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Abstract

Our understanding of learning input-output relationships with neural nets has
improved rapidly in recent years, but little is known about the convergence of
the underlying representations, even in the simple case of linear autoencoders
(LAEs). We show that when trained with proper regularization, LAEs can directly
learn the optimal representation — ordered, axis-aligned principal components. We
analyze two such regularization schemes: non-uniform ¢, regularization and a
deterministic variant of nested dropout [24]. Though both regularization schemes
converge to the optimal representation, we show that this convergence is slow
due to ill-conditioning that worsens with increasing latent dimension. We show
that the inefficiency of learning the optimal representation is not inevitable — we
present a simple modification to the gradient descent update that greatly speeds up
convergence empirically

1 Introduction

While there has been rapid progress in understanding the learning dynamics of neural networks,
most such work focuses on the networks’ ability to fit input-output relationships. However, many
machine learning problems require learning representations with general utility. For example, the
representations of a pre-trained neural network that successfully classifies the ImageNet dataset [6]
may be reused for other tasks. It is difficult in general to analyze the dynamics of learning represen-
tations, as metrics such as training and validation accuracy reveal little about them. Furthermore,
analysis through the Neural Tangent Kernel shows that in some settings, neural networks can learn
input-output mappings without finding meaningful representations [11].

In some special cases, the optimal representations are known, allowing us to analyze representation
learning exactly. In this paper, we focus on linear autoencoders (LAE). With specially chosen
regularizers or update rules, their optimal weight representations consist of ordered, axis-aligned
principal directions of the input data.

It is well known that the unregularized LAE finds solutions in the principal component spanning
subspace [3]], but in general, the individual components and corresponding eigenvalues cannot be
recovered. This is because any invertible linear transformation and its inverse can be inserted between
the encoder and the decoder without changing the loss. Kunin et al. [17] showed that applying ¢
regularization on the encoder and decoder reduces the symmetry of the stationary point solutions to
the group of orthogonal transformations. The individual principal directions can then be recovered by
applying the singular value decomposition (SVD) to the learned decoder weights.

We investigate how, with appropriate regularization, gradient-based optimization can further break the
symmetry, and directly learn the individual principal directions. We analyze two such regularization
schemes: non-uniform {5 regularization and a deterministic variant of nested dropout [24]).
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The first regularization scheme we analyze e global minima
applies non-uniform {5 regularization on the non_uniform
weights connected to different latent dimen-
sions. We show that at any global minimum,
an LAE with non-uniform /5 regularization di-
rectly recovers the ordered, axis-aligned princi-
pal components. We analyze the loss landscape
and show that all local minima are global min-
ima. The second scheme is nested dropout [24],
which is already known to recover the individual
principal components in the linear case.

rotation

After establishing two viable models, we ask:
how fast can a gradient-based optimizer, such
as gradient descent, find the correct representa-
tion? In principle, this ought to be a simple task
once the PCA subspace is found, as an SVD on
this low dimensional latent space can recover

Figure 1: Visualization of the loss surface of an
LAE with non-uniform /5 regularization, plotted
) co . for a 2D subspace that includes a global optimal so-
the correct alignment of the_prmmpal d1rect19ns. lution. The narrow valley along the rotation direc-
However, we find that gradient descent applied tion causes slow convergence. Detailed discussion

to either aforementioned regularization scheme can be found in Section
converges very slowly to the correct represen-

tation, even though the reconstruction error quickly decreases. To understand this phenomenon,
we analyze the curvature of both objectives at their respective global minima, and show that these
objectives cause ill-conditioning that worsens as the latent dimension is increased. Furthermore, we
note that this ill-conditioning is nearly invisible in the training or validation loss, analogous to the
general difficulty of measuring representation learning for practical nonlinear neural networks. The
ill-conditioned loss landscape for non-uniform ¢ regularization is illustrated in Figure

While the above results might suggest that gradient-based optimization is ill-suited for efficiently
recovering the principal components, we show that this is not the case. We propose a simple iterative
learning rule that recovers the principal components much faster than the previous methods. The
gradient is augmented with a term that explicitly accounts for “rotation” of the latent space, and thus
achieves a much stronger notion of symmetry breaking than the regularized objectives.

