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Abstract

The profile of a sample is the multiset of its symbol frequencies. We show that
for samples of discrete distributions, profile entropy is a fundamental measure
unifying the concepts of estimation, inference, and compression. Specifically,
profile entropy: a) determines the speed of estimating the distribution relative to the
best natural estimator; b) characterizes the rate of inferring all symmetric properties
compared with the best estimator over any label-invariant distribution collection;
c) serves as the limit of profile compression, for which we derive optimal near-
linear-time block and sequential algorithms. To further our understanding of profile
entropy, we investigate its attributes, provide algorithms for approximating its
value, and determine its magnitude for numerous structural distribution families.

1 Introduction

Recent research in statistical machine learning, ranging from neural-network training and online
learning, to density estimation and property testing, has advanced evaluation criteria beyond worst-
case analysis. New performance measures apply more refined metrics relating the algorithm’s
accuracy and efficiency to the problem’s inherent structure.

Consider for example learning an unknown discrete distribution from its i.i.d. samples (see also
Section 2.2). The classical worst-case analysis states that in the worst case, the number of samples
required to estimate a distribution to a given KL-divergence grows linearly in the alphabet size.

However, this formulation is pessimistic, since distributions are rarely the worst possible, and many
practical distributions can be estimated with significantly smaller samples. Furthermore, once the
sample is drawn, it reveals the distribution’s complexity and hence the hardness of the learning task.

Going beyond worst-case analysis, one can design an adaptive learning algorithm whose theoretical
guarantees vary according to the problem’s simplicity. For example, Orlitsky and Suresh [2015]
recently proposed an estimator that instance-by-instance achieves nearly the same performance as a
genie algorithm designed with prior knowledge of the underlying distribution.

We introduce profile entropy, a fundamental measure for the complexity of discrete distributions,
and show that it connects three vital scientific tasks: estimation, inference, and compression. The
resulting algorithms have guarantees directly relating to the sample profile entropy, hence also adapt
to the intrinsic simplicity of the tasks at hand.

The next subsection formalizes relevant concepts and useful notation.
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Sample Profiles and Their Entropy

Consider an arbitrary sequence xn over a finite or countably infinite alphabet X . The multiplicity
µy(xn) of a symbol y ∈ X is the number of times y appears in xn. The prevalence of an integer µ is
the number ϕµ(xn) of symbols in xn with multiplicity µ. The profile of xn is the multiset ϕ(xn) of
multiplicities of the symbols in xn. We refer to it as a profile of length n. For example, consider the
sequence x7 = bananas, in which a appears thrice, n appears twice, and b and s each appears once.
Then, the profile of the sequence is multiset ϕ(x7) = {3, 2, 1, 1}.
The numberD(S) of distinct elements in a multiset S is its dimension. For convenience, we also write
D(xn) for profile dimension. In the above example, we haveD(x7) = D(ϕ(x7)) = 3, corresponding
to values 1, 2, and 3. The dimension of a length-n profile over X is at most min{

√
2n, |X |}. In

general, the profile entropyHn(p) is no more than 3
√
n.

Let ∆ be the collection of all discrete distributions, and ∆X be the collection of those over X .
Draw a size-n sample Xn from an arbitrary distribution in p ∈ ∆. Then, the profile Φn of Xn is a
random multiset whose distribution depends on only p and n. We therefore write Φn ∼ p, and call
Hn(p) := H(Φn) the profile entropy with respect to (p, n). For example, if we draw a sample of size
n = 3 from p = ( 1

2 ,
1
2 ), then profiles {1, 1, 1}, {2, 1}, and {3} appear with probabilities 0, 3

4 , and 1
4 ,

respectively. And the profile entropy is thusH3( 1
2 ,

1
2 ) = H(0, 34 ,

1
4 ) ≈ 0.56.

Analogously, we call Dn := D(Φn), the profile dimension associated with (p, n), and write Dn ∼ p.

For notational simplicity, we will assume that Hn(p) ≥ 1 throughout the paper, and respectively
write a ' b, a & b, and a . b instead of a = Θ̃(b), a = Ω̃(b), and a = Õ(b), where the asymptotic
notation hides logarithmic factors of n.

Applications of Sample Profiles

Sample profiles have essential applications in numerous aspects of scientific research, ranging from
property inference to the study of degree distributions of networks/graphs.

