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Abstract

Differentiation lies at the core of many machine-learning algorithms, and is well-
supported by popular autodiff systems, such as TensorFlow and PyTorch. Orig-
inally, these systems have been developed to compute derivatives of differen-
tiable functions, but in practice, they are commonly applied to functions with
non-differentiabilities. For instance, neural networks using ReLU define non-
differentiable functions in general, but the gradients of losses involving those
functions are computed using autodiff systems in practice. This status quo raises a
natural question: are autodiff systems correct in any formal sense when they are
applied to such non-differentiable functions? In this paper, we provide a positive
answer to this question. Using counterexamples, we first point out flaws in often-
used informal arguments, such as: non-differentiabilities arising in deep learning
do not cause any issues because they form a measure-zero set. We then investigate
a class of functions, called PAP functions, that includes nearly all (possibly non-
differentiable) functions in deep learning nowadays. For these PAP functions, we
propose a new type of derivatives, called intensional derivatives, and prove that
these derivatives always exist and coincide with standard derivatives for almost
all inputs. We also show that these intensional derivatives are what most autodiff
systems compute or try to compute essentially. In this way, we formally establish
the correctness of autodiff systems applied to non-differentiable functions.

1 Introduction

Automatic differentiation or autodiff is one of the key technologies behind the dramatic progress of
deep learning in recent years [4, 26, 38, 39]. It refers to the idea of developing and using a generic tool
that can differentiate any function expressed as a program in a general-purpose programming language
[20, 34]. Effective autodiff systems have been developed for popular programming languages
[2, 3, 5, 9, 22, 28, 33, 35, 42, 44, 45]. They have enabled the development of sophisticated models
and algorithms in machine learning that, in particular, involve deep neural networks [19].

This paper is concerned with one seeming contradiction of these autodiff systems: the systems have
originally been developed to compute derivatives of differentiable functions, but in practice, they
are commonly applied to functions with non-differentiabilities. For instance, neural networks using
ReLU define non-differentiable functions in general, but the derivatives of losses involving those
functions are computed using autodiff systems in practice. This status quo raises a natural question:
are autodiff systems correct in any formal sense when applied to such non-differentiable functions?

A common reaction to the question is: non-differentiabilities arising in deep learning (e.g., from
ReLU) do not cause any issues because they occur rarely (i.e., they form a Lebesgue-measure-zero
set). In the paper, we first show that this reaction needs to be carefully re-examined at least. Using
counterexamples, we point out flaws in three often-used arguments derived from this reaction. We
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then present our answer. It is also positive, but based on a class of functions that satisfy a condition
called piecewise analyticity under analytic partition (in short, PAP). These PAP functions include
nearly all (possibly non-differentiable) functions in deep learning nowadays. For these PAP functions,
we propose a new type of derivatives, called intensional derivatives, and prove that these derivatives
always exist and coincide with standard derivatives for almost all inputs. These intensional derivatives
behave almost as well as, and sometimes even better than, usual derivatives for differentiable functions.
For instance, they always satisfy a chain rule even if functions are non-differentiable. Using these
properties of intensional derivatives, we show that the intensional derivatives are what most autodiff
systems compute or try to compute essentially. In this way, we formally establish the correctness of
autodiff systems that compute derivatives of non-differentiable functions.

We use (a, b), (a, b], [a, b), and [a, b] to denote intervals in R, and 〈a1, . . . , an〉 to denote tuples. For
n ∈ (Z>0 ∪ {∞}), [n] means the set {1, 2, . . . , n}. We call Lebesgue measure simply by measure.
The detailed statements and missing proofs of our results can be found in the appendix.

2 Challenges

As mentioned in the introduction, practitioners frequently apply autodiff systems to functions with
non-differentiabilities, and justify these out-of-scope use cases with plausible yet heuristic arguments.
In this section, we analyse these arguments. We go through three claims that are often used in the
arguments implicitly, and show that although looking innocent at the outset, the claims have serious
flaws; they are wrong, and we provide counterexamples.

Recall a notion of correctness for an autodiff system covering non-differentiable functions [6, 20, 24]:
Definition 1 (Correctness of Autodiff). We say that an autodiff system is correct if the following
condition holds: for every measurable function f : X → Rm defined on an open X ⊆ Rn and
implemented by a program, if f is differentiable almost everywhere (i.e., the set of inputs making
f non-differentiable is contained in a measure-zero set), then for almost every x ∈ X , the autodiff
system applied to (the program of) f and the input x computes the derivative of f at x.

The definition permits a non-differentiable function as an input to an autodiff system, as long as its
non-differentiability occurs rarely (i.e., at a measure-zero subset of the input domain). For such a
function, it may be impossible to compute the correct derivative for all inputs, simply because the
derivative does not exist for inputs where the function is non-differentiable. Thus, the definition just
requires that the system should compute the correct derivative for most inputs instead (i.e., for a
subset of the input domain whose complement inside the domain is contained in a measure-zero set).

Proving the correctness of an autodiff system is surprisingly difficult. Nearly every autodiff system is
based on a chain rule for computing the derivative of function composition, but when the component
functions are non-differentiable, designing a correct version of the rule is challenging. To help the
reader see this challenge, we analyse three plausible yet flawed claims about the derivative of function
composition, which are sometimes used implicitly in heuristic justifications of autodiff systems.