Our main contributions are as follows. 1) We characterize all stationary points of the non-uniform
{5 regularized objective, and prove it recovers the optimal representation at global minima (Sec-
tion .1} [.2). 2) Through analysis of Hessian conditioning, we explain the slow convergence of the
non-uniform ¢, regularized LAE to the optimal representation (Section[4.3)). 3) We derive a determin-
istic variant of nested dropout and explain its slow convergence with similar Hessian conditioning
analysis (Section[3). 4) We propose an update rule that directly accounts for latent space rotation
(Section[6)). We prove that the gradient augmentation term globally drives the representation to be
axis-aligned, and the update rule has local linear convergence to the optimal representation. We
empirically show that this update rule accelerates learning the optimal representation.

2 Preliminaries

We consider linear models consisting of two weight matrices: an encoder W; € R**™ and decoder

Wy € R™*F (with k < m). The model learns a low-dimensional embedding of the data X € R™*"
(which we assume is zero-centered without loss of generality) by minimizing the objective,

1
L(Wr, Wes X) = —[|X = WeWiX] [ Q)

We will assume 0? > --- > g7 > 0 are the k largest eigenvalues of %X X T. The assumption
that the o1, .. ., oy, are positive and distinct ensures identifiability of the principal components, and
is common in this setting [I7]. Let S = diag(oy,...,0x). The corresponding eigenvectors are
the columns of U € R™**, Principal Component Analysis (PCA) [22] provides a unique optimal
solution to this problem that can be interpreted as the projection of the data along columns of U, up
to sign changes to the projection directions. However, the minima of (I)) are not unique in general
[17]. In fact, the objective is invariant under the transformation (Wy, Wy) + (AW, Wo A1), for
any invertible matrix A € R¥**,



Regularized linear autoencoders. Kunin et al. [17] provide a theoretical analysis of ¢s-regularized
linear autoencoders, where the objective is as follows,

LW, Wa; X) = LWy, Wa; X) + AW ||% + A|Wa|/%. 2

Kunin et al. [17] proved that the set of globally optimal solutions to objective [2] exhibit only an
orthogonal symmetry through the mapping: (Wy, W) + (OW;, W20 ), for orthogonal matrix O.

3 Related work

Previous work has studied the exact recovery of the principal components in settings similar to LAEs.
Rippel et al. [24] show that exact PCA can be recovered with an LAE by applying nested dropout
on the hidden units. Nested dropout forces ordered information content in the hidden units. We
derive and analyze a deterministic variant of nested dropout in Section[5] Connections between
VAEs and probabilistic PCA (pPCA) have been explored before [[19} 25, 15]. In particular, Lucas et al.
[L9] showed that a linear variational autoencoder (VAE) [[L5] with diagonal latent covariance trained
with the evidence lower bound (ELBO) can learn the axis-aligned pPCA solution [29]. While this
paper focuses on linear autoencoders and the full batch PCA problem, there exists an interesting
connection between the proposed non-uniform /5 regularization and the approach of Lucas et al. [19]],
as discussed in Appendix [F] This connection was recently independently pointed out in the work
of Kumar and Poole [[16], who analyzed the implicit regularization effect of 5-VAEs [10].

Kunin et al. [17] show that an LAE with uniform /5 regularization reduces the symmetry group from
GLk(R) to Ok (R). They prove that the critical points of the ¢o-regularized LAE are symmetric, and
characterize the loss landscape. We adapt their insights to derive the loss landscape of LAEs with
non-uniform /5 regularization, and to prove identifiability at global optima. Concurrent work [20]
addresses the identifiability issue in linear autoencoders by proposing a new loss function, that is a
special case of deterministic nested dropout (discussed in Section[3)), with a uniform prior distribution.
Oftadeh et al. [20] show that the local minima correspond to ordered, axis-aligned representations.
We show this in the general case, and additionally analyze the speed of convergence of this objective.

