givens rotation). To reduce notational
clutter, we write νi = (1− λiσ−2

i ).

Tr
(
ΛR(θ)WTWR(θ)T

)
= Tr

(
Λ

[
νi cos θ −νj sin θ
νi sin θ νj cos θ

] [
cos θ sin θ
− sin θ cos θ

])
+
∑
l 6=i,j

λlνl

= Tr

(
Λ

[
νi cos2 θ + νj sin2 θ ·

· νi sin2 θ + νj cos2 θ

])
+
∑
l 6=i,j

λlνl

= λi(νi cos2 θ + νj sin2 θ) + λj(νi sin2 θ + νj cos2 θ) +
∑
l 6=i,j

λlνl

= νi(λi − λj) cos2 θ + νj(λi − λj) sin2 θ +
∑
l 6=i,j

λlνl

We proceed to take derivatives.

∂

∂θ
Tr
(
ΛR(θ)WTWR(θ)T

)
= 2 sin θ cos θ(νj − νi)(λi − λj) = sin 2θ(νj − νi)(λi − λj)

Thus, the second derivative, γ′′(θ), is given by,

2(νj − νi)(λi − λj) cos 2θ

Which, when evaluated at θ = 0, gives,

γ′′(0) = 2(νj − νi)(λi − λj).

Per Lemma 1, we also require the magnitude of the tangent to the path at θ = 0, to compute the
Rayleigh quotient. At the global optimum, we have,∥∥∥∥W d

dθ
R(θ)>

∥∥∥∥2

F

=

∥∥∥∥(I − ΛS−2)1/2 d

dθ
R(θ)>

∥∥∥∥2

F

=

∥∥∥∥∥
[
ν

1/2
i 0

0 ν
1/2
j

] [
− sin θ cos θ
− cos θ − sin θ

]∥∥∥∥∥
2

f

= νi + νj

Thus the Rayleigh quotient is given by,

fH(t) =
νj − νi
νi + νj

(λi − λj).

Without loss of generality, we will pick i > j, so that λi > λj , σi < σj , and νi < νj . Where the last
of these inequalities follows from λiσ

−2
i > λiσ

−2
j > λjσ

−2
j .
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Conditioning of the objective We can combine the lower bound on the largest singular value with
the upper bound on the smallest singular value to give a lower bound on the condition number. The
ratio can be written,

2(σ2
1 − σ2

k)(νi + νj)

(λi − λj)(νj − νi)
Thus, the condition number is controlled by our choice of placement of {λj}kj=1 on the interval
(0, σ2

k). We lower bound the condition number by the solution to the following optimization problem,

cond(HΛ) ≥ min
λ1,...,λk

max
i>j

2(σ2
1 − σ2

k)(νi + νj)

(λi − λj)(νj − νi)
(16)

To simplify the problem, we lower bound νi + νj > 2νi. Now the inner maximization can be reduced
to a search over a single index by setting i = j + 1, as the entries of Λ and each ν are monotonic
(decreasing and increasing respectively).

Further, we can see that at the minimum each of the terms νj+1/ ((λj+1 − λj)(νj − νj+1)) must be
equal — otherwise we could adjust our choice of Λ to reduce the largest of these terms. We denote
the equal value as c1. Thus, we can write,

λk − λ1 =
k−1∑
j=1

(λj+1 − λj) =
1

c1

k−1∑
j=1

νj+1

νj − νj+1

=⇒ c1 =
1

λk − λ1

k−1∑
j=1

νj+1

νj − νj+1
>

1

σ2
k

k−1∑
j=1

νj+1

νj − νj+1
(17)

We can further bound c1 by finding a lower bound for the summation in (17). The minimum of (17)
can be reached when all terms in the summation are equal. To see this, we let the value of each
summation term to be c2 > 0. We have,

νj+1 =
c2

1 + c2
νj , j = 1, . . . , k − 1

For l = 2, . . . , k − 1, the derivative of (17) with respect to νl is zero, and the second derivative is
positive.

∂

∂νl

1

σ2
k

k−1∑
j=1

νj+1

νj − νj+1
=

1

σ2
k

∂

∂νl

( νl−1

νl−1 − νl
+

νl+1

νl − νl+1

)
=

1

σ2
k

( νl−1

(νl−1 − νl)2
− νl+1

(νl − νl+1)2

)
=

1

σ2
k

· 1

νl

( 1+c2
c2

( 1+c2
c2
− 1)2

−
c2

1+c2

(1− c2
1+c2

)2

)
= 0

∂2

∂ν2
l

1

σ2
k

k−1∑
j=1

νj+1

νj − νj+1
=

1

σ2
k

(2νl−1(νl−1 − νl)
(νl−1 − νl)4

+
2νl+1(νl − νl+1)

(νl − νl+1)4

)
> 0

Therefore, the minimum of (17) can be reached when all terms in the summation are equal. We bound
c2 as follows,

ν1 − νk =

k−1∑
j=1

(νj − νj+1) =
1

c2

k−1∑
j=1

νj+1

=⇒ c2 =
1

ν1 − νk

k−1∑
j=1

νj+1 >
1

ν1

k∑
i=2

(1− λi
σ2
i

) >

k∑
i=2

σ2
i − λi
σ2
i

>
1

σ2
1

k−1∑
i=2

(σ2
i − σ2

k)

We bound the condition number by putting the above step together,

cond(HΛ) ≥ 2(σ2
1 − σ2

k)c1 > 2(σ2
1 − σ2

k)
k − 1

σ2
k

c2 >
2(k − 1)(σ2

1 − σ2
k)
∑k−1
i=2 (σ2

i − σ2
k)

σ2
1σ

2
k
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C Deterministic nested dropout derivation

In this section, we derive the analytical form of the expected LAE loss of the nested dropout
algorithm [24].

As in Section 5, we define πb as the operation that sets the hidden units with indices b+ 1, . . . , k to
zero. The loss written in the explicit expectation form is,

LND(W1,W2;X) = E
b∼pB(·)

[ 1

2n
||X −W2πb(W1X)||2F

]
(18)

In order to derive the analytical form of the expectation, we replace πb in (6) with element-wise
masks in the latent space. Let m(i)

j be 0 if the jth latent dimension of the ith data point is dropped
out, and 1 otherwise. Define the mask M ∈ {0, 1}k×n as,

M =

m
(1)
1 · · · m

(n)
1

...
. . .

...
m

(1)
k · · · m

(n)
k


We rewrite (18) as the expectation over M (“◦” denotes element-wise multiplication),

LND(W1,W2;X) = EM
[ 1

2n
||X −W2(M ◦W1X)||2F

]
(19)

Define X̃ := W2(M ◦W1X). We apply to (19) the bias-variance breakdown of the prediction X̃ ,

LND(W1,W2;X) := EM [LND(W1,W2,M)]

=
1

2n
E[Tr((X − X̃)(X − X̃)>]

=
1

2n
Tr(X>X − 2X>E[X̃] + E[X̃]>E[X̃])

=
1

2n
Tr((X − E[X̃])>(X − E[X̃])) +

1

2
Tr(Cov(X̃))

Define the marginal probability of the latent unit with index i to be kept (not dropped out) as pi,

pi = 1−
i−1∑
j=1

pB(b = j)

We also define the matrices PD and PL that will be used in the following derivation,

PD =

p1

. . .
pk

 , PL =


p1 p2 · · · pk
p2 p2 pk
...