Let f : X → Y and g : Y → Rl be measurable functions defined over open sets X ⊆ Rn and
Y ⊆ Rm. Here is the first claim:

Claim 1 If f and g are differentiable almost everywhere and continuous, then g ◦ f should be
differentiable almost everywhere.

A rationale for the claim goes as follows. In order for g ◦ f to be non-differentiable at x0, the function
f has to be non-differentiable at x0, or it should map x0 to a non-differentiable input to g and be
able to vary enough in a neighbourhood of x0. The claim says that such an x0 is rare (from the
perspective of measure). Of course, the first case that f is non-differentiable at x0 occurs rarely by
assumption. The second case seems to happen rarely as well, because the non-differentiable inputs to
g are rare and f is continuous: because of continuity, if f maps many x0’s (i.e., all the x0 in some
non-measure-zero set) to those rare non-differentiable inputs of g, it should behave as a constant
function in the neighbourhoods of most of those x0’s.

The rationale has a flaw, and the claim is false. The inputs x0 falling into the second case are not
necessarily rare. Although f is continuous, it is possible that f maps many x0’s to some of those rare
non-differentiable inputs of g without acting as a constant function in a neighbourhood of each of
those x0’s. The precise result is summarised in the following proposition:
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Figure 1: The graphs of φ1, f , and g that are described in the proof of Proposition 1.

Proposition 1. There exist functions f : (0, 1)→ (0, 1) and g : (0, 1)→ [0, 1] such that f and g are
differentiable almost everywhere and continuous, but g◦f fails to be almost-everywhere differentiable.

Proof. Before our proof, we review a generalised version of the Cantor set and Cantor function [11,
14] defined over the open interval (0, 1): the λ-Cantor set Cλ and the λ-Cantor function φλ for
λ ∈ (0, 1], which reduce to the original Cantor set and function when λ = 1. The Cλ and φλ will
serve as building blocks of counterexamples presented in this paper. The set Cλ ⊂ (0, 1) consists of
all the real numbers not removed during the following procedure: at step k = 0, start with a closed
interval [0, 1] ⊂ R; at each step k > 0, remove every open interval of length λ/3k which locates
exactly at the middle of each remaining closed interval; and after all these steps, remove 0 and 1.
Note that what remains after the step k are 2k closed intervals. The function φλ : (0, 1)→ (0, 1) is
defined as follows, based on the construction of Cλ. At each step k > 0, define φλ over the i-th open
interval to be removed as φλ(x) = (2i− 1)/2k (i ∈ [2k−1]). After all these steps, φλ is defined over
some dense open subset S of [0, 1] (in fact, S = (0, 1) \ C1). Since φλ : S → [0, 1] is uniformly
continuous with S being dense in [0, 1], it has the unique continuous extension φλ : [0, 1]→ [0, 1]
[37, Exercise 4.13]. The λ-Cantor function refers to its restricted version φλ : (0, 1)→ (0, 1).

Returning to the proof, let f be the inverse of the homeomorphism F : (0, 1)→ (0, 1) defined by
F (x) = 1

2 (φ1(x) + x) [8, Example 2.3.1]. It is known that f(C1/2) =C1 [8, Example 2.3.2].
Construct g : (0, 1) → [0, 1] based on the construction of C1 as follows, similarly to [18, Ex-
ample 8.18]: at each step k > 0, define g over the i-th open interval (li, ri) to be removed, as
g(y) = 2−k · [1− (y− (ri + li)/2)2/((ri − li)/2)2] (i ∈ [2k−1]); and define g over C1 as g(y) = 0.
See Figure 1 for the graphs of φ1, f , and g constructed so far. Clearly, f is continuous. Also, g is
continuous, since the height of the parabolas defined at the k-th step of g’s construction converges to
0 as k →∞, and g(C1) = {0} (see Appendix A for the details). Hence, g ◦ f is continuous. Note
that f is even Lipschitz continuous. To prove this, observe that f can be constructed similarly to
φ1/2, and repeat the proof of the Lipschitz continuity of φ1/2 [14].

We now show that f and g are differentiable almost everywhere, but g ◦ f is not. First, since f is
Lipschitz continuous, it is differentiable almost everywhere by Rademacher’s theorem [41, Theorem
2.2.4]. Next, since g is differentiable on (0, 1) \ C1 by its construction, it is differentiable almost
everywhere (as C1 has measure 0). Lastly, g ◦ f is non-differentiable on C1/2, which has measure
1/2, due to that: the parabolas defined at the k-th step of g’s construction get sharper as k → ∞;
g(C1) = {0}; and f is a homeomorphism with f(C1/2) = C1 (see Appendix A for the details).

The second claim is about a chain rule.

Claim 2 If f , g, and g ◦ f are differentiable almost everywhere and continuous, then the standard
chain rule for g ◦ f should hold almost everywhere. In particular, if f, g : (0, 1)→ (0, 1),
then (g ◦ f)′(x0) = g′(f(x0)) · f ′(x0) for almost all x0 ∈ (0, 1).