The rotation augmented gradient (RAG) proposed in Section [§| has connections to several existing
algorithms. First, it is closely related to the Generalized Hebbian Algorithm (GHA) [26]], which
combines Oja’s rule [21] with the Gram-Schmidt process. The detailed connection is discussed
in Section The GHA can also be used to derive a decentralized algorithm, as proposed in
concurrent work [8], which casts PCA as a competitive game. Also, the RAG update appears to be in
a similar form as the gradient of the Brockett cost function [1] on the Stiefel manifold, as discussed
in Appendix [G] However, the RAG update cannot be derived as the gradient of any loss function. Our
proposed RAG update bears resemblance to the gradient masking approach in Spectral Inference
Networks (SpIN) [23]], which aims to learn ordered eigenfunctions of linear operators. The primary
motivation of SpIN is to scale to learning eigenfunctions in extremely high-dimensional vector spaces.
This is achieved by optimizing the Rayleigh quotient and achieving symmetry breaking through a
novel application of the Cholesky decomposition to mask the gradient. This leads to a biased gradient
that is corrected through the introduction of a bi-level optimization formulation for learning SpIN.
RAG is not designed to learn arbitrary eigenfunctions but is able to achieve symmetry breaking
without additional decomposition or bilevel optimization.

In this work, we discuss the weak symmetry breaking of regularized LAEs. Bamler and Mandt [4]]
address a similar problem for learning representations of time series data, which has weak symmetry
in time. Through analysis of the Hessian matrix, they propose a new optimization algorithm —
Goldstone gradient descent (Goldstone-GD) — that significantly speeds up convergence towards the
correct alignment. The Goldstone-GD has interesting connection to the proposed RAG update in
Section[6] RAG is analogous to applying the first order approximation of latent space rotation as an
artificial gauge field, simultaneously with the full parameter update. We believe this is an exciting
direction for future research.

Saxe et al. [27] study the continuous-time learning dynamics of linear autoencoders, and characterize
the solutions under strict initialization conditions. Gidel et al. [9]] extend this work along several
important axes; they characterize the discrete-time dynamics for two-layer linear networks under
relaxed (though still restricted) initialization conditions. Both Gidel et al. [9]] and Arora et al. [2] also
recognized a regularization effect of gradient descent, which encourages minimum norm solutions —
the latter of which provides analysis for depth greater than two. These works provide exciting insight



into the capability of gradient-based optimization to learn meaningful representations, even when
the loss function does not explicitly require such a representation. However, these works assume the
covariance matrices of the input data and the latent code are co-diagonalizable, and do not analyze the
dynamics of recovering rotation in the latent space. In contrast, in this work we study how effectively
gradient descent is able to recover representations (including rotation in the latent space) in linear
auto-encoders that are optimal for a designated objective.

4 Non-uniform ¢, weight regularization

In this section, we analyze linear autoencoders with non-uniform /5 regularization where the rows and
columns of W; and W5 (respectively) are penalized with different weights. Let 0 < A; < -+ < A\g
be the {5 penalty weights, and A = diag(Aq, ..., Ax). The objective has the following form,

1
Lor (Wi, Was X) =—||X = WaWrX [ + [IAY2Wa[7 o+ [[W2A 2|7 3)

We prove that the objective (3)) has an ordered, axis-aligned global optimum, which can be learned
using gradient based optimization. Intuitively, by penalizing different latent dimensions unequally,
we force the LAE to explain higher variance directions with less heavily penalized latent dimensions.

The rest of this section proceeds as follows. First, we analyze the loss landscape of the objective (3)
in section 4.1} Using this analysis, we show in section [4.2] that the global minimum recovers the
ordered, axis-aligned individual principal directions. Moreover, all local minima are global minima.
Section 4.3 explains mathematically the slow convergence to the optimal representation, by showing
that at global optima, the Hessian of objective (3) is ill-conditioned.