...
pk pk · · · pk

 (20)

We can compute E[X̃] and Tr(Cov(x̃)) analytically as follows,

E[X̃] = EM [W2(M ◦W1X)] = W2PDW1X

Tr(Cov(x̃)) =
1

n
Tr(E[X̃X̃>])− 1

n
Tr(E[X̃]E[X̃]>)

=
1

n
Tr(X>W>1 (W>2 W2 ◦ PL)W1X)− 1

n
Tr(X>W>1 PDW

>
2 W2PDW1X)

Finally, we obtain the analytical form of the expected loss,

LND(W1,W2;X) =
1

2n
Tr(X>X)− 1

n
Tr(X>W2PDW1X)

+
1

2n
Tr(X>W>1 (W>2 W2 ◦ PL)W1X)
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D Conditioning analysis for the deterministic nested dropout

In this section we present an analogous study of the curvature under the Deterministic Nested Dropout
objective. We recall from Appendix C that the loss can be written as (PD, PL as defined in (20)),

LND(W1,W2;X) =
1

2n
Tr(X>X)− 1

n
Tr(X>W2PDW1X)

+
1

2n
Tr(X>W>1 (W>2 W2 ◦ PL)W1X)

Let Q = diag(q1, . . . , qk), where qi ∈ R, qi 6= 0, for i = 1, . . . , k. The global minima of the
objective are not unique, and can be expressed as,

W ∗1 = QU> (21)

W ∗2 = UQ−1 (22)

We can adopt the same approach as in Appendix B. We will compute quadratic forms with the Hessian
of the objective, via paths through the parameter space. We will consider paths along scaling and
rotation of the parameters.

Scaling curvature Let g(α) = LND(W ∗1 + αZ1,W
∗
2 + αZ2;X). As in Appendix B, we need

only compute the second order (α) terms in g(α),

α2[− 1

n
Tr(X>Z2PDZ1X) +

1

2n
Tr(2X>Z>1 (((W ∗2 )>Z2 + Z>2 W

∗
2 ) ◦ PL)W ∗1X)

+
1

2n
Tr(X>(W ∗1 )>(Z>2 Z2 ◦ PL)W ∗1X) +

1

2n
Tr(X>Z>1 ((W ∗2 )>W ∗2 ◦ PL)Z1X)]

(23)

Let Z = [u1 0] ∈ Rm×k, where u1 ∈ Rm is the first column of U . Let Z>1 = Z2 = Z, we have
the following identity,

Z>Z = U>Z = diag(1, 0, . . . , 0) ∈ Rk×k (24)

Substituting (21), (22) into (23), and applying identity (24), the second order term in g(α) becomes,

1

2
α2g′′(0) = α2 · p1σ

2
1(1 +

1

2
(q2

1 +
1

q2
1

)) ≥ α2 · 2p1σ
2
1

=⇒ g′′(0) ≥ 4p1σ
2
1

Applying Lemma 1 and notice that ||Z||F = 1, we can get a lower bound for the largest singular
value of the Hessian H ,

smax(H) ≥
vec(

[
Z>1 Z2

]
)>Hvec(

[
Z>1 Z2

]
)

||
[
Z>1 Z2

]
||2F

=
g′′(0)

2||Z||2F
≥ 2p1σ

2
1

Rotation curvature We use a similar approach as in Appendix B to get a upper bound for the
smallest singular value of the Hessian matrix. We consider paths along the (scaled) rotation manifold,

W1 = QR(θ)Q−1W ∗1

W2 = W ∗2QR(θ)>Q−1

where R(θ) is a rotation matrix parameterized by θ, representing the rotation of the ith and jth
dimensions only (a Givens rotation).

LND(W1,W2;X) = Const− 1

n
Tr

(
X>W ∗2QR(θ)>Q−1PDQR(θ)Q−1W ∗1X

)
+

1

2n
Tr

(
X>(W ∗1 )>Q−1R(θ)>Q

(
Q−1R(θ)Q(W ∗2 )>W ∗2QR(θ)>Q−1 ◦ PL

)
QR(θ)Q−1W ∗1X

)
(25)
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Without loss of generality, we consider the loss in the 2× 2 case (ith and jth dimensions only), and
denote all terms independent of θ as Const. Substituting (21) and (22) into (25),

LND(W1,W2;X) = Const− 1

2
Tr(

[
σ2
i

σ2
j

]
R(θ)>

[
pi

pj

]
R(θ))

= Const− 1

2
[(σ2

i pi + σ2
j pj) cos2 θ + (σ2

j pi + σ2
i pj) sin2 θ]

We can compute the derivatives of the objective with respect to θ,

∂

∂θ
LND(W1,W2;X) =

1

2
(σ2
i − σ2

j )(pi − pj) sin 2θ

∂2

∂θ2
LND(W1,W2;X)

∣∣∣
θ=0

= (σ2
i − σ2

j )(pi − pj) cos 2θ
∣∣∣
θ=0

= (σ2
i − σ2

j )(pi − pj)

Also, we compute the Frobenius norm of the path derivative. We use Ui,j ∈ Rm×2 to denote the
matrix containing only the ith and jth columns of U .∥∥∥ d

dθ
W>1

∥∥∥2

F
=
∥∥∥Ui,jR(θ +

π

2
)>Q

∥∥∥2

F
= q2

i + q2
j∥∥∥ d

dθ
W2

∥∥∥2

F
=
∥∥∥Ui,jR(θ +

π

2
)>Q−1

∥∥∥2

F
=

1

q2
i

+
1

q2
j

=⇒
∥∥∥ d
dθ

[
W>1 W2

] ∥∥∥2

F
= q2

i +
1

q2
i

+ q2
j +

1

q2
j

≥ 4

Applying Lemma 1, we obtain an upper bound for the smallest singular value of the Hessian,

smin ≤
∂2

∂θ2LND(W1,W2;X)
∣∣∣
θ=0∥∥∥ d

dθ

[
W>1 W2

] ∥∥∥2

F

∣∣∣
θ=0

≤
(σ2
i − σ2

j )(pi − pj)
4

Conditioning of the objective Combining the lower bound of the largest singular value with the
upper bound of the smallest singular value of the Hessian matrix, we obtain a lower bound on the
condition number,

8p1σ
2
1

(σ2
i − σ2

j )(pi − pj)

The condition number is controlled by the choice of the cumulative keep probabilities p1, . . . , pk.
Thus, the condition number can be further lower bounded by the solution of the following optimization
problem,

cond(H) ≥ min
p1,...,pk

max
i>j

8p1σ
2
1

(σ2
i − σ2

j )(pi − pj)

The inner optimization problem can be reduced to a search over a single index i, with j = i + 1.
The minimum of the outer optimization problem is achieved when the inner objective is constant for
all i = 1, . . . , k − 1 (otherwise we can adjust p1, . . . , pk to make the inner objective smaller). We
denote the constant as c, and lower bound it as follows,

1

c(σ2
i − σ2

j )
=

(pi − pj)
8p1σ2

1

, ∀i = 1, . . . , k − 1

=⇒ 1

c

k−1∑
i=1

1

σ2
i − σ2

j

=

k−1∑
i=1

(pi − pj)
8p1σ2

1

=
p1 − pk
8p1σ2

1

<
1

8σ2
1

=⇒ c > 8σ2
1

k−1∑
i=1

1

σ2
i − σ2

j

≥ 8σ2
1(k − 1)2

σ2
1 − σ2

k
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The last inequality is achieved when all terms in the summation are equal. The lower bound of the
condition number of the Hessian matrix is,

cond(H) >
8σ2

1(k − 1)2

σ2
1 − σ2

k

Note that this lower bound will be looser if we do not have the prior knowledge of σ1, . . . , σk, in
order to set p1, . . . , pk appropriately.

E Deferred proofs

E.1 Proof of the Transpose Theorem

The proof of the transpose theorem relied on Lemma 2 (stated below). This result was essentially
proved in Kunin et al. [17]. We reproduce the statement and proof here for completeness, which
deviates trivially from the original proof.

Lemma 2. The matrix C = (I −W2W1)XX> is positive semi-definite at stationary points.

Proof. At stationary points we have,

∇W2Lσ′ = 2(W2W1 − I)XXTWT
1 + 2W2Λ = 0

Multiplying on the right by W>2 and rearranging gives,

XX>(W2W1)> = W2W1XX
>(W2W1)> +W2ΛW>2

Both terms on the right are positive definite, thus,

XX>(W2W1)> �W2W1XX
>(W2W1)>.

