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Abstract

Learning quickly is of great importance for machine intelligence deployed in
online platforms. With the capability of transferring knowledge from learned tasks,
meta-learning has shown its effectiveness in online scenarios by continuously
updating the model with the learned prior. However, current online meta-learning
algorithms are limited to learn a globally-shared meta-learner, which may lead
to sub-optimal results when the tasks contain heterogeneous information that are
distinct by nature and difficult to share. We overcome this limitation by proposing
an online structured meta-learning (OSML) framework. Inspired by the knowledge
organization of human and hierarchical feature representation, OSML explicitly
disentangles the meta-learner as a meta-hierarchical graph with different knowledge
blocks. When a new task is encountered, it constructs a meta-knowledge pathway
by either utilizing the most relevant knowledge blocks or exploring new blocks.
Through the meta-knowledge pathway, the model is able to quickly adapt to the new
task. In addition, new knowledge is further incorporated into the selected blocks.
Experiments on three datasets demonstrate the effectiveness and interpretability of
our proposed framework in the context of both homogeneous and heterogeneous
tasks.

1 Introduction

Meta-learning has shown its effectiveness in adapting to new tasks with transferring the prior
experience learned from other related tasks [7, 34, 38]. At a high level, the meta-learning process
involves two steps: meta-training and meta-testing. During the meta-training time, meta-learning
aims to obtain a generalized meta-learner by learning from a large number of past tasks. The meta-
learner is then applied to adapt to newly encountered tasks during the meta-testing time. Despite
the early success of meta-learning on various applications (e.g., computer vision [7, 40], natural
language processing [14, 36]), almost all traditional meta-learning algorithms make the assumption
that tasks are sampled from the same stationary distribution. However, in human learning, a promising
characteristic is the ability to continuously learn and enhance the learning capacity from different tasks.
To equip agents with such capability, recently, Finn et al. [10] presented the online meta-learning
framework by connecting meta-learning and online learning. Under this setting, the meta-learner
not only benefits the learning process from the current task but also continuously updates itself with
accumulated new knowledge.

Although online meta-learning has shown preliminary success in handling non-stationary task distri-
bution, the globally shared meta-learner across all tasks is far from achieving satisfactory performance
when tasks are sampled from complex heterogeneous distribution. For example, if the task distri-
bution is heterogeneous with disjoint modes, a globally shared meta-learner is not able to cover
the information from all modes. Under the stationary task distribution, a few studies attempt to
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address this problem by modulating the globally shared meta-learner with task-specific informa-
tion [27, 41, 42, 39]. However, the modulating mechanism relies on a well-trained task representation
network, which makes it impractical under the online meta-learning scenario. A recent study by [15]
applied Dirichlet process mixture of hierarchical Bayesian model on tasks. However, this study
requires the construction of a totally new meta-learner for the dissimilar task, which limits the
flexibility of knowledge sharing.

To address the above challenges, we propose a meta-learning method with a structured meta-learner,
which is inspired by both knowledge organization in human brain and hierarchical representations.
When human learn a new skill, relevant historical knowledge will facilitate the learning process.
The historical knowledge, which is potentially hierarchically organized and related, is selectively
integrated based on the relevance to the new task. After mastering a new task, the knowledge
representation evolves continuously with the new knowledge. Similarly, in meta-learning, we aim
to construct a well-organized meta-learner that can 1) benefit fast adaptation in the current task
with task-specific structured prior; 2) accumulate and organize the newly learned experience; and 3)
automatically adapt and expand for unseen structured knowledge.

We propose a novel online structured meta-learning (OSML) framework. Specifically, OSML
disentangles the whole meta-learner as a meta-hierarchical graph with multiple structured knowledge
blocks, where each block represents one type of structured knowledge (e.g., a similar background
of image tasks). When a new task arrives, it automatically seeks for the most relevant knowledge
blocks and constructs a meta-knowledge pathway in this meta-hierarchical graph. It can further create
new blocks when the task distribution is remote. Compared with adding a full new meta-learner
(e.g., [15]) in online meta-learning, the block-level design provides 1) more flexibility for knowledge
exploration and exploitation; 2) reduces the model size; and 3) improves the generalization ability.
After solving the current task, the selected blocks are enhanced by integrating with new information
from the task. As a result, the model is capable of handling non-stationary task distribution with
potentially complex heterogeneous tasks.