4.1 Loss landscape

The analysis of the loss landscape is reminiscent of Kunin et al. [17]]. We first prove the Transpose
Theorem (Theorem [I)) for objective ([B). Then, we prove the Landscape Theorem (Theorem 2, which
provides the analytical form of all stationary points of (3).

Theorem 1. (Transpose Theorem) All stationary points of the objective (3) satisfy Wy = W, .

The proof is similar to that of Kunin et al. [17, Theorem 2.1.], and is deferred to Appendix [E.1]

Theorem|T]enables us to proceed with a thorough analysis of the loss landscape of the non-uniform ¢,
regularized LAE model. We fully characterize the stationary points of (3) in the following theorem.

Theorem 2 (Landscape Theorem). Assume A\, < o,%. All stationary points of (@) have the form:

Wy =PI —AS >)2UT @
Wi =U(I—AS™2)2PT )
where T C {1,--- ,m} is an index set containing the indices of the learned components, and

P € R¥** has exactly one %1 in each row and each column whose index is in T and zeros elsewhere.

The full proof is deferred to Appendix [E.2] Here we give intuition on this theorem and a proof sketch.

The uniform regularized objective in Kunin et al. [[17]] has orthogonal symmetry that is broken by
the non-uniform /5 regularization. In Theorem [2| we prove that the only remaining symmetries are
(potentially reduced rank) permutations and reflections of the optimal representation. In fact, we will
show in section[4.2] that at global minima, only reflection remains in the symmetry group.

Proof of Theorem 2] (Sketch). We consider applying a rotation matrix R;; and its inverse to 1¥; and
W in the Landscape Theorem in Kunin et al. [17]], respectively. R;; applies a rotation with angle 6
on the plane spanned by the i and j*" latent dimensions. Under this rotation, the objective (3) is a
cosine function with respect to 6. In order for # = 0 to be a stationary point, the cosine function must
have either amplitude O or phase 7 (5 € Z). Finally, we prove that in the potentially reduced rank
latent space, the symmetries are reduced to only permutations and reflections. [

4.2 Recovery of ordered principal directions at global minima

Following the loss landscape analysis, we prove that the global minima of (@) correspond to ordered
individual principal directions in the weights. Also, all local minima of (3)) are global minima.



Theorem 3. Assume \j, < 0,3. The minimum value of (@) is achieved if and only if W1 and W are
equal to @) and (), with full rank and diagonal P. Moreover, all local minima are global minima.

P being full rank and diagonal corresponds to the columns of W5 (and rows of W) being ordered,
axis-aligned principal directions. The full proof is shown in Appendix [E.3] Below is a sketch.

Proof (Sketch). Extending the proof for Theorem 2] in order for § = 0 to be a local minimum, we
first show that P must be full rank. Then, we show that the rows of W (and columns of W3') must be
sorted in strictly descending order of magnitude, hence P must be diagonal. It is then straightforward
to show that the global optima are achieved if and only if P is diagonal and full rank, and they
correspond to ordered k principal directions in the rows of the encoder (and columns of the decoder).
Finally, we show that there does not exist a local minimum that is not global minimum. O

4.3 Slow convergence to global minima

Theorem [3|ensures that a (perturbed) gradient based optimizer that efficiently escapes saddle points
will eventually converge to a global optimum [7, [12]]. However, we show in this section that this
convergence is slow, due to ill-conditioning at global optima.

To gain better intuition about the loss landscape, consider Figure[I] The loss is plotted for a 2D
subspace that includes a globally optimal solution of W; and W5. More precisely, we use the
parameterization Wy = aO(I — AS_2)%UT, and Wy = WlT, where « is a scalar,and O isa 2 x 2
rotation matrix parameterized by angle 6. The xy-coordinate is obtained by (« cos 8, asin 6).