By Lemma B.1 in Kunin et al. [17], we can cancel (W2W1)> on the right4 and recover C � 0.

Using Lemma 2, we proceed to prove Theorem 1 (the Transpose Theorem).

Proof of Theorem 1. All stationary points must satisfy,

∇W1
Lσ′ =

2

n
W>2 (W2W1 − I)XX> + 2ΛW1 = 0

∇W2
Lσ′ =

2

n
(W2W1 − I)XX>W>1 + 2W2Λ = 0

We have,

0 = ∇W1Lσ′ −∇W2L>σ′

=
2

n
(W1 −W>2 )(I −W1W2)XX> + 2Λ(W1 −W>2 )

By Lemma 2, we know that C = 1
n (I −W1W2)XX> is positive semi-definite. Further, writing

A = W1 −W>2 ,
0 = v>ACA>v + v>ΛAA>v, ∀v

As ACA> � 0, we must have ∀v, v>ΛAA>v ≤ 0. Consider setting v = ei, where ei is the ith
coordinate vector in Rk (ith entry is 1, and all other entries are 0). We have,

e>i ΛAA>ei = λi‖Ai‖22 ≤ 0,

where Ai denotes the ith row of A. Since λi > 0, we have Ai = 0. Since this holds for all
i = 1, . . . , k, we have A = 0.

4This result is a simple consequence of properties of positive semi-definite matrices
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E.2 Proof of the Landscape Theorem

Before proceeding with our proof of the Landscape Theorem (Theorem 2), we will require the
following Lemmas. We begin by proving a weaker version of the landscape theorem (Lemma 3),
which allows for symmetry via orthogonal transformations.

I ⊂ {1, · · · ,m} contains the indices of the learned dimensions. We define SI , ΛI , UI and II
similarly as in Kunin et al. [17].

• l = |I|. i1 < · · · < il are increasing indices in I. We use subscript l to denote matrices of
dimension l × l.

• SI = diag(σi1 , . . . , σil) ∈ Rl×l, ΛI = diag(λi1 , . . . , λil) ∈ Rl×l

• UI ∈ Rm×l has the columns in U with indices i1, . . . , il.
• II ∈ Rm×l has the columns in the m×m identity matrix with indices i1, . . . , il.

Lemma 3 (Weak Landscape Theorem). All stationary points of (3) have the form:

W1 = O(Il − ΛS−2
I )

1
2U>I

W2 = UI(Il − ΛS−2
I )

1
2O>

where O ∈ Rk×k is an orthogonal matrix.

To prove Lemma 3, we introduce Lemma 4 and Lemma 5.
Lemma 4. Given a symmetric matrix Q ∈ Rm×m, and diagonal matrix D ∈ Rm×m. If D has
distinct diagonal entries, and Q,D satisfy

2QD2Q = Q2D2 +D2Q2 (26)

Then Q is diagonal.

Proof of Lemma 4. We prove Lemma 4 using induction. We use subscript l to denote matrices of
dimension l × l.
When l = 1, Ql is trivially diagonal, and Equation (26) always holds.

Assume for some l ≥ 1, Ql is diagonal and satisfies (26) for subscript l.

We have for dimension l × l:

2QlD
2
lQl = Q2

lD
2
l +D2

lQ
2
l (27)

We write Ql+1 and D2
l+1 in the following form (a ∈ Rl×1, q, s are scalars)

Ql+1 =

[
Ql a
a> q

]
D2
l+1 =

[
D2
l 0

0> d2

]
Expand the LHS and RHS of Equation (26) for subscript l + 1:

2Ql+1D
2
l+1Ql+1 = 2

[
Ql a
a> q

] [
D2
l 0

0> d2

] [
Ql a
a> q

]
= 2

[
QlD

2
lQl + d2aa> QlD

2
l a+ d2qa

a>D2
lQl + d2qa> a>D2

l a+ d2q2

]
(28)

Q2
l+1D

2
l+1 +D2

l+1Q
2
l+1 =

[
Ql a
a> q

]2 [
D2
l 0

0> d2

]
+

[
D2
l 0

0> d2

] [
Ql a
a> q

]2

=

[
RHS1:l,1:l RHS1:l,l+1

RHSl+1,1:l RHSl+1,l+1

]

RHS1:l,1:l = Q2
lD

2
l +D2

lQ
2
l + aa>D2

l +D2
l aa
> (29)
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Equate the 1 to lth row and column of LHS and RHS (top-left of Equation (28) and (29)), and apply
the induction assumption (27):

2d2aa> = aa>D2
l +D2

l aa
>

=⇒ 0 = aa>(D2
l − d2I) + (D2

l − d2I)aa>

=⇒ 0 = 2a2
i (s

2
i − d2), ∀i = 1, · · · , l, D2

l = diag(s2
1, · · · , s2

l )

Since Dl+1 is a diagonal matrix with distinct diagonal entries, s2
i − d2 6= 0 for ∀i = 1, · · · , l. Hence

a = 0, and Ql+1 is diagonal.

It’s easy to check that a = 0 satisfies Equation (26), hence diagonal Ql+1 is a valid solution.

By induction, Q ∈ Rm×m is diagonal.

Lemma 5. Consider the loss function,

L̃(Q1, Q2) = tr(Q2Q1S
2Q>1 Q

>
2 − 2Q2Q1S

2

+2Q1Q2Λ + S2)

where S2 = diag(σ2
1 , . . . , σ

2
k), Λ = diag(λ1, . . . , λk) are diagonal matrices with distinct positive

elements, and ∀i = 1, . . . , k, σ2
i > λi. Then all stationary points satisfying Q>1 = Q2 are of the

form,

Q1 = O(Il − ΛIS
−2
I )

1
2 I>I

Proof of Lemma 5. Taking derivatives,

∂L̃

∂Q1
= 2Q>2 Q2Q1S

2 − 2Q>2 S
2 + 2Λ2Q>2 = 0

∂L̃

∂Q2
= 2Q2Q1S

2Q>1 − 2S2Q>1 + 2Q>1 Λ2 = 0

Multiplying the first equation on the left by Q>1 , and using Q2 = Q>1 , we get,

Q>1 Q1Q
>
1 Q1S

2 −Q>1 Q1S
2 +Q>1 Λ2Q1 = 0 (30)

Similarly, multiplying the second equation on the right by Q1,

Q>1 Q1S
2Q>1 Q1 − S2Q>1 Q1 +Q>1 Λ2Q1 = 0

Writing Q = Q>1 Q1, and equating through Q>1 Λ2Q1,

QS2Q = Q2S2 + S2Q−QS2

Taking the transpose and adding the result,

2QS2Q = Q2S2 + S2Q2

Applying Lemma 4, we have that Q is a diagonal matrix. Following this, Q commutes with both S2

and Λ2, thus we can reduce (30) to,

Q2S2 = Q(S2 − Λ2)

⇒ S2(S2 − Λ2)−1QQ(S2 − Λ2)−1S2 = S2(S2 − Λ2)−1Q

Thus, S2(S2−Λ2)−1Q is idempotent. From here, we can follow the proof of Proposition 4.3 in [17],
with the additional use of the transpose theorem, to determine that,

Q1 = O(Il − Λ2
IS
−2
I )

1
2 I>I
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Proof of Weak Landscape Theorem We can now proceed with our desired result, the weak
landscape theorem.

Proof of Lemma 3. Let Q1 = W1U , and Q2 = U>W2. We can write the loss as,

Lσ′ = Tr(Q2Q1S
2Q>1 Q

>
2 − 2Q2Q1S + 2Q1Q2Λ + S2) + ||Λ1/2(Q1 −Q>2 )||2F (31)

To see this, observe that,

||Λ1/2(Q1 −Q>2 )||2F = Tr(Q1Q
>
1 Λ +Q>2 Q2Λ− 2Q1Q2Λ)

= ||Λ1/2Q1||2F + ||Q2Λ1/2||2F − 2Tr(Q1Q2Λ)

The Transpose Theorem guarantees that the second term in (31) is zero at stationary points. Applying
Lemma 5, all stationary points must be of the form:

W ∗1 = O(Il − ΛIS
−2
I )

1
2U>I (32)

W ∗2 = UI(Il − ΛIS
−2
I )

1
2O> (33)

Proof of the (Strong) Landscape Theorem We now present our proof of the strong version of the
Landscape Theorem, which removes the orthogonal symmetry present in the weaker version.