Property inference As Section 2.3 shows, profiles are sufficient for inferring all symmetric properties,
such as entropy, Rényi entropy, and support size, not only in the sense of sufficient statistics, but also
in the sense of Theorem 3, stating that profile-based estimators are as good as any others.

Distribution learning The entropy of a sample profile, equaling its dimension in order with high
probability (Theorem 1), directly characterizes how well we can estimate a distribution and approach
the performance of the best human-designed estimator (Theorem 2), for every distribution.

Theory of long tail The notable long tail theory in economics [Anderson, 2006] describes the
strategy of selling a large number of different items that each sells in relatively small quantities. The
profile of the product selling data, and the induced (PML) probability multiset estimate (Section 2.3),
accurately characterize the tail shape of the data, and that of the underlying distribution, respectively.

Password frequency lists In the research of password defense, it is vital to understand the distribution
of passwords. Due to security concerns, organizations typically do not publish the complete data
displaying each password and its frequency. Instead, they reveal the anonymized list of password
frequencies, with each password hashed or replaced by some dummy string, which is equivalent to
showing the password data’s profile.

Degree distributions of networks Degree distribution is one of the most widely studied attributes
of networks (and graphs) that describes the fractions of nodes with different degrees. As the degree
distribution ignores symbol labeling and focuses only on the frequency of each degree, it is equivalent
to the profile of the node degree data.

2 Main Results

This paper aims to provide a thorough theory of profile entropy. Most of the results either are the first
of their kind or significantly improve the state-of-the-art.

Specifically, Section 2.1 presents the fundamental equivalence relation between profile dimension
and entropy (Thm. 1). Building on the equivalence, we respectively establish essential connections

2



between profile entropy and the estimation of discrete distributions (Section 2.2; Thm. 2), inference
of their properties (Section 2.3; Thm. 4), and compression of sample profiles (Section 2.4; Thm. 5).
These results characterize how well one can compete with an instance-optimal algorithm for each
task, over every single distribution. For a real sense of how profile entropy behaves, Section 2.5
ultimately determines its magnitude for three prominent structural distribution families, log-concave
(Thm. 6), power-law (Thm. 7), and histogram (Thm. 8). Going even further, Section 3 presents several
additional applications and extensions of our theory and results, including robust learning under
domain symbol permutations, profile entropy for mixture models, competitive property estimation,
adaptive testing and classification, and connection to the method of types.

For space considerations, we relegate detailed reviews on related work and most technical proofs to
the supplementary material. For numerical analysis, we present two sets of experiments in Section
B.5 and C.4 of the supplementary material, demonstrating the adaptiveness of the proposed methods
in distribution estimation and inference of arbitrary property.

2.1 Dimension-Entropy Equivalence of Profiles

The following theorem shows that for every distribution and sampling parameter n, the induced
profile entropy and dimension are of the same order, with high probability.

Theorem 1 (Entropy-dimension equivalence). For any distribution p ∈ ∆ and Dn ∼ p,

Pr(Dn ' Hn(p)) ≥ 1− 1√
n
.

We briefly comment on Theorem 1.

First, the theorem reveals a novel and fundamental relation between profile dimension and entropy.
The relation also yields an intrinsic method to approximate the entropy of the sample’s profile, a fairly
involved functional, by only counting its dimension. In general, the number of possible length-n
profiles of a distribution could be as large the number of partitions of integer n, and grows with n at
a sub-exponential speed. Hence, even if p is known, computing the exact value ofHn(p) could be
hard. On the other hand, if one applies our theorem to approximateHn(p), we only need to draw a
sample Xn ∼ p, and find its profile dimension, which is computable in linear time through counting.
Section A.4 of the supplementary further illustrates how to estimateHn with m� n observations.

Second, the theorem serves as an essential building block for the subsequent results on distribution
estimation, property inference, and profile compression, and enables us to establish their optimality.
For example, in the process of deriving the optimal profile compression scheme and proving Theo-
rem 5, we reason with Dn to bound the space of storing the profile, and utilizeHn(p) as an essential
lower bound for lossless compression.

Third, despite the simple form of the theorem, the proof of this result is highly nontrivial, and relies
on a recent breakthrough in solving the Shepp-Olkin monotonicity conjecture [Hillion et al., 2019],
which asserts that the entropy of a Poisson-binomial random variable is monotone in the defining
success probabilities, over a hypercube near the origin.