In general, narrow valleys in the loss landscape cause slow convergence. In the figure, we optimize
W1 and W5 on this 2D subspace. We observe two distinct stages of the learning dynamics. The
first stage is fast convergence to the correct subspace — the approximately circular “ring" of radius
1 with low loss. The fast convergence results from the steep slope along the radial direction. After
converging to the subspace, there comes the very slow second stage of finding the optimal rotation
angle — by moving through the narrow nearly-circular valley. This means that the symmetry breaking
caused by the non-uniform /5 regularization is a weak one.

We now formalize this intuition for general dimensions. The slow convergence to axis-aligned
solutions is confirmed experimentally in full linear autoencoders in Section

4.3.1 Explaining slow convergence of the rotation

Denote the Hessian of objective (3) by H, and the largest and smallest eigenvalues of H by smax
and Smi, respectively. At a local minimum, the condition number $pax(H )/ Smin (H) determines
the local convergence rate of gradient descent. Intuitively, the condition number characterizes the
existence of narrow valleys in the loss landscape. Thus, we analyze the conditioning of the Hessian
to better understand the slow convergence under non-uniform regularization.

In order to demonstrate ill-conditioning, we will lower bound the condition number through a lower
bound on the largest eigenvalue, and an upper bound on the smallest. This is achieved by finding two
vectors and computing the Rayleigh quotient, fz7(v) = v Hv/v ' v for each of them. Any Rayleigh
quotient value is an upper (lower) bound on the smallest (largest) eigenvalue of H.

Looking back to Figure[T] we notice that the high-curvature direction is radial and corresponds to
rescaling of the learned components while the low-curvature direction corresponds to rotation of
the component axes. We compute the above Rayleigh quotient along these directions and combine
to lower bound the overall condition number. The detailed derivation can be found in Appendix
Ultimately, we show that the condition number can be lower bounded by,

2(k —1)(0F — 07) Y2155 (0F — 0%)

2,2 :
oio;,

Depending on the distribution of the o values, as k grows, the condition number quickly worsens. E]
This effect is observed empirically in Figure 4]

2Note that the lower bound is derived assuming the \ values are optimally chosen, when o values are known.
In practice, this is generally infeasible because 1) we do not have access to the o values, and 2) the A values that
minimize the Hessian condition number at global minima may slow down the earlier phase of training, when the
weights are far from the global optima, as shown experimentally in Appendix[[.T] The difficulty of choosing an
optimal set of \ values contributes to the weakness of symmetry breaking by the non-uniform ¢> regularization.



5 Deterministic nested dropout

The second regularization scheme we study is a deterministic variant of nested dropout [24]. Nested
dropout is a stochastic algorithm for learning ordered representations in neural networks. In an LAE
with & hidden units, a prior distribution pp(-) is assigned over the indices 1,. .., k. When applying
nested dropout, first an index b ~ pg(-) is sampled, then all hidden units with indices b+ 1,... &k
are dropped. By imposing this dependency in the hidden unit dropout mask, nested dropout enforces
an ordering of importance in the hidden units. Rippel et al. [24] proved that the global optimum of
the nested dropout algorithm corresponds to the ordered, axis-aligned representation.

We propose a deterministic variant to the original nested dropout algorithm on LAEs, by replacing the
stochastic loss function with its expectation. Taking the expectation eliminates the variance caused
by stochasticity (which prevents the original nested dropout algorithm from converging to the exact
PCA subspace), thereby making it directly comparable with other symmetry breaking techniques.
Define 7 as the operation setting hidden units with indices b+ 1, .. ., k to zero. We define the loss
here, and derive the analytical form in Appendix

1
Lxp(W1, Wo; X) = Epep [fHX — LL27Tb(LL1X)H%] (6)
2n

To find out how fast objective (6) is optimized with gradient-based optimizer, we adopt similar
techniques as in Section [4.3]to analyze the condition number of the Hessian at the global optima.