Proof of Theorem 2. By Theorem 1, at stationary points, W1 = W>2 . We write W1 =[
w>1 w>2 · · · w>k

]>
, and W2 = [w1 w2 · · · wk], where wi for i = 1, · · · , k is the ith

column of the decoder.

Define the regularization term in the loss as ψ(W1,W2).

ψ(W1,W2) = ‖Λ1/2W1‖2F + ‖W2Λ1/2‖2F = 2||Λ1/2W1||2F

Let W̃1 = RijW1 and W̃2 = W2R
>
ij , where Rij is the rotational matrix for the ith and jth

components.

Rij =



1
. . .

cos θ − sin θ
. . .

sin θ cos θ
. . .

1
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ψ(W̃1, W̃2) = ||Λ1/2W̃1||22 + ||W̃2Λ1/2||22
= Tr(Λ1/2W̃1W̃

>
1 Λ1/2) + Tr(Λ1/2W̃>2 W̃2Λ1/2)

= Tr(Λ1/2RijW1W
>
1 R
>
ijΛ

1/2) + Tr(Λ1/2RijW
>
2 W2R

>
ijΛ

1/2)

= 2Tr(Λ1/2



w>1
...

w>i cos θ − w>j sin θ
...

w>i sin θ + w>j cos θ
...
w>k





w>1
...

w>i cos θ − w>j sin θ
...

w>i sin θ + w>j cos θ
...
w>k



>

Λ1/2)

= 2Tr(



λ
1/2
1 w>1

...
λ

1/2
i (w>i cos θ − w>j sin θ)

...
λ

1/2
j (w>i sin θ + w>j cos θ)

...
λ

1/2
k w>k





λ
1/2
1 w>1

...
λ

1/2
i (w>i cos θ − w>j sin θ)

...
λ

1/2
j (w>i sin θ + w>j cos θ)

...
λ

1/2
k w>k



>

)

= 2[λi(w
>
i cos θ − w>j sin θ)>(w>i cos θ − w>j sin θ)

+ λj(w
>
i sin θ + w>j cos θ)>(w>i sin θ + w>j cos θ)) +

k∑
l=1,l 6=i,i 6=j

λlw
>
l wl]

= 2[(λiw
>
i wi + λjw

>
j wj) cos2 θ + (λjw

>
i wi + λiw

>
j wj) sin2 θ

+ 4(λj − λi)w>i wj sin θ cos θ +

k∑
l=1,l 6=i,i6=j

λlw
>
l wl]

= 2[A cos(2θ +B) + C +

k∑
l=1,l 6=i,i 6=j

λlw
>
l wl]

Where A,B,C satisfy:

A cosB =
1

2
(λj − λi)(w>j wj − w>i wi) (34)

A sinB = −2(λj − λi)w>i wj (35)

In order for ψ(W̃1, W̃2) to be a stationary point at θ = 0, we need either of the two necessary
conditions to be true for ∀i < j:

Condition 1: A = 0 ⇐⇒ w>i wj = 0 and w>i wi = w>j wj

Condition 2: A 6= 0 and B = βπ, β ∈ Z ⇐⇒ w>i wj = 0 and w>j wj 6= w>i wi

The two conditions can be consolidated to one, i.e. the columns of the decoder needs to be orthogonal.

∀i, j ∈ {1, · · · , k}, w>i wj = 0

The following Lemma uses such orthogonality to constrain the form that the matrixO in (32) and (33)
can take.
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Lemma 6. Let W ∗1 , W ∗2 be in the form of (32) and (33). And let W ∗1 =
[
w>1 w>2 · · · w>k

]>
,

and W ∗2 = [w1 w2 · · · wk], where wi ∈ Rm for i = 1, · · · , k is the ith columns of the W ∗2 .

If for ∀i, j ∈ {1, · · · , k}, w>i wj = 0, then O has exactly one entry of ±1 in each row and at most
one entry of ±1 in each column, and zeros elsewhere.

Proof of Lemma 6.

(W ∗2 )>W ∗2 = O(Il − ΛS−2
I )

1
2U>I UI(I2

l − ΛS−2
I )

1
2O> = O(Il − ΛS−2

I )O> (36)

Note that (Il − ΛS−2
I ) is a diagonal matrix with strictly descending positive diagonal entries, so (36)

is an SVD to (W ∗2 )>W ∗2 .

Because W ∗2 has orthogonal columns, (W ∗2 )>W ∗2 is a diagonal matrix. There exists a permutation
matrix P0 ∈ Rk×k, such that W ∗2 P

>
0 has columns ordered strictly in descending magnitude. Let

W̄ ∗2 = W ∗2 P
>
0 , and Ō = P0O, then

(W̄ ∗2 )>W̄ ∗2 = (W ∗2 P
>
0 )>W ∗2 P

>
0

= P0O(Il − ΛS−2
I )O>P>0

= Ō(Il − ΛS−2
I )Ō> (37)

= Il − ΛS−2
I (38)

Note that Ō = P0O also have orthonormal columns, we have Ō>Ō = I . Let Ō =[
o>1 o>2 · · · o>k

]>
, where oj ∈ R1×l are rows of O. From (37) and (38), we have for

i ∈ {1, · · · , l}, j ∈ {1, · · · , k}:

Ō>(Il − ΛS−2
I ) = (Il − ΛS−2

I )Ō>

=⇒ (Ō>(Il − ΛS−2
I ))ij = ((Il − ΛS−2

I )Ō>)ij ∀i, j ∈ {1, · · · , k}
=⇒ (oj)i(1− λjσ−2

ij
) = (oj)i(1− λiσ−2

ii
)

=⇒ (oj)i(λiσ
−2
ii
− λjσ−2

ij
) = 0

Since (Il−ΛS−2
I ) is a diagonal matrix with strictly descending entries, we have λiσ−2

ii
−λjσ−2

ij
6= 0

for i 6= j. Hence (oj)i = 0 for i 6= j, i.e. Ō is diagonal. Since Ō has orthonormal columns, it has
diagonal entries ±1.

O = P−1
0 Ō = P>0 Ō

Therefore, O has exactly one entry of ±1 in each row, and at most one entry of ±1 in each column,
and zeros elsewhere.

We now finish the proof for Theorem 2. Applying Lemma 6, we can rewrite the stationary points
using rank k matrices S and U :

W ∗1 = P (I − ΛS−2)
1
2UT

W ∗2 = U(I − ΛS−2)
1
2P

Where P ∈ Rk×k has exactly one ±1 in each row and each column with index in I, and zeros
elsewhere. This concludes the proof.

E.3 Proof of recovery of ordered, axis-aligned solution at global minima

Lemma 7 (Global minima – necessary condition 1). Let the encoder (W ∗1 ) and decoder (W ∗2 ) of
the non-uniform `2 regularized LAE have the form in (4) and (5). If 0 < λi < σ2

i for ∀i = 1, · · · , k,
then (W ∗1 ,W

∗
2 ) can be at global minima only if P has full rank.
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Proof of Lemma 7. We prove the contrapositive: if rank(P ) < k, then (W ∗1 ,W
∗
2 ) in (4) and (5) is

not at global minimum.

Since rank(P ) < k, there exists a matrix δP ∈ Rk×k such that δP has all but one element equal to 0,
and δPij = h > 0, for some i, j ∈ {1, . . . , k}, where the ith row and jth column of P are all zeros.

