Appendices

A Proof for Theorem 1

Before proceeding, let us define an additional term $\bar{S} = \sum_{k=1}^K |\mathcal{S}_{i_k}|$, which is the sum over equivalence classes of the number of internal states in a subMDP from each class. Intuitively, \bar{S} can be thought of as the number of distinct internal states. Note that trivially, we have $\bar{S} \leq KM$.

For any MDP $\tilde{\mathcal{M}}$ consistent with the prior \mathcal{P}^0 and any policy $\pi: \mathcal{S} \to \mathcal{A}$, we use $V^{\tilde{\mathcal{M}},\pi}$ to denote the expected total reward in $\tilde{\mathcal{M}}$ under policy π , with initial state s_0 . Then by definition, we have

BayesRegret(PSHRL,
$$T$$
) = $\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M},\pi^*} - V^{\mathcal{M},\pi^t}\right]$
= $\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M},\pi^*} - V^{\mathcal{M},\tilde{\pi}}\right] + \sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M},\tilde{\pi}} - V^{\mathcal{M},\pi^t}\right]$
= $\mathbb{E}\left[V^{\mathcal{M},\pi^*} - V^{\mathcal{M},\tilde{\pi}}\right]T + \sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M},\tilde{\pi}} - V^{\mathcal{M},\pi^t}\right],$ (5)

where the last equality follows from the fact that $V^{\mathcal{M},\pi^*}$ and $V^{\mathcal{M},\tilde{\pi}}$ do not depend on t. Let \mathcal{H}_t denote the "history" at the start of episode t, which includes all the observations by the start of episode t. Notice that conditioning on \mathcal{H}_t , \mathcal{M}_t and \mathcal{M} are i.i.d. Since by definition, $\tilde{\pi} = \text{plan}(\mathcal{M})$, $\pi^t = \text{plan}(\mathcal{M}^t)$, and plan is a deterministic mapping, thus, conditioning on \mathcal{H}_t , $(\mathcal{M},\tilde{\pi})$ and (\mathcal{M}^t,π^t) are also i.i.d. So we have $\mathbb{E}\left[V^{\mathcal{M},\tilde{\pi}}\big|\mathcal{H}_t\right] = \mathbb{E}\left[V^{\mathcal{M}^t,\pi^t}\Big|\mathcal{H}_t\right]$, which implies that

$$\mathbb{E}\left[V^{\mathcal{M},\tilde{\pi}}\right] = \mathbb{E}\left[\mathbb{E}\left[V^{\mathcal{M},\tilde{\pi}}\big|\mathcal{H}_{t}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[V^{\mathcal{M}^{t},\pi^{t}}\bigg|\mathcal{H}_{t}\right]\right] = \mathbb{E}\left[V^{\mathcal{M}^{t},\pi^{t}}\right].$$

Thus, we have

$$\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}} - V^{\mathcal{M}, \pi^t}\right] = \sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}^t, \pi^t} - V^{\mathcal{M}, \pi^t}\right].$$

For any policy π and any MDP $\tilde{\mathcal{M}}$, we use $\mathcal{T}^{\tilde{M},\pi}$ to denote the dynamic programming operator in $\tilde{\mathcal{M}}$ under π . In other words, the Bellman equation in any MDP $\tilde{\mathcal{M}}$ under any policy π is $V^{\tilde{\mathcal{M}},\pi} = \mathcal{T}^{\tilde{\mathcal{M}},\pi}V^{\tilde{\mathcal{M}},\pi}$. Then from Section 5.1 of Osband et al. [2013], we have

$$\mathbb{E}\left[V^{\mathcal{M}^t,\pi^t} - V^{\mathcal{M},\pi^t} \middle| \mathcal{M}^t, \mathcal{M}\right] = \mathbb{E}\left[\sum_{h=1}^{\tau_t-1} \left(\mathcal{T}^{\mathcal{M}^t,\pi^t} - \mathcal{T}^{\mathcal{M},\pi^t}\right) V^{\mathcal{M}^t,\pi_t}(s_{th}) \middle| \mathcal{M}, \mathcal{M}^t\right],$$

where s_{th} 's are generated under policy π^t in the real MDP \mathcal{M} . The above equation decomposes the per-episode regret into one-step Bellman errors.