2.2 Competitive (Instance-Optimal) Distribution Estimation

Estimating distributions from their samples is a statistical-inference cornerstone, and has numerous
applications, ranging from biological studies [Armañanzas et al., 2008] to language modeling [Chen
and Goodman, 1999]. A learning algorithm p̂ in this setting is called a distribution estimator, which
associates with every sequence xn a distribution p̂(xn)∈ ∆. Given a sampleXn ∼ p, we measure the
performance of p̂ in estimating distribution p by the Kullback-Leibler (KL) divergence D(p‖ p̂(Xn)).

Let rn(p, p̂) := min{r : Pr(D(p ‖ p̂(Xn))≤ r)≥ 9/10} be the minimal KL error p̂ could achieve
with probability at least 9/10. Then, the worst-case error of estimator p̂ over P ⊆ ∆ is rn(P, p̂) :=
maxp∈P rn(p, p̂), and the lowest worst-case error for P, achieved by the optimal estimator, is the
minimax error rn(P) := minp̂′ rn(P, p̂′). The most widely studied distribution set P is simply ∆X .
With X being finite, it has become a classical result that rn(∆X ) = Θ(|X |/n), which is achievable,
up to constant factors, by an add-constant estimator [Braess and Sauer, 2004, Kamath et al., 2015].
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Beyond minimax Despite being minimax optimal, the |X |/n-result and the algorithm, are not
satisfiable from a practical point of view. The reason is that the formulation puts much of its emphasis
on the worst-case performance, and ignores the intrinsic simplicity of p in a pessimistic fashion.
Hence, the desire to design more efficient estimators for practical distributions, like power-law, or
Poisson, has led to algorithms that possess adaptive estimation guarantees.

Concretely, the minimax formulation has two modifiable components – the collection P and the
error function D. A common approach to specifying P is adding structural assumptions, such as
monotonicity, m-modality, and log-concavity, which, in many cases, makes algorithm refinement
possible by leveraging structural simplicity. An orthogonal approach to encouraging adaptability
without imposing structures is to replace absolute error by relative error, which we illustrate below.

Competitive estimation Without strong prior knowledge on the underlying distribution, a reason-
able estimator should naturally assign the same probability to symbols appearing an equal number of
times. Competitive estimation calls for finding a universally near-optimal estimator that learns every
distribution as well as the best natural estimator that knows the true distribution.

Denote byN the collection of all natural estimators. For any distribution p ∈ ∆ and sample Xn ∼ p,
a given estimator p̂ incurs, with respect to the best natural estimator knowing p, an instance-by-
instance relative KL error of

Dnat(p‖ p̂(Xn)) := D(p‖ p̂(Xn))−min
q̂∈N

D(p‖ q̂(Xn)).

Analogous to the minimax formulation, we denote by rnat
n (p, p̂) := min{r : Pr(Dnat(p‖ p̂(Xn)) ≤

r) ≥ 9/10} the minimal relative error p̂ achieves with probability at least 9/10, by rnat
n (P, p̂) the

worst-case relative error of p̂ over P ⊆ ∆, and by rnat
n (P) the minimax relative error.

Old and new results Initiating the competitive formulation, Orlitsky and Suresh [2015] show that
a simple variant of the well-known Good-Turing estimator achieves rnat

n (∆) . 1/n1/3, and a more
involved estimator in Acharya et al. [2013] attains the optimal rnat

n (∆) ' 1/
√
n. For a fully adaptive

guarantee, Hao and Orlitsky [2019b] further refine the bound and design an estimator p̂? achieving
rnat
n (p, p̂?) . EDn∼p[Dn/n] . rnat

n (∆), for every p ∈ ∆, but provide no lower bounds.

In this work, we completely characterize rnat
n (p, ·) with essentially matching lower and upper bounds.

Surprisingly, we show that for nearly every sample size n, the quantity behaves likeHn(p)/n.
Theorem 2 (Optimal competitive error). There is a near-linear-time computable estimator p̂?, such
that for any distribution p and n,

rnat
n (p, p̂?) .

Hn(p)

n
,

where p̂? is the near linear-time computable estimator in Hao and Orlitsky [2019b] mentioned above.
On the other hand, for any H ∈ [0,

√
n),

min
p̂

max
p:Hn(p).H

rnat
n (p, p̂) &

H

n
.