To sum up, our major contributions are three-fold: 1) we formulate the problem of online meta-
learning under heterogeneous distribution setting and propose a novel online meta-learning framework
by maintaining meta-hierarchical graph; 2) we demonstrate the effectiveness of the proposed method
empirically through comprehensive experiments; 3) the constructed meta-hierarchical tree captures
the structured information in online meta-learning, which enhances the model interpretability.

2 Notations and Problem Settings

Few-shot Learning and Meta-learning. In few-shot learning, a task Ti is comprised of a support
set Dsupp

i with Nsupp
i samples (i.e., Dsupp

i = {(xi,1,yi,1), . . . , (xi,N
supp
i

,yi,N
supp
i

)}) and a query
set Dquery

i with Nquery
i samples (i.e., Dquery

i = {(xi,1,yi,1), . . . , (xi,N
query
i

,yi,N
query
i

)}), where the
support set only includes a few samples. Given a predictive model f with parameter w, the task-
specific parameter wi is trained by minimizing the empirical loss L(w,Dsupp

i ) on support set Dsupp
i .

Here, the loss function is typically defined as mean square loss or cross-entropy for regression
and classification problems, respectively. The trained model fwi is further evaluated on query set
Dquery

i . However, when the size of Dsupp
i is extremely small, it cannot optimize w with a satisfactory

performance on Dquery
i . To further improve the task-specific performance within limited samples, a

natural solution lies in distilling more information from multiple related tasks. Building a model upon
these related tasks, meta-learning are capable of enhancing the performance in few-shot learning.

By training from multiple related tasks, meta-learning generalizes an effective learning strategy to
benefit the learning efficiency of new tasks. There are two major steps in meta-learning: meta-training
and meta-testing. Taking model-agnostic meta-learning (MAML) [8] as an example, at meta-training
time, it aims to learn a well-generalized initial model parameter w∗0 over T available meta-training
tasks {Ti}Ti=1. In more detail, for each task Ti, MAML performs one or few gradient steps to infer
task-specific parameter wi by using support set Dsupp

i (i.e., wi = w0 − αL(w,Dsupp
i )). Then, the

query set Dquery
i are used to update the initial parameter w0. Formally, the bi-level optimization

process can be formulated as:

w∗0 ← arg min
w0

T∑
i=1

L(w0 − αL(w,Dsupp
i ),Dquery

i ). (1)
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In practice, the inner update can perform several gradient steps. At meta-testing time, for the new
task Tnew, the optimal task parameter wnew can be reached by finetuning w∗0 on support set Dsupp

new .

Online Meta-learning. A strong assumption in the meta-learning setting is that all task follows
the same stationary distribution. In online meta-learning, instead, the agents observe new tasks
and update meta-learner (e.g., model initial parameter) sequentially. It then tries to optimize the
performance of the current task. Let w0,t denote the learned model initial parameter after having
task Tt and wt represent the task-specific parameter. Following FTML (follow the meta leader)
algorithm [10], the online meta-learning process can be formulated as:

w0,t+1 = arg min
w

t∑
i=1

Li(wi,Dquery
i ) = arg min

w

t∑
i=1

Li(w − α∇(w,Dsupp
i ),Dquery

i ), (2)

where {Lt}∞t=1 represent a sequence of loss functions for task {Tt}∞t=1. In the online meta-learning
setting, both Dsupp

i and Dquery
i can be represented as different sample batches for task Ti. For

brevity, we denote the inner update process asM(w,Dsupp
i ) = w − α∇(w,Dsupp

i ). After obtaining
the best initial parameter w0,t+1, similar to the classical meta-learning process, the task-specific
parameter wt+1 is optimized by performing several gradient updates on support set Dsupp

t+1 . Based on
the meta-learner update paradigm in equation (2), the goal for FTML is to minimize the regret, which
is formulated as

RegretT =

T∑
i=1

Li(Mi(w0,i))−min
w

T∑
i=1

Li(Mi(w)). (3)

By achieving the sublinear regret, the agent is able to continuously optimize performance for
sequential tasks with the best meta-learner.