δW1 = δP (I − ΛS−2)
1
2UT

δW2 = U(I − ΛS−2)
1
2 δP>

Lσ′(W ∗1 + δW1,W
∗
2 + δW2)

=
1

n
||X − (W ∗2 + δW2)(W ∗1 + δW1)X||2F

+ ||Λ1/2(W ∗1 + δW1)||2F + ||(W ∗2 + δW2)Λ1/2||2F

=
1

n
Tr((I − (W ∗2 + δW2)(W ∗1 + δW1))XX>(I − (W ∗2 + δW2)(W ∗1 + δW1)))

+ Tr(Λ1/2(W ∗1 + δW1)(W ∗1 + δW1)>Λ1/2) + Tr(Λ1/2(W ∗2 + δW2)>(W ∗2 + δW2)Λ1/2)

= Tr((I − (I − ΛS−2)(P + δP )>(P + δP ))2S2)

+ 2Tr(Λ(P + δP )(I − ΛS−2)(P + δP )>)

= Lσ′(W ∗1 ,W
∗
2 ) + [(1− (1− λiσ−2

i )h2)2 − 1]σ2
i + 2λi(1− λiσi)−2)h2

= Lσ′(W ∗1 ,W
∗
2 )− 2(σ2

i − λi)(1− λiσ−2
i )h2 + (1− λiσ−2

i )2σ2
i h

4

= Lσ′(W ∗1 − δW1,W
∗
2 − δW2)

The first derivative of (W ∗1 ,W
∗
2 ) along (δW1, δW2) is zero:

lim
h→0

Lσ′(W ∗1 + δW1,W
∗
2 + δW2)− Lσ′(W ∗1 ,W

∗
2 )

h

= lim
h→0

−2(σ2
i − λi)(1− λiσ

−2
i )h2 + (1− λiσ−2

i )2σ2
i h

4

h
= 0

The second derivative of (W ∗1 ,W
∗
2 ) along (δW1, δW2) is negative (note that 0 < λi < σ2

i ):

lim
h→0

Lσ′(W ∗1 + δW1,W
∗
2 + δW2)− 2Lσ′(W ∗1 ,W

∗
2 ) + Lσ′(W ∗1 − δW1,W

∗
2 − δW2)

h2

= lim
h→0

2Lσ′(W ∗1 + δW1,W
∗
2 + δW2)− 2Lσ′(W ∗1 ,W

∗
2 )

h2

= lim
h→0

2
−2(σ2

i − λi)(1− λiσ
−2
i )h2 + (1− λiσ−2

i )2σ2
i h

4

h2

= −4(σ2
i − λi)(1− λiσ−2

i )

< 0

Therefore, if rank(P ) < k, (W ∗1 ,W
∗
2 ) is not at global minima. The contrapositive states that if

(W ∗1 ,W
∗
2 ) is at global minima, then P has full rank.

Lemma 8 (Global minima – necessary condition 2). Let the encoder (W ∗1 ) and decoder (W ∗2 ) of the
non-uniform `2 regularized LAE have the form in (4) and (5), and P has full rank. Then (W ∗1 ,W

∗
2 )

can be at global minimum only if P is diagonal.

Proof of Lemma 8. Following similar analysis for the proof of Theorem 2, we have (34) and (35). In
order for θ = 0 to be a global optimum, it must be a local optimum. Therefore, for ∀i < j, we need
either of the following necessary conditions to be true:

Condition 1: A = 0 ⇐⇒ w>i wj = 0 and w>i wi = w>j wj

Condition 2: A cosB < 0 and B = βπ, β ∈ Z ⇐⇒ w>i wj = 0 and w>i wi > w>j wj
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The two conditions can be consolidated to the following (i < j):

w>i wj = 0 and w>i wi ≥ w>j wj

Then, (W ∗2 )>(W ∗2 ) is a diagonal matrix with non-negative diagonal entries sorted in descending
order.

(W ∗2 )>(W ∗2 ) = P (Il − ΛS−2
I )P> (39)

Since the diagonal entries of (Il − ΛS−2
I ) are positive and sorted in strict descending order, and

that (39) is an SVD of (W ∗2 )>(W ∗2 ), we have:

(W ∗2 )>(W ∗2 ) = (Il − ΛS−2
I )

We can use the same technique as the proof of Lemma 6 to prove that P must be diagonal.

Lemma 9 (Global minima – sufficient condition). Let Ī ∈ Rk×k be a diagonal matrix with diagonal
elements equal to ±1.The encoder (W ∗1 ) and decoder (W ∗2 ) of the following form are at global
minima of the non-uniform `2 LAE objective.

W ∗1 = Ī(I − ΛS−2)
1
2UT (40)

W ∗2 = U(I − ΛS−2)
1
2 Ī (41)

Proof of Lemma 9. Because the objective of the non-uniform regularized LAE is differentiable
everywhere for W1 and W2, all local minima (therefore also global minima) must occur at stationary
points. Theorem 2 shows that the stationary points must be of the form (4) and (5). Lemma 7 further
shows that a necessary condition for the global minima is when l = k, i.e. the encoder and decoder
must be of the form in (40) and (41).

In order to prove that (40) and (41) are sufficient condition for global minima, it is sufficient to show
that all W ∗1 , W ∗2 that satisfy (40) and (41) (i.e. all Ī) result in the same loss. Notice that Ī2 = I , then:

Lσ′(W ∗1 ,W
∗
2 ) =

1

n
||X −W ∗2W ∗1X||2F + ||Λ1/2W ∗1 ||2F + ||W ∗2 Λ1/2||2F

=
1

n
||X −W ∗2W ∗1X||2F + Tr(Λ1/2W ∗1 (W ∗1 )>Λ1/2)

+ Tr(Λ1/2(W ∗2 )>W ∗2 Λ1/2)

=
1

n
||X − U(I − ΛS−2)

1
2 Ī2(I − ΛS−2)

1
2UTX||2F

+ 2Tr(Λ1/2Ī(I − ΛS−2)
1
2UTU(I − ΛS−2)

1
2 Ī>Λ1/2)

=
1

n
||X − U(I − ΛS−2)UTX||2F + 2Tr(Λ(I − ΛS−2)) (42)

According to (42), Lσ′(W ∗1 ,W
∗
2 ) is constant with respect to Ī . Hence, (40) and (41) are sufficient

conditions for global minima of the non-uniform `2 regularized LAE objective.

Proof of Theorem 3. From Lemma 7, 8, and 9, we conclude that the global minima of the non-
uniform `2 regularized LAE are achieved if and only if the encoder (W ∗1 ) and decoder (W ∗2 ) are of
the form in (40) and (41), i.e. ordered, axis-aligned individual principal component directions.

We have proven in Lemma 7 that for l < k, there exists a direction for which the second derivative
of the objective is negative. We have proven also that stationary points with l = k are either global
optima, or saddle points (Lemma 8, 9). Hence, there do not exist local minima that are not global
minima.
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E.4 Proof of local linear convergence of RAG

Proof of Theorem 5. Applying Assumption 1, the instantaneous update for RAG is,

Ẇ1 =
1

n
AW1

Ẇ2 =
1

n
W2A

The instantaneous update for Y Y > is,
d

dt
(Y Y >) =

1

n
(AY Y > + Y Y >A>)

Let yij be the i, jth element of Y Y >, and i < j, then,

d

dt
yii =

2

n
(−

i−1∑
l=1

y2
il +

k∑
l=i+1

y2
il)

d

dt
yij = − 1

n
(yii − yjj)yij +

2

n
(−

i−1∑
l=1

yilyjl +

k∑
l=j+1

yilyjl) (43)

With Assumption 2, we can write (43) as:

d

dt
yij = − 1

n
(yii − yjj)yij +O(

ε2

k
) (44)

The first term in (44) collects the products of diagonal and off-diagonal elements, and is of order
O( εk ). The second term in (44) collects second-order off-diagonal terms. With 0 < ε� 1, we can
drop the second term.