First, we comment on the lower bound. Due to the classical minimax formulation, one might expect
a lower bound in one of the following two forms – for every p̂, rnat

n (p, p̂) & Hn(p)/n for 1) some p
or 2) every p. Form 1) turns out to be weak under the competitive formulation. Specifically, let p be a
trivial distribution that assigns probability 1 to some symbol. Then, both the profile entropy and the
error of the best natural estimator are zero, and the inequality trivially holds for every p̂. Form 2), on
the other hand, is purely impossible. Specifically, for every distribution p, one can set p̂ to be best
natural estimator, which leads to a relative error of zero, greater thanHn(p)/n unless p is trivial.

Second, we illustrate the significance of the result. The notable work of Hardy and Ramanujan [1918]
shows that the number of integer partitions of n, which equals the number of length-n profiles, is at
most exp(3

√
n), implying that Hn(p) ≤ 3

√
n for any p ∈ ∆. Therefore, the Hn(p)/n upper and

lower bounds in the theorem yields rnat
n (∆) ' 1/

√
n, recovering the main result of Orlitsky and

Suresh [2015]. Besides set ∆, the theorem and its proof also imply nearly tight minimax relative-error
bounds on numerous distribution sets P. Below, we present two results that fall into this category. In
both cases, the minimax relative error is much lower than 1/

√
n if the parameter involved is o(

√
n).

The first example addresses the set ∆H of distributions whose n-sample profile entropy is H .
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Corollary 1. For any H & 1, the minimax relative error over ∆H is rnat
n (∆H) ' H/n.

For a more concrete example, denote by Lσ the collection of log-concave distributions over Z whose
variance is σ2. Then, Theorem 2 and the profile entropy bounds in Theorem 6 imply

Corollary 2. For any 1 . σ≤
√
n, the minimax relative error over Lσ is rnat

n (Lσ) ' σ/n.

2.3 Competitive-Optimal Property Inference

Numerous practical applications call for inferring property values of an unknown distribution from
its samples, including entropy for graphical modeling [Koller and Friedman, 2009], Rényi entropy
for sequential decoding [Arikan, 1996], and support size for species richness estimation [Magurran,
2013]. Therefore, property inference has attracted considerable attention over the past few decades.
For interested readers, please refer to Section B.3 in the supplementary for a two-page review of prior
works and discussions about relevant methods.

Property inference Formally, a distribution property over some collection P ⊆ ∆ is a functional
f : P→ R that associates with each distribution a real value. Given a sample Xn from an unknown
distribution p ∈ P, the problem of interest is to infer the value of f(p). For this purpose, we employ
another functional f̂ : X ∗ → R, an estimator mapping every sample to a real value. We measure the
statistical efficiency of f̂ in approximating f over P by its absolute error |f̂(Xn)− f(p)|.

Given Xn ∼ p ∈ P, the minimal absolute error rate, or simply error, that f̂ achieves with probability
at least 9/10 is rn(p, f̂) := min{r : Pr(|f̂(Xn)− f(p)| ≤ r) ≥ 9/10}, where the dependence on f
is implicit. While p is often unknown, the worst-case error of an estimator f̂ over all distributions in
P is rn(P, f̂) := maxp∈P rn(p, f̂), and the lowest worst-case error for P, achieved by the optimal
estimator, is the minimax error rn(P) := minf̂ ′ rn(P, f̂ ′).

Profile maximum likelihood An important class of properties is the collection of symmetric ones,
which encompasses numerous well-known distribution characteristics, such as Shannon entropy,
Rényi entropy, support size, and `1 distance to the uniform distribution. Symmetry connects the
estimation of such property to the sample profile, a sufficient statistic for the task in hand. The general
principle of maximum likelihood then provides an intuitive estimator, profile maximum likelihood
(PML) [Orlitsky et al., 2004], that maximizes the probability of observing the profile.

Naturally and generally, we study symmetric property inference over a distribution collection P ⊆ ∆
that is also symmetric, i.e., if p ∈ P, then P as well contains all the symbol-permuted versions of p.
For every sample xn ∈ Xn and symmetric P, the PML estimator over P maps xn to a distribution

Pϕ(xn) := arg max
p∈P

Pr
Xn∼p

(ϕ(Xn) = ϕ(xn)) .