Note that all of f , g, and g ◦ f in the claim are assumed to be differentiable almost everywhere. The
claim comes from heuristic reasoning that if we just avoid those rare non-differentiable inputs of
g ◦ f , we should be able to use the standard result for differentiation, including the chain rule.

The second claim is also wrong. The flaw in the heuristic reasoning from above is that the almost-
everywhere differentiability of f , g, and g ◦ f does not stop g′(f(x0)) from being undefined for many
x0’s in (0, 1). This is related to the flaw in the justification for the first claim that we explained. The
next proposition and its proof provide a concrete example for this phenomenon:

Proposition 2. There exist functions f, g : (0, 1)→ (0, 1) such that f , g, and g ◦ f are differentiable
almost everywhere and continuous, but it is not that g′(f(x)) is defined for almost all x ∈ (0, 1).
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Proof. Let f(x) = 1/2 and g(y) = ReLU(y− 1/2) + 1/2. Then, (g ◦ f)(x) = 1/2. Certainly, f , g,
and g ◦ f are differentiable almost everywhere and Lipschitz continuous. But, g is not differentiable
at f(x) = 1/2 for all x ∈ (0, 1). So, it is not that g′(f(x)) is defined for almost all x ∈ (0, 1).

The third claim is a natural reaction to the failure of the second claim. It implements the strategy
of making the chain rule in the second claim more permissive such that the counter argument of
Proposition 2 no longer applies. The claim expresses a weaker version of the rule that allows one to
set the derivatives of f and g to arbitrary values wherever f and g are not differentiable.

Claim 3 Let f, g : (0, 1) → (0, 1). If f , g, and g ◦ f are differentiable almost everywhere and
continuous, then there should exist df , dg : (0, 1) → R such that df (x0) = f ′(x0),
dg(y0) = g′(y0), and (g ◦ f)′(x0) = dg(f(x0)) · df (x0) for almost all x0, y0 ∈ (0, 1).

The functions df and dg in the claim are the extensions of f ′ and g′ that set df (x) and dg(y) to
arbitrary values whenever f ′(x) and g′(y) are undefined. The chain rule in the claim is phrased
in terms of these extensions df and dg , so that it does not suffer from the problem pointed out in
Proposition 2. However, this new rule is still flawed as shown in the next proposition:

Proposition 3. There exist functions f, g : (0, 1)→ (0, 1) such that f , g, and g ◦ f are differentiable
almost everywhere and continuous, but for some measurable subsetA ⊆ (0, 1) with non-zero measure,
they satisfy the following property: f ′(x) = 0 and (g ◦ f)′(x) 6= 0 for all x ∈ A.

Proof. Consider the function f in the proof of Proposition 1. Let g be the 1-Cantor function φ1. Then,
g ◦ f is the (1/2)-Cantor function φ1/2. We already showed f is differentiable almost everywhere
and even Lipschitz continuous. Since g and g ◦ f are monotone on (0, 1), they are differentiable
almost everywhere by the monotone differentiation theorem [41, Theorem 1.6.25]; and they are
clearly continuous. We now show there exists A ⊆ C1/2 with the desired properties. Since C1/2 has
measure 1/2, it suffices to prove f ′(x) = 0 and (g ◦ f)′(x) = 2 for almost all x ∈ C1/2. The claim
indeed holds due to the following: f and g ◦ f are Lipschitz, so absolutely continuous; f ′(x) = 2 and
(g ◦ f)′(x) = 0 for all x /∈ C1/2; f ′(x) ≥ 0 and (g ◦ f)′(x) ≤ 2 for all x ∈ C1/2 whenever these
derivatives exist; and C1/2 has measure 1/2. For the details, see [8, Example 2.3.2] and [14].

The proposition implies the third claim is doomed. The claim says that df (x0) = f ′(x0) and (g ◦
f)′(x0) = dg(f(x0)) · df (x0) for almost all x0 ∈ A. But both equalities cannot hold simultaneously:
if they do, by Proposition 3, (g ◦ f)′(x0) = dg(f(x0)) · df (x0) = dg(f(x0)) · f ′(x0) = dg(f(x0)) ·
0 = 0, but the same proposition also entails (g ◦ f)′(x0) 6= 0, leading to a contradiction.

A lesson from these flawed claims is that although the notion of correctness in Definition 1 only refers
to almost-everywhere differentiability, we need a condition stronger than it, which behaves better in
handling function composition and gives rise to a chain rule. We describe such a condition next.

3 PAP Function and Intensional Derivative

Our justification of autodiff systems relies on two key concepts: piecewise analyticity under analytic
partition, and intensional derivative. The first is a (strictly) stronger property about functions than
almost-everywhere differentiability, and yet it is satisfied by practically all programs targeted at
by existing autodiff systems, as we will show in §4. Functions with this new property, called PAP
functions, have an unusual type of derivatives, called intensional derivatives, which form the second
concept. Intensional derivatives of PAP functions are defined everywhere and satisfy a chain rule,
while still agreeing with standard derivatives for almost all inputs. In fact, the PAP functions have not
just first-order but also all higher-order intensional derivatives. In §4, we will show that most autodiff
systems compute intensional derivatives when applied to functions with non-differentiabilities.