3 Online Structured Meta-learning

In this section, we describe the proposed OSML algorithm that sequentially learns tasks from a
non-stationary and potentially heterogeneous task distribution. Figure 1 illustrates the pipeline of
task learning in OSML. Here, we treat a meta-learner as a meta-hierarchical graph, which consists of
multiple knowledge blocks. Each knowledge block represents a specific type of meta-knowledge
and is able to connect with blocks in the next level. To facilitate the learning of a new task, a
“search-update" mechanism is proposed. For each task, a “search" operation is first performed to
create meta-knowledge pathways. An “update" operation is then performed for the meta-hierarchical
graph. For each task, this mechanism forms a pathway that links the most relevant neural knowledge
block of each level in the meta-hierarchical structure. Simultaneously, novel knowledge blocks may
also be spawned automatically for easier incorporation of unseen (heterogeneous) information. These
selected knowledge blocks are capable of quick adaptation for the task at hand. Through the created
meta-knowledge pathway, the initial parameters of knowledge blocks will be then iteratively updated
by incorporating the new information. In the rest of this section, we will introduce the two key
components: meta-knowledge pathway construction and knowledge-block update.

3.1 Meta-knowledge Pathway Construction

The key idea of meta-knowledge pathway construction is to automatically identify the most relevant
knowledge blocks from the meta-hierarchy. When the task distribution is non-stationary, the current
task may contain distinct information, which will increase the likelihood of triggering the use of novel
knowledge blocks. Because of this, a meta-knowledge pathway construction mechanism should be
capable of automatically exploring and utilizing knowledge blocks depending on the task distribution.
We elaborate the detailed pathway construction process in the following paragraphs.

At time step t, we denote the meta-hierarchy with initial parameter w0,t as Rt, which has L layers
with Bl knowledge blocks in each layer l. Let {w0bl,t}

Bl
bl=1 denote the initial parameters in knowledge

blocks of layer l. To build the meta-knowledge pathway, we search the most relevant knowledge
block for each layer l. An additional novel block is further introduced in the search process for
new knowledge exploration. Similar to [21], we further relax the categorical search process to a
differentiable manner to improve the efficiency of knowledge block searching. For each layer l
with the input representation gl−1,t, the relaxed forward process in meta-hierarchical graph Rt is
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Figure 1: Illustration of OSML. The meta-hierarchical graph is comprised of several knowledge
blocks in each layer. Different colors represent different meta-knowledge. Orange blocks denote the
input and output. Given a new task Tt, it automatically searches for the most relevant knowledge
block and constructs the meta-knowledge pathway (i.e., blue line). Simultaneously, the task is
encouraged to explore novel meta-knowledge blocks during the search process (i.e., the red dashed
block). After building the meta-knowledge pathway, the new task is used to update its corresponding
meta-knowledge blocks. The meta-updated knowledge blocks are finally used for fine-tuning and
evaluation on Tt.

formulated as:

gl,t =

Bl+1∑
bl=1

exp(obl)∑Bl+1

b
′
l
=1

exp(o
b
′
l
)
Mt(w0bl,t)(gl−1,t),

whereMt(w0bl,t) = w0bl,t − α∇w0bl,t
L(w0,t,Dsupp

t ),

(4)

where o = {{ob1}
B1
b1=1, . . . , {obL}

BL
bL=1} are used to denote the importance of different knowledge

blocks in layer l. The above equation (4) indicates that the inner update in the knowledge block
searching process, where all existing knowledge blocks and the novel blocks are involved. After inner
update, we obtain the task specific parameter wt, which is further used to meta-update the initial
parameters w0,t in the meta-hierarchical structure and the importance coefficient o. The meta-update
procedure is formulated as:

w0,t ← w0,t − β1∇w0,tL(wt,o;Dquery
t ),

o← o− β2∇oL(wt,o;Dquery
t ),

(5)

where β1 and β2 represent the learning rates at the meta-updating time. Since the coefficient o
suggests the importance of different knowledge blocks, we finally select the task-specific knowledge
block in layer l as b∗l = arg maxbl∈[1,Bl] obl . After selecting the most relevant knowledge blocks, the
meta-knowledge pathway {w0b∗1 ,t

, . . . ,w0b∗
L
,t} is generated by connecting these blocks layer by layer.