Given a sample Xn ∼ p ∈ P and a symmetric property p, the PML plug-in estimator uses f ◦
P(Xn) to estimate f(p). The PML estimator often behaves differently from the classical empirical
distribution estimator. For example, if P = ∆ and ϕ = {2, 1, 1}, the PML estimate turns out to be
Pϕ = ( 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ), deviating from the empirical distribution ( 1

2 ,
1
4 ,

1
4 ) by 0.8 in L1 distance.

Recent researches [Acharya et al., 2017, Hao and Orlitsky, 2019a] show that for an extensive family of
symmetric properties, including the previously mentioned four, the PML plug-in estimator universally
achieves minimax error in the large-alphabet regime, up to constant factors.

The formulation of PML makes it part of two estimator classes, the maximum-likelihood and the
profile-based, where the latter corresponds to estimators whose values depend on only the profile. The
theorem below shows that profile-based estimators are sufficient for inferring symmetric properties.

Theorem 3 (Sufficiency of profiles). For any symmetric property f and set P ⊆ ∆, and estimator f̂ ,
we can construct an explicit estimator F̂ over length-n profiles satisfying

rn(p, f̂ ) = rn(P, F̂ ◦ ϕ),

where both estimators can have independent randomness.
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The next result shows that the PML estimator is adaptive to the simplicity of underlying distributions
in inferring all symmetric properties, over any symmetric P. Specifically, the theorem states that the
n-sample PML plug-in essentially performs as well as the optimal n/Hn(p)-sample estimator, which
approaches the performance of the optimal n-sample estimator if p has a smallHn(p). Furthermore,
for any property and estimator, there is a symmetric set P′ for which this 1/Hn(p) ratio is optimal.

Theorem 4 (Competitiveness of PML). For any symmetric property f and set P ⊆ ∆, and every
distribution p ∈ P, the PML plug-in estimator satisfies

rn(p, f ◦ Pϕ) ≤ 2rnp(P),

where np :' n/Hn(p). On the other hand, for any estimator f̂ and symmetric property f , there
exists a symmetric set P′ ⊆ ∆ such that for some p ∈ P′,

rn(p, f̂ ) ≥ 2rnp(P′) .

We provide some brief comments here and more in Section 3. First, the above theorem holds for a
polynomial-time PML approximation [Anari et al., 2020], and for any symmetric property, while
nearly all previous works require the property to possess certain forms and be smooth. In particular,
the algorithm in Anari et al. [2020] achieves the best-known guarantees for approximating PML,
requires no additional assumptions on the distribution/property’s structure, and works universally
on all symmetric properties and adaptively on all profiles (hence distributions). Second, the result
holds for any symmetric distribution set P ⊆ ∆, which covers numerous domains of interest that
appeared in the literature, such as the widely studied ∆X , and its subset ∆1/|X| for the study of
support size estimation, where each distribution’s positive probabilities are at least 1/|X |. Third, the
result trivially implies a weaker version in Acharya et al. [2017] where Hn(p) is replaced by

√
n,

which, as we show in Section 2.5, can be significantly larger.

2.4 Optimal Compression of Profiles

None of the scientific applications in Section 1 is possible without first storing the sample profile.
Hence, we focus on the task of lossless profile compression in this section. Besides the theoretical
fundamentality and numerous applications, the task is essential as storing a sample’s profile, compared
with storing the entire sample sequence, often takes much less space. Specifically, Shannon entropy
is the measure of limit of lossless compression, which, for sample Xn ∼ p ∈ ∆, is nH(p), and for
the sample’s profile, isHn(p). In particular, the sample entropy grows as Ω(n) whenever p has an
entropy of at least one, while the profile entropy is at most 3

√
n by our argument in Section 2.2.

While the n-to-
√
n improvement is already significant, the compression schemes we propose under the

standard block and sequential settings surely take profile compression to the next level. Specifically,
for every distribution p and sample size n, both schemes essentially compress the sample profile
ϕ(Xn) to its entropy Hn(p), the information-theoretic limit, in expectation. In other words, our
algorithms are instance-by-instance optimal and essentially unimprovable. Furthermore, we achieve
this instance optimality with near-optimal time complexity – both algorithms have a running time
near-linear in the sample size n. Because of this instance optimality, we omit experimental evaluation.