To expand the overview of the two concepts just given, we need a notion of piecewise representation:

Definition 2 (Piecewise Representation). Let X ⊆ Rn and Y ⊆ Rm. A set of pairs γ =
{〈Ai, f i〉}i∈[I] is a piecewise representation of a function from X to Y or simply representa-
tion if and only if (i) I ∈ Z>0 ∪ {∞}; (ii) {Ai}i∈[I] is a partition of X ; and (iii) each f i : X i → Y
is a function on an open domain X i ⊆ Rn with Ai ⊆ X i. The evaluation of a representation
γ = {〈Ai, f i〉}i∈[I] is the map 〈〈γ〉〉 : X → Y defined by: 〈〈γ〉〉(x) = f i(x) for all i ∈ [I] and x ∈ Ai.
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A representation γ = {〈Ai, f i〉}i∈[I] describes a function f in terms of a finite or countable number
of component functions f i and their scopes Ai of application. For each input x, the value of f at x is
determined by some component f i, chosen based on which piece of the input partition {Ai}i∈[I], the
x belongs to. Our notation for the described f is 〈〈γ〉〉. Note that the domain X i of each f i has to be
open, and it may be larger than Ai, the set of inputs where f i is used. As a result, a function can be
described by an infinite number of representations. For instance, ReLU has at least two representations:
{〈R<0, x 7−→ 0〉, 〈R≥0, x 7−→ x〉} and {〈R<0, x 7−→ 0〉, 〈{0}, x 7−→ 2x〉, 〈R>0, x 7−→ x〉}.
Having a piecewise representation of a function, instead of just the function, has several advantages.
One of them is that for many properties of functions, we can derive their piecewise variants using
those representations. We apply this advantage to analyticity. Recall that a real-valued function is
analytic if and only if it is infinitely differentiable and is equal to its Taylor expansion. For Rm-valued
function g, the analyticity means the coordinate-wise analyticity: for all j ∈ [m], the composition
πj ◦ g of the j-th projection πj and g is analytic. Analytic functions are favoured by autodiff systems,
because they are infinitely differentiable and become zero only at a measure-zero set of inputs (unless
they are zero everywhere or their domains are disconnected). Let X ⊆ Rn and Y ⊆ Rm be any sets.
Definition 3 (Analytic Partition). A set A ⊆ Rn is analytic if and only if for some J, L ∈ Z>0, there
are analytic functions g+j : X+

j → R and g−l : X−l → R over open domains X+
j ,X

−
l ⊆ Rn (j ∈ [J ],

l ∈ [L]) such that A = {x ∈ Rn | (
∧
j∈[J] x ∈ X

+
j ∧ g

+
j (x) > 0)∧ (

∧
l∈[L] x ∈ X

−
l ∧ g

−
l (x) ≤ 0)}.

A partition {Ai}i∈[I] of X is analytic if and only if all Ai are analytic.

Definition 4 (PAP Representation). A representation γ = {〈Ai, f i〉}i∈[I] from X to Y is piecewise
analytic under analytic partition (in short, PAP) if and only if {Ai}i∈[I] is an analytic partition of
X and f i is analytic over its domain X i for all i ∈ [I].
Definition 5 (PAP Function). A function f : X → Y is piecewise analytic under analytic partition
(in short, PAP) if f = 〈〈γ〉〉 for some PAP representation γ.

The definitions identify PAP representations and PAP functions as those built by the two-step process:
we first split the input domain such that boundaries of the split regions are expressed by the zero sets
of analytic functions, and next choose an appropriate analytic function for each piece of the split. Note
the use of analytic functions in both steps. Thus, just like the standard analyticity, the PAP property
implies almost-everywhere differentiability (Proposition 4), but not vice versa (Proposition 5).
Proposition 4 ([47]). All PAP functions are differentiable almost everywhere.
Proof. The proof extends the one for a similar result in [47]. The key idea is to use the fact that the
zero set of a non-constant analytic function over a connected open domain has measure zero [32]. To
prove the proposition, we show that for each PAP function f , there exist countably many non-constant
analytic functions {gj}j over connected open domains such that if f is non-differentiable at x ∈ X ,
then x belongs to the zero set of some gj . For the details, see Appendix B.3.
Proposition 5. There is a continuous almost-everywhere differentiable yet non-PAP function.
Proof. We have two sufficient conditions for a function f to be non-PAP: (i) the k-th order derivative
of f is undefined on a set of positive measure for some k ≥ 1 (Proposition 8); and (ii) the k-th order
derivative of f is undefined on an uncountable set for some k ≥ 1, and f is defined on a subset of
R (Appendix B.5). The following functions satisfy (i) with k = 2: the λ-Cantor function for all
λ ∈ (0, 1), f in the proof of Proposition 1, and Volterra’s function V : (0, 1) → R [18, Example
8.35]. The following functions satisfy (ii) with k = 1: the 1-Cantor function and g in the proof
of Proposition 1. All these functions are known (or already proven above) to be continuous and
almost-everywhere differentiable. Hence, all of them are desired functions.