3.2 Knowledge Block Meta-Updating

In this section, we discuss how to incorporate the new task information with the best path of functional
regions. Following [10], we adopt a task buffer B to memorize the previous tasks. When a new task
arrives, it is automatically added in the task buffer. After constructing the meta-knowledge pathway,
the shared knowledge blocks are updated with the new information. Since different tasks may share
knowledge blocks, we iteratively optimize the parameters of the knowledge blocks from low-level to
high-level. In practice, to optimize the knowledge block bl in layer l, it is time-consuming to apply
second-order meta-optimization process on w0bl,t. Instead, we apply first-order approximation to
avoid calculating the second-order gradients on the query set. Formally, the first order approximation
for knowledge block b∗l in layer l is formulated as:

w0b∗
l
,t ← w0b∗

l
,t − β3

K∑
k=1

∇wbl,k
L(wk;Dquery

k ),

where wt = w0,t − β4∇wL(w;Dsupp
k ).

(6)

By applying the first-order approximation, we are able to save update time while maintaining
comparable performance. After updating the selected knowledge blocks, we fine-tune the enhanced
meta-knowledge pathway {w0b∗1 ,t

, . . . ,w0b∗
L
,t} on the new task Tt by using both support and query

sets as follows:
wb∗1 ,t

= w0b∗
l
,t − β5∇wL(w;Dsupp

t ⊕Dquery
t ). (7)
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Algorithm 1 Online Meta-learning Pipeline of OSML

Require: β1, β2, β3,β4, β5: learning rates
1: Initialize Θ and the task buffer as empty, B ← []
2: for each task Tt in task sequence do
3: Add B ← B + [Tt]
4: Sample Dsupp

t , Dquery
t from Tt

5: Use Dsupp
t and Dquery

t to search the functional regions {w0b∗1 ,t
. . .w0b∗

L
,t} by (4) and (5)

6: for nm = 1 . . . Nmeta steps do
7: for l = 1 . . . L do
8: Sample task Tk that also use w0b∗

l
,t from buffer B

9: Sample minibatches Dsupp
k and Dquery

k from Tk
10: Use Dsupp

k and Dquery
k to update the knowledge block w0b∗

l
,t by (6)

11: end for
12: end for
13: Concatenate Dsupp

t and Dquery
t as Dall

t = Dsupp
t ⊕Dquery

t

14: Use Dall
t to finetune {w0b∗1 ,t

. . .w0b∗
L
,t}

15: Evaluate the performance on Dtest
t

16: end for

The generalization performance of task Tt are further evaluated in a held-out dataset Dtest
t . The whole

procedure are outlined in Algorithm 1.

4 Experiments

In this section, we conduct experiments on both homogeneous and heterogeneous datasets to show
the effectiveness of the proposed OSML. The goal is to answer the following questions:

• How does OSML perform (accuracy and efficiency) compared with other baselines in both
homogeneous and heterogeneous datasets?

• Can the knowledge blocks explicitly capture the (dis-)similarity between tasks?
• What are causing the better performance of OSML: knowledge organization or model capacity?

The following algorithms are adopted as baselines, including (1) Non-transfer (NT), which only uses
support set of task Tt to train the base learner; (2) Fine-tune (FT), which continuously fine-tunes
the base model without task-specific adaptation. Here, only one knowledge block each layer is
involved and fine-tuned for each task and no meta-knowledge pathway is getting constructed; (3)
FTML [10] that incorporates MAML into online learning framework, where the meta-learner is
shared across tasks; (4) DPM [15], which uses the Dirichlet process mixture to model task changing;
(5) HSML [41], which customizing model initializations by involving hierarchical clustering structure.
However, the continual adaptation setting in original HSML is evaluated under the stationary scenario.
Thus, to make comparison we evaluate HSML under our setting by introducing task-awared parameter
customization and hierarchical clustering structure.