Block compression We propose an intuitive and easy-to-implement block compression algorithm.

Recall that the profile of a sequence xn is the multiset ϕ(xn) of multiplicities associated with symbols
in xn. The ordering of elements in a multiset is not informative. Hence equivalently, we can compress
ϕ(xn) into the set C(ϕ(xn)) of corresponding multiplicity-prevalence pairs, i.e.,

C(ϕ(xn)) := {(µ, ϕµ(xn)) : µ ∈ ϕ(xn)}.

The number of pairs in C(ϕ(xn)) is equal to the profile dimension D(ϕ(xn)). Besides, both preva-
lence and its multiplicity are integers in [0, n], and storing the pair takes 2 log n nats. Hence, it takes
at most 2(log n) · D(ϕ(xn)) nats to store the compressed profile. By Theorem 1, for any distribution
p ∈ ∆ and sample Xn ∼ p,

E[2(log n) · D(Xn)] ' Hn(p).

We have shown that storing a profile ϕ as C(ϕ) is a near-optimal block compression scheme.
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Algorithm 1 Sequential Profile Compression
input sequence (µxt(x

t−1))nt=1, tree T = ∅
output tree T that encodes the input sequence

for t = 1 to n do
if µ := µxt(x

t−1) ∈ T then
if µ+ 1 ∈ T then
ϕµ+1 := T (µ+ 1)← T (µ+ 1) + 1

else
add (µ+ 1, 1) to T

end if
if ϕµ = 1 then delete (µ, ϕµ) from T
else ϕµ := T (µ)← T (µ)− 1 endif

else
if 1 6∈ T then add (1, 1) to T
else T (1)← T (1) + 1 endif

end if
end for

Sequential compression For any sequence xn, the setting for sequential profile compression is
that at time step t ∈ [n], the compression algorithm knows only ϕ(xt) and sequentially encodes the
new information. This process is equivalent to providing the algorithm µxt(x

t−1) at time step t.

Suppress x, xt in the expressions for the ease of illustration. For efficient compression, we sequen-
tially encode the profile ϕ into a self-balancing binary search tree T , with each node storing a
multiplicity-prevalence pair (µ, ϕµ) and µ being the search key. We present the compression scheme
as Algorithm 1, and establish the following guarantee.
Theorem 5. Algorithm 1 runs for exactly n iterations, with anO(log n) per-iteration time complexity.
For an i.i.d. sample Xn ∼ p, the expected space complexity is Θ̃(Hn(p)). On the other hand, any
algorithm that compresses the profile losslessly has an expected space complexity of at leastHn(p).

2.5 Optimal Characterization for Structured Families

In this section, we characterize the profile entropy of several important structured distribution families,
including log-concave, power-law, histogram, and their mixtures. All the matching lower bounds are
entirely new, and all the upper bounds, with the exception of that in Theorem 8, are much stronger
than those induced by the prior work [Hao and Orlitsky, 2019b] via Theorem 1. For interested readers,
see Section D of the supplementary for a detailed comparison.

Log-concave The log-concave family encompasses a broad range of discrete distributions, such
as Poisson, hyper-Poisson, Poisson binomial, binomial, negative binomial, and geometric, and
hyper-geometric, with broad applications to statistics [Saumard and Wellner, 2014], computer
science [Lovász and Vempala, 2007], economics [An, 1997], and geometry [Stanley, 1989].

Formally, a distribution p ∈ ∆Z is log-concave if p has a contiguous support and p2x ≥ px−1 · px+1

for all x ∈ Z. The next result bounds the profile entropy of this family, and is tight up to logarithmic
factors. For simplicity, henceforth we write a ∧ b for min{a, b} (and ∨ for max), and slightly abuse
the notation and write a ' b for a+1 = Θ̃(b+1), which does not change the nature of the results.
Theorem 6. Let Lσ ⊆ ∆Z denote the collection of log-concave distributions with variance σ2. Then,

max
p∈Lσ

Hn(p) ' σ∧n
σ
.

In particular, if we discretize a Gaussian variable X ∼ N (µ, σ2) by rounding it to the nearest integer,
the distribution of the resulting variable achieves the maximum, up to logarithmic factors. Moreover,
such a discretization procedure preserves log-concavity for any continuous distribution over R.