802 (k—1)2

2

Derivation details are shown in Appendix El The condition number is lower bounded by —5—
1 k

Note that the lower bound assumes that the prior distribution pp(-) is picked optimally with knowledge
of o1, ..., 01. However, in practice we do not have access to o1, . . ., oy a priori, so the lower bound
is loose. Nevertheless, the condition number grows at least quadratically in the latent dimension
k. While the deterministic nested dropout might find the optimal representation efficiently in low
dimensions, it fails to do so when & is large. We confirm this observation empirically in Section 7}

6 Rotation augmented gradient for stronger symmetry breaking

The above analysis of regularized objectives may suggest that learning the correct representation in
LAE:s is inherently difficult for gradient-descent-like update rules. We now show that this is not the
case by exhibiting a simple modification to the update rule which recovers the rotation efficiently.
In particular, since learning the rotation of the latent space tends to be slow for non-uniform ¢
regularized LAE, we propose the rotation augmented gradient (RAG), which explicitly accounts for
rotation in the latent space, as an alternative and more efficient method of symmetry breaking.

The RAG update is shown in Algorithm 1] Intuitively, RAG applies a simultaneous rotation on W
and W, aside from the usual gradient descent update of objective (I). To see this, notice that A; is
skew-symmetric, so its matrix exponential is a rotation matrix. By Taylor expansion, we can see that
RAG applies a first-order Taylor approximation of a rotation on W; and W.

« > Oéi i
eXp(EAt) = I+ Z mAt
=1

The rest of this section aims to provide additional insight into RAG. Section[6.1|makes the connection
to the Generalized Hebbian Algorithm (GHA) [26]], a multi-dimensional variant of Oja’s rule with
global convergence. Section [6.2] points out an important property that greatly contributes to the
stability of the algorithm: the rotation term in RAG conserves the reconstruction loss. Using this
insight, Section [6.3] shows that the rotation term globally drives the solution to be axis-aligned.
Finally, section[6.4| proves that RAG has local linear convergence to global minima.

6.1 Connection to the Generalized Hebbian Algorithm

RAG is closely related to the Generalized Hebbian Algorithm (GHA) [26]]. To see the connection, we
assume Wy = W, = WE] For convenience, we drop the index ¢ in Algorithm Asin Algorithm

Wi = W45 is required by the GHA. For RAG, this can be achieved by using balanced initialization
(W1)o = (W2)g , as RAG stays balanced if initialized so.



Algorithm 1 Rotation augmented gradient (RAG)

Given learning rate o
Initialize (WI)O, (WQ)O
fort=0...T —1do
V(W) = Vi, L(W1)e, (Wa)e)
V(W2)r = Vi, LI(W1)e, (W2):)
Y, = (W) X
A = s(NNY,") —n(Y2Y,)
(N (or ™) masks the lower (or upper) triangular part of a matrix (excluding the diagonal) with 0.)
W1)ir1 < (I + 2 A)(Wh)e — aV (W),
(WQ)H—I — (W2)t(l — %Az) — OZV(WQ)t
end for

N denotes the operation that masks the upper triangular part of a matrix (excluding the diagonal) with
0. With simple algebraic manipulation, the GHA and the RAG updates are compared below.

GHA: W« W + %(YXT —nYYw)
RAG: W « W + %[(YXT —aYY W) - %(yyT — diag(YY "))W]

Compared to the GHA update, RAG has an additional term which, intuitively, decays certain notion
of “correlation” between the columns in W to zero. This additional term is important. As we will
see in Section [6.2] the “non-reconstruction gradient term” of RAG conserves the reconstruction loss.
This is a property that contributes to the training stability and that the GHA does not possess.

6.2 Rotation augmentation term conserves the reconstruction loss
An important property of RAG is that the addition of the rotation augmentation term conserves the

reconstruction loss. To see this, we compare the instantaneous update for RAG and plain gradient
descent on the unregularized objective (T).