4.1 Homogeneous Task Distribution

Dataset Description. We first investigate the performance of OSML when the tasks are sampled
from a single task distribution. Here, we follow [10] and create a Rainbow MNIST dataset, which
contains a sequence of tasks generated from the original MNIST dataset. Specifically, we change
the color (7 colors), scale (2 scales), and angle (4 angles) of the original MNIST dataset. Each
combination of image transformation is considered as one task and thus a total of 56 tasks are
generated in the Rainbow MNIST dataset. Each task contains 900 training samples and 100 testing
samples. We adopt the classical four-block convolutional network as the base model. Additional
information about experiment settings are provided in Appendix A.1.

Results and Analysis. The results of Rainbow MNIST shown in Figure 2. It can be observed that
our proposed OSML consistently outperforms other baselines, including FTML, which shares the
meta-learner across all tasks. Additionally, after updating the last task, we observe that the number of
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knowledge blocks for layer 1-4 in the meta-hierarchical graph is 1, 1, 2, 2, respectively. This indicates
that most tasks share the same knowledge blocks, in particular, at the lower levels. This shows that
our method does learn to exploit shared information when the tasks are more homogeneous and thus
share more knowledge structure. This also suggests that our superior performance is not because of
increased model size, but rather better utilization of the shared structure.

10 20 30 40 50
Task Number

70%

80%

90%

100%

A
cc

ur
ac

y

NT FT FTML DPM HSML OSML

Metric NT FT FTML [10] DPM [15] HSML [41] OSML

Acc. 85.09 ± 1.07% 87.71 ± 0.97% 91.41 ± 5.15% 90.80 ± 5.38% 90.36 ± 4.60% 92.65 ± 4.44%
AR 5.63 4.64 2.67 3.14 3.41 1.50

Figure 2: Rainbow MNIST results. Top: Accuracy over all tasks; Bottom: Performance statistics.
Here, Average Ranking (AR) is calculated by first rank all methods for each dataset, from higher to
lower. Each method receive a score corresponds to its rank, e.g. rank one receives one point. The
scores for each method are then averaged to form the reported AR. Lower AR is better.

4.2 Heterogeneous Task Distribution

Datasets Descriptions. To further verify the effectiveness of OSML when the tasks contain po-
tentially heterogeneous information, we created two datasets. The first dataset is generated from
mini-Imagenet. Here, a set of artistic filters – "blur", "night" and "pencil" filter are used to pro-
cess the original dataset [15]. As a result, three filtered mini-Imagenet sub-datasets are obtained,
namely, blur-, night- and pencil-mini-Imagenet. We name the constructed dataset as multi-filtered
mini-Imagenet. We create the second dataset called Meta-dataset by following [37, 41]. This dataset
includes three fine-grained sub-datasets: Flower, Fungi, and Aircraft. Detailed descriptions of hetero-
geneous datasets construction are discussed in Appendix A.2. For each sub-dataset in multi-filtered
miniImagenet or Meta-dataset, it contains 100 classes. We then randomly split 100 classes to 20
non-overlapped 5-way tasks. Thus, both datasets include 60 tasks in total and we shuffle all tasks for
online meta-learning. Similar to Rainbow MNIST, the four-block convolutional layers are used as
the base model for each task. Note that, for Meta-dataset with several more challenging fine-grained
datasets, the initial parameter values of both baselines and OSML are set from a model pre-trained
from the original mini-Imagenet. We report hyperparameters and model structures in Appendix A.2.

Results. For multi-filtered miniImagenet and Meta-dataset, we report the performance in Figure 3
and Figure 4, respectively. We show the performance over all tasks in the top figure and summarize
the performance in the bottom table. First, all online meta-learning methods (i.e., FTML, DPM,
HSML, OSML) achieves better performance than the non-meta-learning ones (i.e., NT, FT), which
further demonstrate the effectiveness of task-specific adaptation. Note that, NT outperforms FT in
Meta-dataset. The reason is that the pre-trained network from mini-Imagnent is loaded in Meta-
dataset as initial model, continuously updating the structure (i.e., FT) is likely to stuck in a specific
local optimum (e.g., FT achieves satisfactory results in Aircraft while fails in other sub-datasets).
In addition, we also observe that task-specific online meta-learning methods (i.e., OSML, DPM,
and HSML) achieve better performance than FTML. This is further supported by the summarized
performance of Meta-dataset (see the bottom table of Figure 4), where FTML achieved relatively
better performance in Aircraft compared with Fungi and Flower. This suggests that the shared meta-
learner is possibly attracted into a specific mode/region and is not able to make use of the information
from all tasks. Besides, OSML outperforms DPM and HSML in both datasets, indicating that the
meta-hierarchical structure not only effectively capture heterogeneous task-specific information, but
also encourage more flexible knowledge sharing.
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NT FT FTML DPM HSML OSML