Also, applying Assumption 3, we have yii > yjj .

d

dt
|yij | ≈ −

1

n
(yii − yij)|yij |

The instantaneous change of the “non-diagonality” Nd( 1
nY Y

>) is,

d

dt
Nd(

1

n
Y Y >) =

d

dt

(
2

k−1∑
i=1

k∑
j=i+1

1

n
|yij |

)
= 2

k−1∑
i=1

k∑
j=i+1

1

n

(
d

dt
|yij |

)

≈ 2

k−1∑
i=1

k∑
j=i+1

1

n

(
− 1

n
(yii − yjj)|yij |

)

≤ −g ·
(

2

k−1∑
i=1

k∑
j=i+1

1

n
|yij |

)
= −g ·Nd(

1

n
Y Y >)

Hence, Nd( 1
nY Y

>) converges to 0 with an instantaneous linear rate of g.

E.5 Convergence of latent space rotation to axis-aligned solutions

We first state LaSalle’s invariance principle [13] in Lemma 10, which is used in Theorem 4 to prove
the convergence of latent space rotation to the set of axis-aligned solutions.
Lemma 10 (LaSalle’s invariance principle (local version)). Given dynamical system ẋ = f(x) where
x is a vector of variables, and f(x∗) = 0. If a continuous and differentiable real-valued function
V (x) satisfies,

V̇ (x) ≤ 0 for ∀ x
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Then V̇ (x)→ 0 as t→∞.

Moreover, if there exists a neighbourhood N of x∗ such that for x ∈ N ,
V (x) > 0 if x 6= x∗

And,
V̇ (x) = 0 ∀ t ≥ 0 =⇒ x(t) = x∗ ∀ t ≥ 0

Then x∗ is locally asymptotically stable.

In Section 6.3, we gave an informal statement of Theorem 4. Here, we state the theorem formally.
Theorem 4 (Global convergence to axis-aligned solutions). Let O0 ∈ Rk×k be an orthogonal matrix,
W ∈ Rk×m (k < m). X and U are as defined in Section 2. (·) and (·) are as defined in
Algorithm 1. Consider the following dynamical system,

Ẇ =
1

2n
( (WXXW>)− (WXXW>))W (45)

W (0) = O0U
> (46)

Then W (t)→ PU> as t→∞, where P ∈ Rk×k is a permutation matrix with non-zero elements
±1. Also, the dynamical system is asymptotically stable at ĨU>, where Ĩ is a diagonal matrix with
diagonal entries ±1.

It is straightforward to show that (45) and (46) are equivalent to the instantaneous limit of RAG on
the orthogonal subspace W1 = W>2 = OU> (O is an orthogonal matrix). To see this, notice that on
the orthogonal subspace, the gradient of W1 and W2 with respect to the reconstruction loss are zero,

∇W1
L(W1 = OU>,W2 = UO>;X) = 0

∇W2
L(W1 = OU>,W2 = UO>;X) = 0

Theorem 4 states that in the instantaneous limit, an LAE that is initialized on the orthogonal subspace
and is updated by Algorithm 1 globally converges to the set of axis-aligned solutions. Moreover, the
convergence to the set of ordered axis-aligned solutions is asymptotically stable. We provide the
proof below.

Proof. We first show that W (t) remains on the orthogonal subspace, i.e. W (t) = O(t)U> for ∀ t,
where O(t) is orthogonal. To reduce the notation clutter, we define A(W ) = 1

2n ( (WXXW>)−
(WXXW>)). We take the time derivative of WW>,

d(WW>)

dt
= ẆW> +WẆ> = A(W )WW> +WW>A(W )> = A(W )WW> −WW>A(W )

The last inequality follows from the observation that A(W ) is skew-symmetric, so that A(W )> =

−A(W ). Since W (0)W (0)> = I , and WW> = I =⇒ d(WW>)
dt = 0, we have,

W (t)W (t)> = I for ∀ t ≥ 0

From the dynamical equation (45), we know that W (t) has the form W (t) = G(t)U> for some
matrix G(t) ∈ Rk×k. We have,

W (t)W (t)> = G(t)U>UG(t)> = G(t)G(t)> = I =⇒ G(t) is orthogonal.

We move on to use LaSalle’s invariance principle to prove Theorem 4. The rest of the proof is divided
into two parts. In the first part, we prove that W (t)→ PU> as t→∞, i.e. W (t) globally converges
to axis-aligned solutions. In the second part, we prove that the ordered, axis-aligned solution ĨU> is
locally asymptotically stable.

Let Σ = 1
nXX

>. We define V (W ) as,

V (W ) = Tr((S2 −WΣW>)D) (47)
Where S is as defined in Section 2, and D = diag(d1, . . . , dk), with d1 > · · · > dk > 0.

Note that definition (47) is the Brockett cost function [1] with an offset. The Brockett cost function
achieves minimum when the rows of W are the eigenvectors of Σ. See Appendix G for a detailed
discussion of the connection between the rotation augmented gradient and the Brockett cost function.
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Part 1 (global convergence to axis-aligned solutions) In this part, we compute V̇ (W ), and invoke
the first part of LaSalle’s invariance principle to show global convergence to axis-aligned solutions.

Denote the (transposed) ith row of W as wi ∈ Rm×1. We rewrite (45) in terms of rows of W ,

ẇi = −1

2

i−1∑
j=1

(w>i Σwj)wj +
1

2

k∑
j=i+1

(w>i Σwj)wj

We proceed to compute V̇ (W ),

V̇ (W ) = −2

k∑
i=1

diw
>
i Σẇi =

k∑
i=1

di

[ i−1∑
j=1

(w>i Σwj)
2 −

k∑
j=i+1

(w>i Σwj)
2

]

=

k∑
i=2

i−1∑
j=1

di(w
>
i Σwj)

2 −
k−1∑
i=1

k∑
j=i+1

di(w
>
i Σwj)

2

=

k∑
i=2

i−1∑
j=1

di(w
>
i Σwj)

2 −
k−1∑
j=1

k∑
i=j+1

dj(w
>
i Σwj)

2

=

k∑
i=2

i−1∑
j=1

di(w
>
i Σwj)

2 −
k∑
i=2

i−1∑
j=1

dj(w
>
i Σwj)

2

=

k∑
i=2

i−1∑
j=1

(di − dj)(w>i Σwj)
2

Since di < dj for ∀ i > j, we have,

V̇ (W ) ≤ 0 (48)

The equality in (48) holds if and only if ∀ i 6= j,w>i Σwj = 0, or, written in matrix form,WXX>W>

is diagonal.

V̇ (W ) = 0 ⇐⇒ WXX>W> is diagonal (49)

Since we also have W = OU>, and using the SVD of X , we can see that (49) is equivalent to,

W = PU>

Also, W = PU> are stationary points of the dynamical equation (45). By LaSalle’s invariance
principle, we have,

V̇ (W )→ 0 as t→∞ =⇒ W (t)→ PU> as t→∞

W (t) globally converges to the set of axis-aligned solutions. This concludes the first part of the proof.

Part 2 (asymptotic convergence to optimal representation) We break down this part of the proof
into two steps. First, we show that V (W ) is positive definite locally at ĨU>. Then, we show that
ĨU> is the only solution to V̇ (W ) = 0 in its neighbourhood.

We first show that V (W ) is positive definite at W = ĨU>. Note that columns of U contain the
ordered left singular vectors of X . We can rewrite (47) as,

V (W ) = −Tr(OS2O>D) +

k∑
i=1

diσ
2
i = −

k∑
i=1

k∑
j=1

diσ
2
jO

2
ij +

k∑
i=1

diσ
2
i (50)

We use Oij to denote the component with row and column index i, j respectively. (50) is minimized
when O = Ĩ and takes value zero. It is positive everywhere else, and thus, V (W ) is positive definite
at W = ĨU>.
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Now, we show that W = ĨU> is the only solution to V̇ (W ) = 0 within some neighbourhood around
itself. Since permutation matrices P are finite and distinct, we can find a neighbourhood around
each Ĩ on the Stiefel manifold Vk(Rk), in which W = ĨU> is the unique solution for V̇ (W ). We
mathematically state this below,

∃ some neighbourhood N on Vk(Rk) around Ĩ , such that[
O ∈ N, V̇ (OU>) = 0 ∀ t ≥ 0

]
=⇒ O = Ĩ

This means that local to W = ĨU>, V̇ (W ) = 0 for ∀ t ≥ 0 implies W = ĨU>.