We now construct a high-probability confidence set. For any two non-terminal states $s,s'\in\mathcal{S}$, we say s and s' are **equivalent states** if they are internal states in two equivalent subMDPs, and the bijection between these two subMDPs maps s to s'. Obviously, the notion of equivalent states is transitive. Let $\{\mathcal{X}_k\}_k$ be a partition of \mathcal{S} based on equivalent states. That is, each \mathcal{X}_k is an equivalent state class. By definition, we have $|\{\mathcal{X}_k\}_k| = \bar{S}$. For each episode t, let $N^t(k,a)$ denote the number of times action a has been chosen at a state in the **equivalent state class** k in the first t-1 episodes. We also use \hat{P}^t and \hat{r}^t to respectively denote the empirical transition model and the empirical average reward based on observations in the first t-1 episodes. Specifically,

- $\hat{P}^t(\cdot|s,a)$ and $\hat{r}^t(s,a)$ are estimated based on observations of choosing action a at state s or its equivalent states.
- If $N^t(s,a)=0$, $\hat{P}^t(\cdot|s,a)$ and $\hat{r}^t(s,a)$ are not well defined. In this case, we choose $\hat{r}^t(s,a)$ as an arbitrary number in [0,1] and $\hat{P}^t(\cdot|s,a)$ as an arbitrary distribution subject to the constraint that $\hat{P}^t(s'|s,a)>0$ only if s' and s are in the same subMDP.

Recall that the prior \mathcal{P}^0 , and hence all the posteriors \mathcal{P}^t , encodes the hierarchical information about equivalent subMDPs. Consequently, the PSHRL algorithm will only sample MDPs satisfying this equivalent subMDP restriction. Thus, we choose the confidence set at episode t as:

$$\mathbb{M}_{t} = \left\{ \tilde{\mathcal{M}} : \left\| \hat{P}^{t}(\cdot|s,a) - P_{k}^{\tilde{\mathcal{M}}}(\cdot|s,a) \right\|_{1} \leq \beta_{1} \left(N^{t}(k_{s},a), t \right) \, \forall s, a, \right. \\
\left| \hat{r}^{t}(s,a) - \bar{r}^{\tilde{\mathcal{M}}}(s,a) \right| \leq \beta_{2} \left(N^{t}(k_{s},a), t \right) \, \forall s, a, \\
\text{and } \tilde{\mathcal{M}} \text{ satisfies the equivalent subMDP restriction} \right\}, \tag{6}$$

where k_s is the equivalent state class that state s is in. Let $A = |\mathcal{A}|$, and recall that $M = \max_i |\mathcal{S}_i \cup \mathcal{E}_i|$, we have the following lemma:

Lemma 1 For any
$$\delta \in (0,1)$$
, if we choose β_1 and β_2 as $\beta_1(n,t) = \sqrt{\frac{14M \log\left(\frac{2AK\tau_{\max}t}{\delta}\right)}{\max\{1,n\}}}$ and $\beta_2(n,t) = \sqrt{\frac{7 \log\left(\frac{2MAK\tau_{\max}t}{\delta}\right)}{2 \max\{1,n\}}}$, then we have
$$P(\mathcal{M} \notin \mathbb{M}_t) = P(\mathcal{M}^t \notin \mathbb{M}_t) \leq \frac{\delta}{15t^6}.$$

Proof: This lemma is based on Lemma 17 of Jaksch et al. [2010], which is based on the following two results:

• L_1 -deviation of the true distribution and the empirical distribution: Assume $p(\cdot)$ is a distribution over m distinct events and $\hat{p}(\cdot)$ is an empirical distribution for p from n i.i.d. samples. From Theorem 2.1 in Weissman et al. [2003], for any $\epsilon > 0$, we have

$$P\left\{\|p(\cdot) - \hat{p}(\cdot)\|_{1} \ge \epsilon\right\} \le (2^{m} - 2) \exp\left(-\frac{n\epsilon^{2}}{2}\right). \tag{7}$$