Models Blur Acc. Night Acc. Pencil Acc. Overall Acc. AR

NT 49.80 ± 3.91% 47.70 ± 2.91% 47.55 ± 5.18% 48.35 ± 2.39% 5.48
FT 51.50 ± 4.90% 49.00 ± 3.82% 50.90 ± 5.30% 50.47 ± 2.73% 4.87

FTML [10] 58.90 ± 3.52% 56.40 ± 3.53% 54.60 ± 5.46% 56.63 ± 2.50% 3.50
DPM [15] 62.35 ± 2.95% 56.80 ± 4.28% 56.20 ± 4.70% 58.45 ± 2.44% 2.85
HSML [41] 62.42 ± 3.80% 57.57 ± 2.78% 57.88 ± 5.00% 59.25 ± 2.36% 2.63

OSML 64.10 ± 3.12% 65.25 ± 3.24% 60.35 ± 3.65% 63.23 ± 2.00% 1.67

Figure 3: Multi-filtered miniImagenet results. Top : classification accuracy of all tasks. Bottom : the
statistics of accuracy with 95% confidence interval and average ranking (AR) for each sub-dataset
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NT FT FTML DPM HSML OSML

Models Aircraft Acc. Flower Acc. Fungi Acc. Overall Acc. AR

NT 59.40 ± 3.97% 60.15 ± 5.23% 46.15 ± 3.57% 55.23 ± 2.98% 4.75
FT 66.45 ± 3.80% 52.20 ± 4.55% 42.90 ± 3.45% 53.85 ± 3.35% 4.47

FTML [10] 65.85 ± 3.85% 59.05 ± 4.83% 48.00 ± 2.78% 57.63 ± 2.93% 3.92
DPM [15] 66.67 ± 4.07% 63.40 ± 4.89% 50.15 ± 3.53% 60.07 ± 3.02% 3.15
HSML [41] 65.86 ± 3.13% 63.12 ± 3.88% 55.65 ± 3.11% 61.54 ± 2.22% 2.85

OSML 67.99 ± 3.52% 68.55 ± 4.59% 58.45 ± 2.89% 65.00 ± 2.46% 1.87

Figure 4: Meta-dataset Results. Top: performace of online meta-learning tasks. Bottom: performance
statistics on each sub-dataset.

Analysis of Constructed Meta-pathway and Knowledge Blocks. In Figure 5, we analyze the
selected knowledge blocks of all tasks after the online meta-learning process. Here, for each
knowledge block, we compute the selected ratio of every sub-dataset in Meta-dataset (see Appendix
B for results and analysis in Multi-filtered mini-Imagenet). For example, if the knowledge block
1 in layer 1 is selected 3 times by tasks from Aircraft and 2 times from Fungi. The corresponding
ratios of Aircraft and Fungi are 60% and 40%, respectively. From these figures, we see that some
knowledge blocks are dominated by different sub-datasets whereas others have shared across different
tasks. This indicates that OSML is capable of automatically detecting distinct tasks and their feature
representations, which also demonstrate the interpretability of OSML. We also observe that tasks
from fungi and flower are more likely to share blocks (e.g., block 7 in layer 1). The potential reason
is that tasks from fungi and flower sharing similar background and shapes, and therefore have higher
probability of sharing similar representations.
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(b) : Layer 2
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Figure 5: Selected ratio of knowledge blocks for each sub-dataset in Meta-dataset. Figure (a)-(d)
illustrate the knowledge blocks in layer 1-4.