Power-law Power-law is a ubiquitous structure appearing in many situations of scientific interest,
ranging from natural phenomena such as the initial mass function of stars [Kroupa, 2001], species and
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genera [Humphries et al., 2010], rainfall [Machado and Rossow, 1993], population dynamics [Taylor,
1961], and brain surface electric potential [Miller et al., 2009], to human-made circumstances such as
the word frequencies in a text [Baayen, 2002], income rankings [Drăgulescu and Yakovenko, 2001],
company sizes [Axtell, 2001], and internet topology [Faloutsos et al., 1999].

Formally, a discrete distribution p ∈ ∆Z is a power-law with power α ≥ 0 if p has a support of
[k] := {1, . . . , k} for some k ∈ Z+ ∪ {∞} and px ∝ x−α for all x ∈ [k]. Note that if α ∈ [0, 1], the
distribution is well-defined for only finite k. The next result fully characterizes the profile entropy of
power-laws over all α, n, and k ranges, and significantly improves that in Hao and Orlitsky [2019b].
Theorem 7. Let p ∈ ∆[k] be a power-law distribution with power α. Then,

Hn(p) '



k if α > k1+α

n ∨1 or 1 ≥ α > k2

n ,

n
1

α+1 if k
1+α

n ≥ α > 1,(
n

k1−α

) 1
1+α if k

2

n ∧1 ≥ α > k1−α

n ,

n
k1−α −

n
k if k

1−α

n ∧1 ≥ α and α ≥ 2 logk

(
7
√

k
n + 1

)
,

k ∧
√

n
k1−α if k

1−α

n ∧1 ≥ α and 2 logk

(
7
√

k
n + 1

)
> α.

In particular, as α→ 0, the bound degenerates to k ∧
√

n
k , which is at most n

1
3 .

Since a power-law sample profile is completely specified by α, k, and n, the above theorem directly
applies to model parameter estimation. Specifically, we first compute Dn ∼ p, which is a simple
function of the symbol counts. By Theorem 1, we can then use it to approximateHn(p). Finally, we
utilize the characterization theorem and find the parameter relations (testing might be necessary).

Histogram While histogram is among the most widely studied representations, histogram distri-
butions’ importance also rises with the rapid growth of data sizes in modern scientific applications.
For example, subsampling, a generic strategy to handle large datasets, naturally induces a histogram
distribution over different categories of the data. This induced distribution often summarizes vital
data statistics, leveraging which yields efficient and flexible inference procedures.

Formally, a discrete distribution p ∈ ∆Z is a t-histogram if we can partition its support into at most
t pieces such that p takes the same probability value over each piece. The theorem below provides
near-optimal bounds on the profile entropy of the t-histogram distributions.
Theorem 8. Denote by It ⊆ ∆Z the collection of t-histogram distributions. Then,

max
p∈It
Hn(p) ' min

{
(nt2)

1
3 ,
√
n
}
.

In practical settings, the value of t is often poly-logarithmic in n, and the bound reduces to Õ(n1/3).
For the particular case of t = 1, distribution p is uniform over some unknown contiguous support.
This result overlaps with Theorem 7 with α = 0, yielding the following bound.
Corollary 3. For any uniform distribution p with support size k, we haveHn(p) ' k ∧

√
n
k .

3 Applications and Extensions

Robust learning The profile of any sequence is invariant to domain-symbol permutations. Since
entropy is a symmetric property, the profile entropy of an i.i.d. sample is also permutation invariant.
Consequently, a result in this paper that holds for a distribution will also hold for any distributions
possessing the same probability multiset. For numerous practical applications, this robustness to
symbol permutation is a desirable and novel notion of robustness that particularly resides in discrete
domains, as samples often come as categorical data, while the alphabet ordering for the underlying
distribution to exhibit certain structure is frequently unknown [Hao and Orlitsky, 2019b].

For example, the sample may consist of different fruits, not integers. But suppose there is a hidden
mapping from the fruit domain to integers that makes the distribution log-concave over Z. Then, all
our results such as Theorem 2, 4, 5, and 6 are in effect. For another example, in natural language
processing, we observe words and punctuation marks. Even we know that observations come from a
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power-law distribution [Mitzenmacher, 2004], it is often unclear how to order the alphabet to realize
such a condition. The robustness of our approach again enables us to achieve a variety of learning
objectives, such as understanding the relation between different model parameters (Theorem 7).