We have satisfied all the necessary conditions to invoke LaSalle’s invariance principle. Thus, W =
ĨU> is locally asymptotically stable.

F Connection of non-uniform `2 regularization to linear VAE with diagonal
covariance

Consider the following VAE model,

p(x|z) = N (Wz + µ, σ2I)

q(z|x) = N (V (x− µ), D)

Where W is the decoder, V is the encoder, and D is the diagonal covariance matrix. The ELBO
objective is,

ELBO = −KL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)]

It’s shown in [19] that such a linear VAE with diagonal latent covariance can learn axis-aligned
principal component directions. We show in this section that training such a linear VAE with ELBO
is closely related to training a non-uniform `2 regularized LAE.

As derived in Appendix C.2 of [19], the gradients of the ELBO with respect to D,V and W , are,

∇D =
n

2
(D−1 − I − 1

σ2
diag(W>W ))

∇V =
n

σ2
(W> − (W>W + σ2I)V )Σ

∇W =
n

σ2
(ΣV > −DW −WV ΣV >)

Where Σ = 1
nXX

>. The optimal D∗ = σ2(diag(W>W ) + σ2I)−1. The “balanced" weights in
this case is V = M−1W>, M = W>W + σ2I

Assume optimal D = D∗ and balanced weights, we can rewrite the gradients. First, look at the
gradient for V ,

∇V =
n

σ2
(W> − (W>W + σ2I)V )Σ

=
n

σ2
((W>W + σ2I)V − (W>W + σ2I)V )Σ

= 0

The gradient for V simply forces V to be “balanced" with W . Then for W ,

∇W =
n

σ2
(ΣV > −DW −WV ΣV >)

=
n

σ2
(ΣV > − σ2(diag(W>W ) + σ2I)−1W −WV ΣV >)

=
1

σ2
(XX>V > − nσ2diag(M)−1W −WVXX>V >)

=
1

σ2
(XY > − nσ2diag(M)−1W −WY Y >)

=
1

σ2
(X −WY )Y > − n · diag(M)−1W

31



This is exactly non-uniform `2 regularization on W . The `2 weights are dependent on W .
diag(M)−1 = diag(W>W + σ2I)−1

G Connection between the rotation augmented gradient and the Brockett
cost function

In this section, we discuss the connection between our rotation augmented gradient and the gradient
of the Brockett cost function. In particular, we show that the two updates share similar forms.

Since the Brockett cost function is defined on the Stiefel manifold, we assume throughout this section
that W1 = W>2 , and W>2 W2 = I . Let Σ = 1

nXX
> be the data covariance, the Brockett cost

function is,
Tr(W>2 ΣW2N) subj. to W>2 W2 = Ik (i.e. W2 ∈ St(k,m))

Where N = diag(µ1, . . . , µk), and 0 < µ1 < · · · < µk are constant coefficients. To make the
gradient form more consistent with the rotation augmented gradient, we switch the sign of the loss,
and reverse the ordering of the diagonal matrix N . This does not change the optimization problem,
due to the constraint that W2 is on the Stiefel manifold. We define,

LB(W2) = −Tr(W>2 ΣW2D) subj. to W>2 W2 = Ik

Where D = diag(d1, . . . , dk), d1 > · · · > dk > 0. Let skew(M) = 1
2 (M −M>), the gradient of

the cost function on the Stiefel manifold is,

∇W2
LB = −2(I −W2W

>
2 )ΣW2D −W2skew(2W>2 ΣW2D)

The gradient descent update in the continuous time limit is,
Ẇ2 = 2(I −W2W

>
2 )ΣW2D + 2W2skew(W>2 ΣW2D) (51)

Rotation augmented gradient With W>1 = W2, the rotation augmented gradient update is,

Ẇ2 = 2(I −W2W
>
2 )ΣW2 − 2W2skew( (W>2 ΣW2)) (52)

The updates (51) and (52) appear to have similar forms. We can make the connection more obvious
with further manipulation. We express the second term in (51) with the triangular masking operations

and ,
skew(W>2 ΣW2D) = skew( (W>2 ΣW2D) + (W>2 ΣW2D))

= skew( (W>2 ΣW2D)− (W>2 ΣW2D)>)

= skew( (W>2 ΣW2)D −
(

(W>2 ΣW2)D
)>

)

= skew( (W>2 ΣW2)D −D (W>2 ΣW2)>)

= skew( (W>2 ΣW2)D −D (W>2 ΣW2))

Then, we write the masks explicitly with element-wise multiplications,

skew(W>2 ΣW2D) = skew(

(1 · · · 1
. . .

...
1

 ◦W>2 ΣW2

)d1

. . .
dk


−

d1

. . .
dk

(
1 · · · 1

. . .
...
1

 ◦W>2 ΣW2

)
)

= skew

(
0 d2 − d1 d3 − d1 · · · dk − d1

0 d3 − d2 · · · dk − d2

. . .
...

0 dk − dk−1

0

 ◦W>2 ΣW2

)
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Finally, we compare the two updates below,

Brockett update

Ẇ2 = 2(I−W2W
>
2 )ΣW2D−2W2skew

(
0 d1 − d2 d1 − d3 · · · d1 − dk

0 d2 − d3 · · · d2 − dk
. . .

...
0 dk−1 − dk

0

◦W>2 ΣW2

)

Rotation augmented gradient update

Ẇ2 = 2(I −W2W
>
2 )ΣW2 − 2W2skew

(
0 1 · · · 1

0
. . .

...
. . . 1

0

 ◦ (W>2 ΣW2)

)

Both algorithms account for the rotation using the off-diagonal part of W>2 ΣW2. The rotation
augmented gradient applies binary masking, whereas the Brockett update introduces additional
coefficients (d1, . . . , dk) that “weights” the rotation.

H Experiment details

We provide the experiment details in this section. The code is provided at https://github.
com/XuchanBao/linear-ae.

H.1 Convergence to optimal representation

In this section, we give the details of experiments for convergence to the optimal representation on
the MNIST dataset (Figure 2 and 3).

The dataset is the MNIST training set, consisting of 60,000 images of size 28 × 28 (m = 784)).
The latent dimension is k = 20. The data is pixel-wise centered around zero. Training is done in
full-batch mode.

The regularization parameters λ1, . . . , λk for the non-uniform `2 regularization are chosen to be√
λ1 = 0.1,

√
λk = 0.9, and

√
λ2, . . . ,

√
λk−1 equally spaced in between.

The prior probabilities for the nested dropout and the deterministic variant of nested dropout are both
chosen to be: pB(b) = ρb(1− ρ) for b < k, and pB(k) = 1−

∑k−1
b=1 pB(b). We choose ρ = 0.9 for

our experiments. This is consistent with the geometric distribution recommended in Rippel et al. [24],
due to its memoryless property.

The network weights are initialized independently with N (0, 10−4). We experiment with two
optimizers: Nesterov accelerated gradient descent with momentum 0.9, and Adam optimizer. The
learning rate for each model and each optimizer is searched to be optimal. See Table 2 for the search
details, and the optimal learning rates.

H.2 Scalability to latent representation sizes

The details of the experiments for scalability to latent representation sizes correspond to Figure 4.

The synthetic dataset has 5000 randomly generated data points, each with dimension m = 1000.
The singular values of the data are equally spaced between 1 and 100. In order to test the scalability
of different models to the latent representation sizes, we run experiments with 10 different latent
dimension sizes: k = 2, 5, 10, 20, 50, 100, 200, 300, 400, 500.