Effect of Model Capacity. Though the model capacity of OSML is the same as all baselines
during task training time (i.e., a network with four convolutional blocks), OSML maintains a larger
network to select the most relevant meta-knowledge pathway. To further investigate the reason for
improvements, we increase the numbers blocks in NT, FT, and FTML to the number of blocks in the
meta-hierarchical graph after passing all tasks. We did not include DPM and HSML since they already
have more parameters than OSML. These baselines with larger representation capacity are named
as NT-Large, FT-Large, and FTML-Large. We compare and report the summary of performance
in Table 6 (see the results of Meta-dataset in Appendix C). First, we observe that increasing the
number of blocks in NT worsens the performance, suggesting the overfitting issue. In FT and
FTML, increasing the model capacity does not achieve significant improvements, indicating that
the improvements do not stem from larger model capacity. Thus, OSML is capable of detecting
heterogeneous knowledge by automatically selecting the most relevant knowledge blocks.

0 10 20 30 40 50 60
Task Number
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NT-Large FT-Large FTML-Large OSML

Models Blur Acc. Night Acc. Pencil Acc. Overall Acc. AR

NT 49.80 ± 3.91% 47.70 ± 2.91% 47.55 ± 5.18% 53.32 ± 2.30% -
NT-Large 43.05 ± 3.99% 41.30 ± 2.66% 43.25 ± 4.24% 42.53 ± 2.15% 3.92

FT 51.50 ± 4.90% 49.00 ± 3.82% 50.90 ± 5.30% 50.47 ± 2.73% -
FT-Large 54.60 ± 2.99% 50.35 ± 2.64% 52.45 ± 3.92% 52.46 ± 1.91% 2.82

FTML 58.90 ± 3.52% 56.40 ± 3.53% 54.60 ± 5.46% 56.63 ± 2.50% -
FTML-Large 57.55 ± 3.76% 56.70 ± 3.92% 56.30 ± 4.05% 56.85 ± 2.26% 2.13

OSML 64.10 ± 3.12% 65.25 ± 3.24% 60.35 ± 3.65% 63.23 ± 2.00% 1.13

Figure 6: Comparison between OSML with baselines with increased model capacity. We list orignial
NT, FT, FTML are listed for comparison without providing AR.

Learning Efficiency Analysis. In heterogeneous datasets, the performances fluctuate across different
tasks due to the non-overlapped classes. Similar to [10], the learning efficiency is evaluated by the
number of samples in each task. We conduct the learning efficiency analysis by varying the training
samples and report the performance in Table 1. Here, two baselines (FTML and DPM) are selected
for comparison. In this table, we observe that OSML is able to consistently improve the performance
under different settings. The potential reason is that selecting meaningful meta-knowledge pathway
captures the heterogeneous task information and further improve the learning efficiency. For the
homogeneous data, we analyze the amount of data needed to learn each task in Appendix D and the
results indicate that the ability of OSML to efficiently learn new tasks.
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Table 1: Performance w.r.t. the number of samples per task on Meta-dataset.

# of Samples Models Aircraft Acc. Flower Acc. Fungi Acc. Overall Acc.

200
FTML 55.92 ± 3.13% 54.65 ± 4.52% 45.69 ± 2.97% 52.08 ± 2.51%
DPM 57.15 ± 3.29% 53.34 ± 5.38% 44.33 ± 2.77% 51.60 ± 2.79%
OSML 60.18 ± 2.89% 58.28 ± 4.80% 48.25 ± 3.02% 55.57 ± 2.59%

300
FTML 62.88 ± 3.10% 58.37 ± 5.02% 47.96 ± 2.49% 56.40 ± 2.59%
DPM 64.43 ± 3.26% 59.72 ± 5.37% 48.10 ± 2.60% 57.42 ± 2.83%
OSML 66.57 ± 3.27% 65.07 ± 4.38% 53.72 ± 2.81% 61.78 ± 2.63%

400
FTML 65.85 ± 3.85% 59.05 ± 4.83% 48.00 ± 2.78% 57.63 ± 2.93%
DPM 66.67 ± 4.07% 63.40 ± 4.89% 50.15 ± 3.53% 60.07 ± 3.02%
OSML 67.99 ± 3.52% 68.55 ± 4.59% 58.45 ± 2.89% 65.00 ± 2.46%