We drop the index ¢ when analyzing the instantaneous update. We use superscripts RAG and GD to
denote the instantaneous update following RAG and gradient descent on (1)) respectively. We have,

. . 1 . . 1
WHAG = WEP + — AWy, WY = WP — WA
n n
Therefore, the rotation term conserves the reconstruction loss:

d . . . . d
dt(W2W1)RAG = WIAC, + WoWHAY = WEPW, + WoW P = %(Wgwl)GD
d RAG __ d GD
dtﬁ(Wl’ Ws) = dtﬁ(Wl’ W)= "

This means that in RAG, learning the rotation is separated from learning the PCA subspace. The
former is achieved with the rotation term, and the latter with the reconstruction gradient term. This is
a desired property that contributes to the training stability.

6.3 Convergence of latent space rotation to axis-aligned solutions

The insight in Section[6.2]enables us to consider the subspace convergence and the rotation separately.
We now prove that on the orthogonal subspace, the rotation term drives the weights to be axis-aligned.
For better readability, we state this result below as an intuitive, informal theorem. The formal theorem
and its proof are presented in Appendix [E.5]

Theorem 4 ((Informal) Global convergence to axis-aligned solutions). Initialized on the orthogonal
subspace W, = W, = OU', the instantaneous limit of RAG globally converges to the set of
axis-aligned solutions, and the set of ordered, axis-aligned solutions is asymptotically stable.
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Figure 2: Learning dynamics of different LAE / linear VAE models trained on the MNIST (k = 20).
Solid lines represent models trained using gradient descent with Nesterov momentum 0.9. Dashed
lines represent models trained with Adam optimizer. The learning rate for each model and optimizer
has been tuned to have the fastest convergence to axis-alignment.

6.4 Local linear convergence to the optimal representation

We show that RAG has local linear convergence to the ordered, axis-aligned solution. We show this
in the limit of instantaneous update, and make the following assumptions.

It is reasonable to make Assumption [I]
since learning the PCA subspace is usu-
ally much more efficient than the rotation. . . ) .
Also, Section[6.2]has shown that the ro- Assumption 2. YY ' is diagonally dominant with fac-
. i . T T
tational update term conserves the recon- |07 0 <€ < Lie 3, [(YY 1) <e- (YY)

struction loss, thus can be analyzed in- Assumption 3. The diagonal elements of YY ' are

depende;ltly. Assumptions QandB|state |, cirive and sorted in strict descending order, i.e. ¥ i <
that we focus on the convergence local j, (YYT)n' > (YyT)jj > 0.

to the ordered, axis-aligned solution.
Definition 6.1. The “non-diagonality” of a matrix M € R**¥ is Nd(M) = Y5 Z?:Lj;ﬁi | M.
Theorem 5 (Local Linear Convergence). Let g = min; jiz; ~|(YY ")y — (YY) 5. With As-

sumptionand in the instantaneous limit (o« — 0), for an LAE updated with RAG, Nd(%YYT)
converges to 0 with an instantaneous linear rate of g.

Assumption 1. The PCA subspace is recovered, i.e. the
gradient due to reconstruction loss is 0.

The proof is deferred to Appendix [E.4] Note that the optimal representation corresponds to diagonal
%YYT with ordered diagonal elements, which RAG has local linear convergence to. Note that near

the global optimum, g is approximately the smallest “gap" between the eigenvalues of %X X',

7 Experiments

In this section, we seek answers to these questions: 1) What is the empirical speed of convergence of an
LAE to the ordered, axis-aligned solution using gradient-based optimization, with the aforementioned
objectives or update rules? 2) How is the learning dynamics affected by different gradient-based
optimizers? 3) How does the convergence speed scale to different sizes of the latent representations?

First, we define the metrics for axis-alignment and subspace convergence using the learned Ws
(Definitions[7.1)and . Deﬁnitionis equal to the Definition 1 in Tang [28] scaled by %

Definition 7.1 (Distance to axis-aligned solution). We define the distance to the axis-aligned solution

- T . 2
as dalign(W2,U) =1 — % Zle max; % (subscripts represent the column index).