Mixture models The results in Section 2.5 provide optimal characterization for simple structured
families. A standard extension to incorporate more complex structures in the model is spanning a
distribution family by including (weighted) mixtures. A typical example is the Gaussian mixture
model, which is among the most widely studied probabilistic models.

In the supplementary material, we present such results for all three families in Section 2.5, and
for mixtures of discretized high-dimensional Gaussians. In fact, we obtain a simple and intuitive
profile-entropy characterization for all distributions. Partition the unit interval into a sequence of
ranges, Ij :=

(
(j − 1)2 logn

n , j2 logn
n

]
, 1 ≤ j ≤

√
n

logn , and for any distribution p, denote by pIj
the number of probabilities in Ij . Then,
Lemma 1. For any n ∈ Z+ and p ∈ ∆, we haveHn(p) '

∑
j≥1 min

{
pIj , j ·log n

}
.

Competitive property estimation Theorem 2 on PML holds for every distribution, any symmetric
property, and distribution collection, such as a finite-dimensional simplex, regardless of other param-
eters such as the alphabet size. To the best of our knowledge, this is one of the most general results in
the field. Below we provide a basic example for its applications.

For an arbitrary β > 0, let f be the order-β Rényi entropy, and P be the set of distributions whose
probability multisets correspond to power-laws with power α ≥ 3. The minimax error rate rm(P)
is unknown for this problem as recent works (e.g., [Acharya et al., 2016]) mainly focused on the
standard simplexes. On the other hand, Theorem 4, together with Theorem 7, shows that the n-sample
PML plug-in estimator essentially performs as well as the best n3/4-sample estimator. Note that
while the guarantee of PML uniformly holds for all β, the best estimator can optimize its performance
for every β. Following the same rationale, we can derive such nontrivial competitive estimation
results for numerous properties and distribution families without having to analyze them in detail.

Adaptive testing and classification Profile entropy also directly connects to adaptive testing and
classification. Such a connection arises from computing the profile probability [Acharya et al., 2011,
2012], the probability of observing the sample’s profile under the same sampling process.

Specifically, the first paper designs an algorithm that distinguishes two unknown distributions using
near-optimal sample sizes whenever the optimal algorithm has an exponentially small error probability.
In addition, the algorithm is simply a ratio test between the probabilities of two profiles. Given sample
Xn ∼ p over a finite domain, we can compute its profile probability in exp(Θ̃(Hn(p)) operations.
For example, if the underlying distribution is a 4-histogram, then by Theorem 8, the running time
exponent is of order n1/3. The result follows by the equivalence of the problem and computing the
permanent of a rank-Dn matrix [Barvinok, 1996, Vontobel, 2012, 2014, Barvinok, 2016].

Method of types We connect our approach to the method of types, an important technical tool in
Shannon theory and many other fields [Csiszar and Körner, 2011, Wolfowitz, 2012]. In the notation
of this paper, the type of a sequence xn over some finite domain X is the ordered list of multiplicities
µy(xn), which associates symbol y with its number of appearances in xn. For this multiplicity list,
the method of types associates each µy(xn) with the number of symbols having this multiplicity,
which is precisely ϕµy(xn)(x

n). Hence, the profile of a sequence is the type of its type.

Given the above arguments, understanding the deep connection between profile-based algorithms and
the method of types is a meaningful future research direction to explore.

Broader Impact

Classical information theory states that an i.i.d. sample contains H(Xn∼p) = nH(p) information,
which provides little insight for statistical applications. We present a different view by decomposing
the sample information into three parts: the labeling of the profile elements, ordering of them, and
profile entropy. With no bias towards any symbols, the profile entropy rises as a fundamental measure
unifying the concepts of estimation, inference, and compression. We believe this view could help
researchers in information theory, statistical learning theory, and computer science communities
better understand the information composition of i.i.d. samples over discrete domains.
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The results established in this work are general and fundamental, and have numerous applications in
privacy, economics, data storage, supervised learning, etc. A potential downside is that the theoretical
guarantees of the associated algorithms rely on the assumption correctness, e.g., the domain should
be discrete and the sampling process should be i.i.d. . In other words, it will be better if users can
confirm these assumptions by prior knowledge, experiences, or statistical testing procedures. Taking
a different perspective, we think a potential research direction following this work is to extend these
results to Markovian models, making them more robust to model misspecification.
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