The regularization parameters λ1, . . . , λk for the non-uniform `2 regularization are chosen to be√
λ1 = 0.1,

√
λk = 10, and

√
λ2, . . . ,

√
λk−1 equally spaced in between.
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The prior probabilities for the nested dropout and the deterministic variant of nested dropout, the
initialization scheme for the network weights, and the optimizers are chosen in the same way as in
Section H.1.

We perform a search to find the optimal learning rates for each model, each optimizer with different
latent dimensions. See Table 3 for the search details, and Table 4 for the learning rates used in the
experiments.

Table 2: Learning rate search values for experiments on MNIST (Figure 2 and 3). The optimal
learning rates are labelled in boldface. Note that the Adam optimizer does not apply to RAG.

Model Nesterov learning rates Adam learning rates

Uniform `2 1e−3 1e−3
Non-uniform `2 1e−4, 3e−4, 1e−3, 3e−3 1e−3, 3e−3, 1e−2, 3e−2

Rotation 1e−3, 3e−3, 1e−2 —
Nested dropout (nd) 1e−2, 3e−2, 1e−1 3e−3, 1e−2, 3e−2, 1e−1

Deterministic nd 1e−2, 3e−2, 1e−1 3e−3, 1e−2, 3e−2, 1e−1
Linear VAE 3e−4, 1e−3, 3e−3 3e−4, 1e−3, 3e−3

Table 3: Learning rate search values for experiments on the synthetic dataset (Figure 4). The optimal
learning rates are labelled in boldface. Note that Adam optimizer does not apply to RAG, even though
the experiments are shown here.

(a) k = 20

Model Nesterov learning rates Adam learning rates

Non-uniform `2 1e−4, 3e−4, 1e−3, 3e−3 1e−3, 3e−3, 1e−2, 3e−2
Rotation 3e−5, 1e−4, 3e−4, 1e−3 1e−4, 3e−4, 1e−3

Nested dropout (nd) 1e−4, 3e−4, 1e−3, 3e−3 1e−3, 3e−3, 1e−2, 3e−2
Deterministic nd 1e−4, 3e−4, 1e−3, 3e−3 1e−3, 3e−3, 1e−2, 3e−2

Linear VAE 3e−5, 1e−4, 3e−4, 1e−3 3e−4, 1e−3, 3e−3, 1e−2

(b) k = 200

Model Nesterov learning rates Adam learning rates

Non-uniform `2 1e−4, 3e−4, 1e−3, 3e−3 1e−3, 3e−3, 1e−2, 3e−2
Rotation 3e−5, 1e−4, 3e−4, 1e−3 1e−4, 3e−4, 1e−3

Nested dropout (nd) 1e−4, 3e−4, 1e−3, 3e−3 3e−4, 1e−3, 3e−3, 1e−2
Deterministic nd 1e−4, 3e−4, 1e−3, 3e−3 1e−3, 3e−3, 1e−2, 3e−2

Linear VAE 3e−5, 1e−4, 3e−4, 1e−3 3e−4, 1e−3, 3e−3, 1e−2

(c) k = 500

Model Adam learning rates

Deterministic nd 3e−3, 1e−2, 3e−2, 1e−1

I Additional experiments

I.1 Non-uniform `2 regularization with optimal penalty weights (at global minima)

In this section, we show the experimental results of the learning dynamics of the non-uniform `2
regularization on MNIST, with “optimally” chosen `2 penalty weights. Specifically, we set the latent
dimension k = 20, and obtain the λ1, . . . , λk values by solving the min max optimization problem
in (16). These choices of the `2 penalty weights are optimal at global minima, because the condition
number of the Hessian of the objective at global minima is minimized.

34



Table 4: Learning rate used for experiments on the synthetic dataset (Figure 4). Note that Adam
optimizer does not apply to RAG, even though the experiments are shown here.

(a) Nesterov accelerated gradient descent (k ≤ 50)

k 2 5 10 20 50

Non-uniform `2 1e−3 1e−3 1e−3 1e−3 1e−3
Rotation 1e−4 1e−4 1e−4 1e−4 1e−4

Nested dropout (nd) 1e−3 1e−3 1e−3 1e−3 1e−3
Deterministic nd 1e−3 1e−3 1e−3 1e−3 1e−3

Linear VAE 3e−4 3e−4 3e−4 3e−4 3e−4

(b) Nesterov accelerated gradient descent (k ≥ 100)

k 100 200 300 400 500

Non-uniform `2 1e−3 1e−3 1e−3 1e−3 1e−3
Rotation 1e−4 1e−4 1e−4 1e−4 1e−4

Nested dropout (nd) 1e−3 1e−3 1e−3 1e−3 1e−3
Deterministic nd 1e−3 1e−3 1e−3 1e−3 1e−3

Linear VAE 3e−4 3e−4 3e−4 3e−4 3e−4

(c) Adam optimizer (k ≤ 50)

k 2 5 10 20 50

Non-uniform `2 3e−3 3e−3 3e−3 3e−3 3e−3
Rotation 3e−4 3e−4 3e−4 3e−4 3e−4

Nested dropout (nd) 1e−2 1e−2 1e−2 1e−2 3e−3
Deterministic nd 3e−3 3e−3 3e−3 3e−3 3e−3

Linear VAE 3e−3 3e−3 3e−3 3e−3 1e−3

(d) Adam optimizer (k ≥ 100)

k 100 200 300 400 500

Non-uniform `2 3e−3 3e−3 3e−3 3e−3 3e−3
Rotation 3e−4 3e−4 3e−4 3e−4 3e−4

Nested dropout (nd) 3e−3 3e−3 3e−3 3e−3 3e−3
Deterministic nd 1e−2 1e−2 1e−2 1e−2 1e−2

Linear VAE 1e−3 1e−3 1e−3 1e−3 1e−3

In practice, the `2 penalty weights in Figure 5 are not accessible without knowing the σ values of the
dataset. However, we show in Figure 6 that even with this knowledge, using the λ values optimal at
global optima significantly slows down the initial phase of training. This means that these λ values
are suboptimal away from global optima. In general, it is difficult to determine the λ values that are
optimal for the overall training process. This contributes to the weakness of symmetry breaking by
the non-uniform `2 regularization.

I.2 Mini-batch training on MNIST

In this section, we show the learning dynamics of the models in Section 7 trained on MNIST using
mini-batches. The uniform `2 regularized LAE is not included, as it doesn’t recover the axis-aligned
solutions. Figure 7 and 8 show the learning dynamics with k = 20 and mini-batch size 1000 and
100, respectively. We observe similar results as in the full-batch setting (Figure 2), with additional
stochasticity introduced by mini-batch training.
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Figure 5: Optimal `2 penalty weights on MNIST, with k = 20.

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

ax
is-

al
ig

nm
en

t

linear  values, lr=0.01
optimal  values, lr=0.01
optimal  values, lr=0.003
optimal  values, lr=0.001
optimal  values, lr=0.0003

(a) Axis-alignment

0 200 400 600 800 1000
Epoch

10 1

100

su
bs

pa
ce

-d
ist

an
ce linear  values, lr=0.01

optimal  values, lr=0.01
optimal  values, lr=0.003
optimal  values, lr=0.001
optimal  values, lr=0.0003

(b) Subspace convergence

Figure 6: Learning dynamics of non-uniform `2 regularized LAEs on the MNIST (k = 20), with
different choices of penalty weight values. All models are trained with Adam optimizer for 1000
epochs. The optimal λ values are as in Figure 5. Results with different learning rates are shown,
provided that the learning rates are small enough to maintain training stability.
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(b) Subspace convergence

Figure 7: Learning dynamics of different LAE / linear VAE models trained on MNIST (k = 20),
with mini-batch size 1000. Solid lines represent models trained using gradient descent with Nesterov
momentum 0.9. Dashed lines represent models trained with Adam optimizer.
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Figure 8: Learning dynamics of different LAE / linear VAE models trained on MNIST (k = 20),
with mini-batch size 100. Solid lines represent models trained using gradient descent with Nesterov
momentum 0.9. Dashed lines represent models trained with Adam optimizer.
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