We now define intensional derivatives of PAP representations and PAP functions. Let γ =
{〈Ai, f i〉}i∈[I] be a PAP representation from X to Y for some X ⊆ Rn and Y ⊆ Rm.
Definition 6 (Intensional Derivative of PAP Representation). An intensional derivative of γ is the
set Dγ = {〈Ai, Df i〉}i∈[I], where Df i is the standard derivative of f i viewed as a function from
the domain X i of f i to Rm×n.
Proposition 6. The intensional derivative Dγ is a PAP representation from X to Rm×n.
Proof. Nearly all the requirements for Dγ to be a PAP representation directly follow from the fact
that γ is PAP. The only exception is the analyticity of Df i. There we use the fact that the operation of
taking a (standard) partial derivative of a function preserves analyticity [25, Proposition 2.2.3].
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Definition 7 (First-Order Intensional Derivative). Let f : X → Y be a PAP function. Define ∂•f to
be the following set of functions: ∂•f = {〈〈Dγ〉〉 | γ is a PAP representation of f}. Each df ∈ ∂•f
is called a (first-order) intensional derivative of f .

By Proposition 6, only PAP functions live in ∂•f . Thus, we can also take intensional derivatives of
functions in ∂•f . We push this observation further and define higher-order intensional derivatives:
Definition 8 (Higher-Order Intensional Derivative). Let f : X → Y be a PAP function. For each
k ∈ Z≥0, inductively define the set ∂k•f of functions by: ∂0•f = {f}, and ∂k•f = {df k ∈ ∂•(df k−1) |
df k−1 ∈ ∂k−1• f} for k ≥ 1. Each df k ∈ ∂k•f is called a k-th order intensional derivative of f .

A function f : X → Y may have zero, one, or more than one intensional derivatives. Having at
least one intensional derivative corresponds to f being differentiable in the standard sense. The next
propositions show that every PAP function is infinitely differentiable in the new sense (Proposition 7),
and that these standard and new notions of differentiability coincide if we ignore a measure-zero set
of inputs (Proposition 8). Let f : X → Y be a PAP function for some X ⊆ Rn and Y ⊆ Rm.
Proposition 7. For all k ∈ Z≥0, the set ∂k•f of the k-th order intensional derivatives is not empty.
Furthermore, its elements are again PAP functions from X to Rm×nk

.
Proof. The proof is by induction on k. First, for the case k = 0, ∂k•f is a singleton set and its
unique element f is PAP. Hence, the proposition holds. Next, consider the case k > 0. By induction
hypothesis, ∂k−1• f is not empty and consists of PAP functions only. Thus, the set {γ | γ is a PAP
representation of g for some g ∈ ∂k−1• f} is not empty. This and Proposition 6 imply that ∂k•f
(obtained by applying 〈〈D−〉〉 on the above set) is nonempty and contains only PAP functions.
Proposition 8. For all k ∈ Z≥0, f has the k-th order standard derivative almost everywhere, and
this derivative agrees with any k-th order intensional derivative df k ∈ ∂k•f almost everywhere.

In the proposition, we view the k-th order standard derivative of f as a function of type X → Rm×nk

.
For instance, when k = 1, the derivative maps an input to the Jacobian matrix of f .
Proof of Proposition 8. The first claim is proven similarly to Proposition 4, except that we additionally
use the following: an analytic function is infinitely differentiable. As in Proposition 4, we prove a
stronger statement: there exist countably many non-constant analytic functions {gj}j over connected
open domains such that for all k, if the k-th order standard derivative of f is not defined at x ∈ X ,
then x is in the zero set of some gj . Next, consider the second claim. Its current form is not strong
enough to enable inductive proofs. We instead prove a stronger statement by induction on k: for each
df k ∈ ∂k•f , there exist countably many non-constant analytic functions {hl}l over connected open
domains such that the k-th order standard derivative of f is well-defined, and agrees with df k, at all
those inputs not in the zero sets of {hl}l. For the details, see Appendices B.3 and B.4.

Intensional derivatives behave better than standard derivatives. First, the intensional derivatives of
a PAP function f are total functions, i.e., functions defined for all inputs (Proposition 7). Contrast
this with the fact that the standard derivative of f is a partial function in general. The intensional
derivatives can be understood as extensions of this standard derivative of f to those problematic
inputs that make f non-differentiable (Proposition 8). The totality simplifies the reasoning about
intensional derivatives. Second, the intensional derivatives satisfy a chain rule for all PAP functions
(Proposition 10). Let f : X → Y and g : Y → Rl be PAP functions for some X ⊆ Rn and Y ⊆ Rm.
Proposition 9. g ◦ f is a PAP function.
Proof. Since f and g are PAP, they have PAP representations γf = {〈Ai, f i〉}i∈[I] and γg =