Definition 7.2 (Distance to optimal subspace). Let Uy, € R™** consist of the left singular vectors
of Wy. We define the distance to the optimal subspace as dsu,(W2,U) = 1 — 1 Te(UU " Uw, Uy,).

Convergence to optimal representation We compare the learning dynamics for six models: uni-
form and non-uniform ¢ regularized LAEs, LAE updated with the RAG, LAEs updated with nested
dropout and its deterministic variant, and linear VAE with diagonal latent covariance [19]].

Figure 2]and 3] show the learning dynamics of these model on the MNIST dataset [18], with & = 20.
Further details can be found in Appendix [H] We use full-batch training for this experiment, which is
sufficient to demonstrate the symmetry breaking properties of these models. For completeness, we
also show mini-batch experiments in Appendix Figure [2| shows the evolution of the two metrics:



distance to axis-alignment and to the optimal subspace, when the models are trained with Nesterov
accelerated gradient descent and the Adam optimizer , respectively. Figure 3| visualizes the matrix
U "W, and the first 20 learned principal components of MNIST (columns of W5).

Unsurprisingly, the uniform /¢y regularization
fails to learn the axis-aligned solutions. When
optimized with Nesterov accelerated gradient de-
scent, the regularized models, especially non-
uniform /5 regularization, has slow convergence
to the axis-aligned solution. The model trained
with RAG has a faster convergence. It’s worth
noting that Adam optimizer accelerates the learn-
ing of the regularized models and the linear VAE,
but it is not directly applicable to RAG.

Scalability to latent representation sizes As
predicted by the Hessian condition number anal-
ysis in Sectionf.3]and Section[5] we expect the
models with the two regularized objectives to be-
come much less efficient as the latent dimension
grows. We test this on a synthetic dataset with
input dimension m = 1000. The data singular
values are 1, ..., m. Full experimental details are
in Appendix[H] Figure]shows how quickly each
model converges to the axis-alignment distance
of 0.3. When optimized with the Nesterov accel-
erated gradient descent, the non-uniform /5 reg-
ularization and the deterministic nested dropout
scale poorly with latent dimension compared to
RAG. This result is consistent with our Hessian
condition number analysis. Although Adam op-
timizer provides acceleration for the regularized
objectives, it does not solve the poor scaling with
latent dimensions, as both regularized models fail
to converge with large latent dimensions.

8 Conclusion

Learning the optimal representation in an
LAE amounts to symmetry breaking, which
is central to general representation learn-
ing. In this work, we investigated several
algorithms that learn the optimal representa-
tion in LAEs, and analyze their strength of
symmetry breaking. We showed that naive
regularization approaches are able to break
the symmetry in LAEs but introduce ill-
conditioning that leads to slow convergence.
The alternative algorithm we proposed, the
rotation augmented gradient (RAG), guar-
antees convergence to the optimal repre-
sentation and overcomes the convergence
speed issues present in the regularization
approaches. Our theoretical analysis pro-
vides new insights into the loss landscape
of representation learning problems and the
algorithmic properties required to perform
gradient-based learning of representations.
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Figure 3: Visualization of U T T, and the decoder
weights (last column) of LAEs trained on MNIST.
All models are trained with Nesterov accelerated
gradient descent. Pixel values range between -1
(black) and 1 (white). An ordered, axis-aligned
solution corresponds to diagonal U T W, with 41
diagonal entries. The linear VAE does not enforce
order over the hidden dimensions, so U T W5 will
resemble a permutation matrix at convergence.
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Figure 4: Epochs taken to reach 0.3 axis-alignment
distance on the synthetic dataset, for different latent
dimensions. Solid and dashed lines represent models
trained with Nesterov accelerated gradient descent and
Adam optimizer respectively. Cross markers indicate
that beyond the current latent dimension, the models fail
to reach 0.3 axis-alignment distance within 50k epochs.



Broader Impact

The contribution of this work is the theoretical understanding of learning the optimal representations
in LAEs with gradient-based optimizers. We believe that the discussion of broader impact is not
applicable to this work.
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