• **Hoeffding's inequality:** For the deviation between the true mean \bar{r} and the empirical mean \hat{r} from n i.i.d. samples with support in [0,1], for any $\epsilon \geq 0$, we have

$$P\{|\bar{r} - \hat{r}| \ge \epsilon\} \le 2\exp(-2n\epsilon^2).$$

Notice that at any state s, under action a, based on the definition of M, the agent might transit to at most M states. Thus, in this case we can use inequality 7 with m=M. Assume that $\hat{P}^t(\cdot|s,a)$ is an empirical distribution based on $n\geq 1$ i.i.d. samples from the true distribution $P^{\mathcal{M}}(\cdot|s,a)$, then from

Lemma 17 of Jaksch et al. [2010], by choosing
$$\beta_1(n,t) = \sqrt{\frac{14M\log\left(\frac{2AK\tau_{\max}t}{\delta}\right)}{\max\{1,n\}}}$$
, we have

$$P\left(\left\|\hat{P}^t(\cdot|s,a) - P^{\mathcal{M}}(\cdot|s,a)\right\|_1 \geq \beta_1(n,t) \middle| \ \mathcal{M}, \ n \text{ i.i.d. samples}\right) \leq \frac{\delta}{20t^7 M A \tau_{\max} K}$$

On the other hand, based on the Hoeffding's inequality, if we choose $\beta_2(n,t) = \sqrt{\frac{7 \log \left(\frac{2MAK\tau_{\max}t}{\delta}\right)}{2 \max\{1,n\}}}$, we have

$$P\left(\left|\hat{r}_k^t(s,a,h) - r_k^{\mathcal{M}}(s,a,h)\right| \ge \beta_2(n,t) | \mathcal{M}, \ n \text{ i.i.d. samples}\right) \le \frac{\delta}{60t^7 M A \tau_{\text{max}} K}.$$

Notice that in episode t, $N^t(s,a)$ is a random variable that can take values $0,1,\ldots,(t-1)(\tau_{\max}-1)$ (recall that each episode has horizon $\tau \leq \tau_{\max}$ with probability 1, and the last state is always s_e). Based on our definitions of β_1 and β_2 , for n=0 (the case without observations), the confidence intervals trivially hold with probability 1. Thus, union bound over possible values of $N^t(k_s,a)$ gives

$$P\left(\left\|\hat{P}^{t}(\cdot|s,a) - P^{\mathcal{M}}(\cdot|s,a)\right\|_{1} \ge \beta_{1}(N^{t}(k_{s},a),t) \middle| \mathcal{M}\right) \le \sum_{n=1}^{t\tau_{\max}} \frac{\delta}{20t^{7}MA\tau_{\max}K} < \frac{\delta}{20t^{6}MAK}$$

$$P\left(\left|\hat{r}^{t}(s,a) - r^{\mathcal{M}}(s,a)\right| \ge \beta_{2}(N^{t}(k_{s},a),t) \middle| \mathcal{M}\right) \le \sum_{n=1}^{t\tau_{\max}} \frac{\delta}{60t^{7}MA\tau_{\max}K} < \frac{\delta}{60t^{6}MAK}$$

Notice that there are A actions and at most MK equivalent state classes. Taking a union bound over actions and equivalent state classes, we have

$$P(\mathcal{M} \notin \mathbb{M}_t | \mathcal{M}) < MAK \left[\frac{\delta}{60t^6 MAK} + \frac{\delta}{20t^6 MAK} \right] = \frac{\delta}{15t^6}.$$

Since the above result holds for any \mathcal{M} , we have

$$P(\mathcal{M} \notin \mathbb{M}_t) = \sum_{\mathcal{M}} P(\mathcal{M}) P(\mathcal{M} \notin \mathbb{M}_t | \mathcal{M}) < \frac{\delta}{15t^6}.$$