{〈Bj , gj〉}j∈[J]. Define their composition as follows: γg ◦γf = {〈C〈i,j〉, gj ◦f i〉}〈i,j〉∈[I]×[J] where
C〈i,j〉 = {x ∈ X | x ∈ Ai ∧ f i(x) ∈ Bj}. Then, γg ◦ γf is a representation of g ◦ f . Also, it is PAP
as the composition of analytic functions is analytic [25, Proposition 2.2.8]. Thus, g ◦ f is PAP.
Proposition 10 (Chain Rule for Intensional Derivatives). Let df : X → Rm×n and dg : Y → Rl×m
be intensional derivatives of f and g (i.e., df ∈ ∂•f and dg ∈ ∂•g). Let h = g◦f . Then, the following
function dh : X → Rl×n is an intensional derivative of h (i.e., dh ∈ ∂•h): dh(x) = dg(f(x)) ·df (x)
for all x ∈ X , where dg(f(x)) · df (x) is the multiplication of matrices dg(f(x)) and df (x).
Proof. By the definition of intensional derivative, df = 〈〈Dγf 〉〉 and dg = 〈〈Dγg〉〉 for some PAP
representations γf = {〈Ai, f i〉}i∈[I] and γg = {〈Bj , gj〉}j∈[J] of f and g. Let γg ◦ γf be the
composed representation defined in the proof of Proposition 9. Then, γg ◦ γf is a PAP representation
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of g ◦ f . So, 〈〈D(γg ◦ γf )〉〉 is an intensional derivative of g ◦ f . Also, for all x ∈ X , if we
let 〈i, j〉 ∈ [I] × [J ] with x ∈ Ai and f i(x) ∈ Bj , then 〈〈D(γg ◦ γf )〉〉(x) = D(gj ◦ f i)(x) =
D(gj)(f i(x)) ·D(f i)(x) = 〈〈Dγg〉〉(f(x)) · 〈〈Dγf 〉〉(x). The first and last equalities follow from the
definition of intensional derivative. The second equality uses the chain rule for standard derivatives:
the rule holds here because f i and gj are analytic in neighbourhoods of x and f i(x), respectively.

We next use these properties to show that existing autodiff systems compute intensional derivatives.

4 Correctness of Autodiff Systems

Consider a simple programming language that assumes real-valued input variables x1, . . . , xN and
has the following syntax for programs: e ::= c | xi | f(e1, . . . , en) | if (e1 > 0) e2 e3.

A program e in the language describes a real-valued computation. It is a real number c, an input
variable xi, the application of a primitive function f to arguments e1, . . . , en, or a conditional
expression. In the third case, the applied function is required to be a PAP function of the right type
(i.e., Rn → R in this case). We remark that practically all primitive functions supported by autodiff
systems are indeed PAP; we are unaware of any non-PAP primitive function used in practice. If
this requirement is met, all programs e mean PAP functions of type RN → R. More precisely, we
interpret each program e as a function JeK : RN → R inductively, as shown below: for all v ∈ RN ,

JcKv = c, JxiKv = vi, Jf(e1, . . . , en)Kv = f(Je1Kv, . . . , JenKv),

Jif (e1 > 0) e2 e3Kv = if (Je1Kv > 0) then Je2Kv else Je3Kv.
where vi is the i-th component of the vector v, and f : Rn → R is the PAP function denoted by the
function symbol f in the language. Then, the defined JeK is always PAP.
Proposition 11. For every program e, its denotation JeK is a PAP function from RN to R.

We show that if an autodiff system for the language satisfies two requirements to be described shortly,
it essentially computes an intensional derivative, even when the input function is not differentiable.
The first requirement is that for every primitive operation f of type Rn → R, the system should
come with a function D̃f : Rn → R1×n that satisfies D̃f ∈ ∂•f and serves as a “derivative” of
f. To describe the second requirement, we inductively define the function JeK∇ : RN → R1×N ,
formalising symbolic differentiation of a program e, as follows: for all v ∈ Rn,

JcK∇v = ~01×N , Jf(e1, . . . , en)K∇v = (D̃f)(Je1Kv, . . . , JenKv) · [Je1K∇v; . . . ; JenK∇v],