5 Discussion with Related Work

In meta-learning, the ultimate goal is to enhance the learning ability by utilizing and transferring
learned knowledge from related tasks. In the traditional meta-learning setting, all tasks are generated
from a stationary distribution. Under this setting, there are two representative lines of meta-learning
algorithm, including optimization-based meta-learning [7–9, 13, 11, 17, 19, 26, 28, 31] and non-
parametric meta-learning [12, 22, 24, 34, 35, 38, 43]. In this work, we focus on the optimization-based
meta-learning. Recently, a few studies consider non-stationary distribution during the meta-testing
phase [2, 25], while the learned meta-learner is still fixed after the meta-training phase. Finn et al. [10]
further handles the non-stationary distribution by continuously updating the learned prior. Unlike
this study that using the shared meta-learner, we investigate tasks are sampled from heterogeneous
distribution, where the meta-learner are expected to be capable of non-uniform transferring.

To handle the heterogeneous task distribution, under stationary setting, a few studies modulate
the meta-learner to different tasks [3, 27, 39, 41, 42]. However, the performance of modulating
mechanism depends on the reliability of task representation network, which requires a number of
training tasks and is impractical in online meta-learning setting. Jerfel et al. [15] further bridge
optimization-based meta-learning and hierarchical Bayesian and propose Dirichlet process mixture
of hierarchical Bayesian model to capture non-stationary heterogeneous task distribution. Unlike
this work, we encourage layer-wise knowledge block exploitation and exploration rather than create
a totally new meta-learner for the incoming task with dissimilar information, which increases the
flexibility of knowledge sharing and transferring.

The online meta-learning setting is further related to the continual learning setting. In continual
learning, various studies focus on addressing catastrophic forgetting by regularizing the parameter
changing [1, 4, 16, 32, 44], by expanding the network structure [6, 18, 20, 30], by maintaining a
episodic memory [5, 23, 29, 33]. Li et al. [20] has also considered settings that expanding the network
in a block-wise manner, but have not focused on forward transfer and not explicitly utilized the
task-specific adaptation. In addition, all continual learning studies limit on a few or dozens task,
where the online meta-learning algorithms enable agents to learn and transfer knowledge sequentially
from several tens or hundreds of related tasks.

6 Conclusion and Discussion

In this paper, we propose OSML – a novel framework to address online meta-learning under hetero-
geneous task distribution. Inspired by the knowledge organization in human brain, OSML maintains
a meta-hierarchical structure that consists of various knowledge blocks. For each task, it constructs a
meta-knowledge pathway by automatically select the most relevant knowledge blocks. The informa-
tion from the new task is further incorporated into the meta-hierarchy by meta-updating the selected
knowledge blocks. The comprehensive experiments demonstrate the effectiveness and interpretability
of the proposed OSML in both homogeneous and heterogeneous datasets. In the future, we plan
to investigate this problem from two aspects: (1) effectively and efficiently structuring the memory
buffer and storing the most representative samples for each task; (2) theoretically analyzing the
generalization ability of proposed OSML; (3) investigating the performance of OSML on more
real-world applications.
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Broader Impact

The rapid development of information technology has greatly increased the machine’s ability to
continuously and quickly adapt to the new environment. For example, in an autonomous driving
scenario, we need to continuously allow the machine to adapt to the new environment. Without such
ability, autonomous cars are difficult to be applied to real scenarios, and may also cause potential
safety hazards. In this paper, we mainly study the continuous adaptation of meta-learning to complex
heterogeneous tasks. Compared to homogeneous tasks, heterogeneous tasks are not only more
common in the real world, but also more challenging.

Investigating this problem benefits the improvement of learning ability under the online meta-learning
setting, which further greatly benefits a large number of applications. Especially, the meta-hierarchical
tree we designed can capture the structural association between different tasks. For example, in the
disease risk prediction problem, we expect that the agent is capable of continuously adjusting the
model to adapt to different diseases. Considering the great correlation between diseases, our model
is able to automatically detect these correlations and incorporate the rich external knowledge (e.g.,
medical knowledge graph).
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