Since \mathcal{M}^t and \mathcal{M} are conditionally i.i.d. given \mathcal{H}_t , we have

$$P(\mathcal{M}^t \notin \mathbb{M}_t) = \sum_{\mathcal{H}_t} P(\mathcal{H}_t) P(\mathcal{M}^t \notin \mathbb{M}_t | \mathcal{H}_t) = \sum_{\mathcal{H}_t} P(\mathcal{H}_t) P(\mathcal{M} \notin \mathbb{M}_t | \mathcal{H}_t) = P(\mathcal{M} \notin \mathbb{M}_t).$$

This concludes the proof. **q.e.d.**

Note that for any \tilde{M} that can be sampled from the prior and any policy π , we have naive bounds on $V^{\tilde{\mathcal{M}},\pi}(s)$. To see it, recall that we assume $\mathbb{E}[\tau] \leq H$ for any initial state $s \in \mathcal{S}$ and the reward support is a subset of [0,1], thus we have $0 \leq V^{\tilde{\mathcal{M}},\pi}(s) \leq H$ for all $s \in \mathcal{S}$. Thus, we have:

$$\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}^{t},\pi^{t}} - V^{\mathcal{M},\pi^{t}}\right] \leq \sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t},\pi^{t}} - V^{\mathcal{M},\pi^{t}}\right) \mathbf{1}\left[\mathcal{M},\mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right] + 2H \sum_{t=1}^{T} P(\mathcal{M} \notin \mathbb{M}_{t}), \tag{8}$$

Notice that by choosing $\delta = \frac{1}{H}$, we have

$$2H\sum_{t=1}^{T} P(\mathcal{M} \notin \mathbb{M}_{t}) < 2H\sum_{t=1}^{T} \frac{1}{15Ht^{6}} = \frac{2}{15}\sum_{t=1}^{T} \frac{1}{t^{6}} \le \frac{2}{15}\sum_{t=1}^{\infty} \frac{1}{t^{2}} < \frac{1}{3}.$$

On the other hand, we have

$$\sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t},\pi^{t}} - V^{\mathcal{M},\pi^{t}}\right) \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right]$$

$$= \sum_{t=1}^{T} \left\{ \mathbb{E}\left[\sum_{h=1}^{\tau_{t}-1} \left(\mathcal{T}^{\mathcal{M}^{t},\pi^{t}} - \mathcal{T}^{\mathcal{M},\pi^{t}}\right) V^{\mathcal{M}^{t},\pi_{t}}(s_{th})\middle| \mathcal{M}, \mathcal{M}^{t}\right] \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right] \right\}$$
(9)

Notice that if $\mathcal{M}, \mathcal{M}^t \in \mathbb{M}_t$, we have

$$\left| \left(\mathcal{T}^{\mathcal{M}^{t},\pi^{t}} - \mathcal{T}^{\mathcal{M},\pi^{t}} \right) V^{\mathcal{M}^{t},\pi_{t}}(s_{th}) \right| \leq \left| \bar{r}^{\mathcal{M}^{t}} \left(s_{th}, \pi^{t}(s_{th}) \right) - \bar{r}^{\mathcal{M}} \left(s_{th}, \pi^{t}(s_{th}) \right) \right| \\
+ \left\| P^{\mathcal{M}_{t}} (\cdot | s_{th}, \pi^{t}(s_{th})) - P^{\mathcal{M}} (\cdot | s_{th}, \pi^{t}(s_{th})) \right\|_{1} \cdot \left\| V^{\mathcal{M}^{t},\pi_{t}} \right\|_{\infty} \\
\leq 2\beta_{2} (N^{t}(k_{s_{th}}, a_{th}), t) + 2\beta_{1} (N^{t}k_{s_{th}}, a_{th}), t) H \tag{10}$$