JxiK∇v= [~0(i−1)×1;~11×1;~0(N−i)×1]>, Jif (e1>0) e2 e3K∇v= if (Je1Kv>0) then Je2K∇v else Je3K∇v.
Here ~ci×j denotes the i × j matrix containing only the constant c, and the RHS of the second
equation means the multiplication of the 1×n matrix (D̃f)(Je1Kv, . . . , JenKv) and the n×N matrix
[Je1K∇v; . . . ; JenK∇v] that is constructed by concatenating n matrices Je1K∇v, . . . , JenK∇v of size
1×N . The definition of JeK∇v computes a “Jacobian” matrix of JeK (which is a 1×N matrix in this
case) in the usual way of symbolic differentiation: run the program e under the input v, and calculate
the “Jacobian” matrix of the encountered operations using the chain rule with the “derivatives” D̃f
of those operations f [1, 4, 23, 46]. Our second requirement is that given a program e and an input
v ∈ RN , if the system performs forward-mode (or reverse-mode) autodiff with a tangent vector
w ∈ RN (or a cotangent vector u ∈ R), it should output the Jacobian-vector product (JeK∇v) ·w ∈ R
(or the vector-Jacobian product u>· (JeK∇v) ∈ RN ) [20, 27, 31]. Intuitively, the second requirement
says that the output of an autodiff system should coincide with that of symbolic differentiation. Note
that the requirement does not fix the choice of an autodiff algorithm, and has two separate conditions
for forward-mode and reverse-mode algorithms. Our next results show that these requirements ensure
the correctness of an autodiff system.
Theorem 12. If D̃f ∈ ∂•f for all primitive functions f, then JeK∇ ∈ ∂•JeK for all programs e.
Corollary 13. Assume that an autodiff system for the language in this section satisfies the two
requirements. Then, for each program e, there exists an intensional derivative df of JeK such that
if the system performs forward-mode (or reverse-mode) autodiff with a tangent vector w ∈ RN
(or a cotangent vector u ∈ R), it computes the Jacobian-vector product df (v) · w ∈ R (or the
vector-Jacobian product u>· df (v) ∈ RN ) for every input v ∈ RN . Furthermore, the computed
entity is the corresponding Jacobian-vector product (or vector-Jacobian product) with the standard
derivative of JeK for almost all inputs v ∈ RN .
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Remark 1 (Intensional Derivatives in Practice). We briefly discuss whether the first requirement
mentioned earlier is indeed met by autodiff systems. TensorFlow [2] and PyTorch [33], two popular
autodiff systems, support a wide range of primitive functions that are not differentiable for some
inputs. A well-known example is relu : R→ R (i.e., the map x 7−→ max(0, x)). This function is
not differentiable at 0, but when these autodiff systems are applied to differentiate relu at 0, they
return 0 instead of an error (i.e., (D̃relu)(0) = 0). It means that the systems compute the intensional
derivative 〈〈Dγ〉〉 of relu for γ = {〈R>0, x 7−→ x〉, 〈R≤0, x 7−→ 0〉}. Thus, they fulfil the first
requirement on relu. Note that setting the derivative at the input 0 to any c ∈ R is an acceptable
option; it can be justified by a different PAP representation γ′ of relu where γ′ = {〈R>0, x 7−→
x〉, 〈{0}, x 7−→ c ·x〉, 〈R<0, x 7−→ 0〉}. Another example is reciprocal_no_nan from TensorFlow.
It means the map f(x) = 1/x if x 6= 0, and 0 if x = 0. Differentiating this map by TensorFlow
gives the function (D̃f)(x) = −1/x2 if x 6= 0, and 0 if x = 0. The D̃f is an intensional derivative
of f , because γ = {〈R \ {0}, x 7−→ 1/x〉, 〈{0}, x 7−→ 0〉} is a PAP representation of f and 〈〈Dγ〉〉
coincides with D̃f . Hence, TensorFlow meets the first requirement on reciprocal_no_nan.

However, for some functions, TensorFlow and PyTorch behave more conservatively than our theory
of PAP functions permits. A good example is sqrt. The domain of sqrt is R≥0, but differentiating
sqrt at 0 using these autodiff systems returns +inf, which means∞ (i.e., (D̃sqrt)(0) =∞). Thus,
the first requirement on sqrt is violated by these systems. One consequence of this is that when the
systems are applied to differentiate sqrt(mult(x, 0)), they end up with computing 0*(+inf) that
evaluates to NaN (meaning an undefined number in floating point arithmetic) for all x ∈ R. Note that
sqrt(mult(x, 0)) is constantly zero and has zero as its derivative. This conservative behaviour could
have been avoided if TensorFlow and PyTorch had recognised that sqrt is a PAP function and had
used its intensional derivative instead. For instance, the function (dsqrt)(x) = 1/(2

√
x) if x > 0,

and 0 if x = 0, is an intensional derivative of sqrt, since γ = {〈R>0, x 7−→
√
x〉, 〈{0}, x 7−→ 0〉}

is a PAP representation of sqrt. If TensorFlow and PyTorch used dsqrt as a derivative of sqrt,
they would be able to differentiate sqrt(mult(x, 0)) correctly for all x ∈ R.

5 Related Work and Discussion

Autodiff has a long history with a large body of literature [4, 20, 34]. Its community has been
aware of some issues with non-differentiable functions [20, Chapter 14]. These issues have become
ever more important, as autodiff has been increasingly applied to a variety of non-differentiable
functions, including sophisticated linear algebra functions [24, 27, 40]. In this paper, we investigate
the issues in a more systematic and rigorous way, by presenting non-trivial concrete counterexamples
that illuminate subtleties of non-differentiable functions in autodiff, and also proposing intensional
derivatives, a new notion of derivatives, that enable us to formally prove the correctness of, and better
understand the behaviour of, autodiff systems applied to non-differentiable functions.

Clarke subdifferential [12, 13] and related notions have been favourite tools for studying the use of non-
differentiable functions in the context of autodiff and stochastic gradient descent [6, 15, 21, 24, 29].
Let f be an input program (or function) to be differentiated. Assume that f is locally Lipschitz
continuous but possibly non-differentiable at some inputs. Kakade and Lee [24] proposed a linear-
time algorithm that correctly computes a subdifferential of f at x almost surely, for all inputs x, when
f satisfies some qualification condition. Their work, however, could not provide the correctness of
the current autodiff systems, because those systems do not use their algorithm. Bolte and Pauwels
[6] presented a result closest to ours: standard autodiff algorithms correctly compute the standard
derivative of f at x always, for almost all inputs x, if f is definable [43]. To do so, they extended
Clarke subdifferential to define a new notion of derivatives, called conservative fields, and showed that
autodiff algorithms compute conservative fields and the fields coincide with the standard derivatives
almost everywhere. We point out three key differences between these works and ours. First, they use
highly advanced mathematical tools (e.g., variational analysis [36]). Thanks to those powerful tools,
they could prove more results than ours, such as the almost-sure convergence of the stochastic gradient
descent with conservative fields [6], but they are less accessible than our work, which requires much
simpler mathematics (probably at an undergraduate level) but still gives the correctness proof of
autodiff systems. Second, subdifferentials and conservative fields are difficult to be generalised to
higher-order derivatives, because they are defined in terms of a single set-valued function. In contrast,
our intensional derivatives are defined in terms of a set of standard (i.e., singleton-valued) functions,
and thus have a natural generalisation to higher-order derivatives. Lastly, different function classes
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are considered: those works apply to locally Lipschitz continuous functions with additional properties
(e.g., definability), whereas ours applies to PAP functions. We point out that PAP functions include
many non-locally-Lipschitz functions, such as discontinuous x ∈ R 7−→ 1[x > 0] and continuous
x ∈ R 7−→

√
|x|; the opposite direction is also true (e.g., the λ-Cantor functions for λ ∈ (0, 1)).

The PAP property is similar to some other piecewise properties, such as piecewise smoothness [47]
which inspired PAP, and piecewise analyticity [20]. The PAP, however, differs from the others in a
few ways: unlike piecewise smoothness, it allows piecewise functions to be defined on open subsets
of Rn (not just on Rn), but restricts them to be analytic (rather than smooth); unlike piecewise
analyticity, it allows piecewise domains to be countably many (not just finitely many), but restricts
them to be analytic (rather than unrestricted). Unlike prior works, we also give an in-depth study
of the PAP property, such as its closedness under operations (e.g., composition) and its relationship
to other properties (e.g., almost-everywhere differentiability). The property of almost-everywhere
differentiability has been studied as well for programs and functions (that need not be related to
programs). E.g., it is shown to hold for all programs in some programming languages [20, 30], and
for all piecewise smooth functions [47]. We prove the property for all PAP functions and utilise it in
proving that higher-order intensional derivatives agree with standard derivatives almost everywhere.

Recently and concurrently with this work, Bolte and Pauwels [7] studied some concepts and results
similar to ours. They proposed a new class of functions and a new notion of derivatives, called
elementary selections and selection derivatives, which roughly correspond to our PAP functions and
intensional derivatives; and proved properties of those new functions and derivatives, which roughly
correspond to our Propositions 8 to 11 and Theorem 12. Although having some similarities, our work
and their work have three key differences, complementing each other. First, their work is applicable
to a strictly smaller class of functions than ours, as any elementary selection is PAP (and locally
Lipschitz) but not vice versa. Second, it considers selection derivatives of first order only, whereas
our work considers intensional derivatives of higher orders as well. Third, their work provides some
results not in our work (e.g., convergence of stochastic gradient descent with selection derivatives),
and vice versa (e.g., the results in §2).

We conclude the section by discussing a few remarks on a notion of correctness for autodiff systems.
First, there can be multiple different correctness conditions of autodiff systems and we do not claim
that our correctness condition (Definition 1 or Corollary 13) is “the” gold standard. Rather we are just
suggesting “a” correctness condition that can serve as a reasonable (possibly minimal) requirement
for existing and future autodiff systems. Second, as important as the correctness of autodiff systems
is the correctness of the applications built upon autodiff systems (e.g., gradient descent, variational
inference, and Hamiltonian Monte Carlo), but the latter might not necessarily follow from the former.
For example, consider an autodiff system that is correct in the sense of Corollary 13 (i.e., computes
an intensional derivative), and a gradient descent algorithm that follows the “derivative”, computed
by the system, of an objective function f : R → R to minimise f . Suppose that f is given by
f(x) = x2 if x 6= 1, and 1 if x = 1; the autodiff system computes df (x) = 2x if x 6= 1, and 0
if x = 1, as the “derivative” of f ; and the gradient descent starts at x = 1.1 Then, the gradient
descent gets stuck at x = 1 forever since df (1) = 0, even though 1 is never a critical point of
f . This example illustrates that the correctness of autodiff systems does not necessarily imply the
correctness of gradient descents built upon those systems (where the latter correctness is given by
that gradient descents should converge to Clarke critical points).2 Nevertheless, the two notions of
correctness discussed so far, one for autodiff systems and the other for applications using autodiff
systems, address two separate issues and this paper is mainly about the former notion of correctness.

Broader Impact

This work focuses mainly on theoretical aspects of autodiff systems. In particular, we formally prove
that the systems, though developed to handle differentiable functions, remain correct even when
applied to non-differentiable functions. Our result justifies, at least in part, the current situation in
machine learning, in which the systems are frequently applied to non-differentiable functions without

1We thank an anonymous reviewer for coming up with this example.
2On the other hand, we conjecture that for any PAP and locally Lipschitz f : Rn → R, if a gradient descent

follows an intensional derivative of f and starts at randomly chosen initial points, then it would be correct almost
surely. A partial result confirming the conjecture was proven recently in [7], concurrently with this work.
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much consideration to their correctness under such out-of-scope use cases. Other than the justification,
this work does not present any other foreseeable societal consequence due to its theoretical nature.
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