To simplify the exposition, we use k_{th} to denote $k_{s_{th}}$. Hence, we have

$$\sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t},\pi^{t}} - V^{\mathcal{M},\pi^{t}}\right) \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right]$$

$$\leq 2 \sum_{t=1}^{T} \mathbb{E}\left\{\sum_{h=1}^{\tau_{t}-1} \left[\beta_{2}(N^{t}(k_{tk}, a_{tk}), t) + \beta_{1}(N^{t}(k_{tk}, a_{tk}), t)H\right]\right\}.$$

Notice that $t \leq T$ always holds, with $\delta = \frac{1}{H}$, we have

$$\beta_2(N^t(k_{th}, a_{th}), t) + \beta_1(N^t(k_{th}, a_{th}), t)H \le O\left(H\sqrt{\frac{M\log(AKH\tau_{\max}T)}{\max\{1, N^t(k_{th}, a_{th})\}}}\right).$$

Finally, we provide "self-normalization" bounds for

$$\mathbb{E}\left\{\sum_{t=1}^{T}\sum_{h=1}^{\tau_{t}-1}\sqrt{\frac{1}{\max\{1,N^{t}(k_{th},a_{th})\}}}\right\}.$$

Notice that

$$\sum_{t=1}^{T} \sum_{h=1}^{\tau_t - 1} \sqrt{\frac{1}{\max\{1, N^t(k_{th}, a_{th})\}}} = \sum_{(k, a)} \sum_{t=1}^{T} \sum_{h=1}^{\tau_t - 1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max\{1, N^t(k, a)\}}}$$

For any (k, a), we have

$$\sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max\{1, N^{t}(k, a)\}}} = \sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max\{1, N^{t}(k, a)\}}} \mathbf{1} \left[N^{t}(k, a) \leq \tau_{\max} \right] + \sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max\{1, N^{t}(k, a)\}}} \mathbf{1} \left[N^{t}(k, a) > \tau_{\max} \right]$$

$$\stackrel{(a)}{<} 2\tau_{\max} + \sum_{n=1}^{N^{T+1}(k, a)} \frac{\sqrt{2}}{\sqrt{n}}$$

$$< 2\tau_{\max} + \int_{0}^{N^{T+1}(k, a)} \frac{\sqrt{2}}{\sqrt{n}} dn = 2\tau_{\max} + 2\sqrt{2N^{T+1}(k, a)},$$
(11)

where inequality (a) follows from the following observations:

• Since in each episode has maximum horizon τ_{\max} , and $N_t(k,a)$ will be updated at the end of each episode t, then we have

$$\sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max\{1, N^{t}(k, a)\}}} \mathbf{1} \left[N^{t}(k, a) \leq \tau_{\max} \right]$$

$$\leq \sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \mathbf{1}[(k_{th}, a_{th}) = (k, a)] \mathbf{1} \left[N^{t}(k, a) \leq \tau_{\max} \right] \leq 2\tau_{\max}.$$
(12)

• Assume $N^t(k, a) > \tau_{\text{max}}$, and assume that (k, a) has been interacted for $j_t \leq \tau_t$ times in episode t, then, in episode t we have

$$\sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max{\{1, N^{t}(k, a)\}}}} \mathbf{1} \left[N^{t}(k, a) > \tau_{\max}\right] \leq \sum_{j=1}^{j_{t}} \sqrt{\frac{2}{N^{t}(k, a) + j}} \mathbf{1} \left[N^{t}(k, a) > \tau_{\max}\right],$$

which follows from the inequality $\frac{1}{n} \leq \frac{2}{n+j}$ for $n > \tau_{\max} \geq \tau_t$ and $j < \tau_t$. Hence, we have

$$\sum_{t=1}^{T} \sum_{h}^{\tau_t - 1} \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max\{1, N^t(k, a)\}}} \mathbf{1} \left[N^t(k, a) > \tau_{\max} \right] \le \sum_{n=1}^{N^{T+1}(k, a)} \sqrt{\frac{2}{n}}.$$

Thus we have

$$\begin{split} \sum_{(k,a)} \sum_{t=1}^T \sum_{h=1}^T \sqrt{\frac{\mathbf{1}[(k_{th}, a_{th}) = (k, a)]}{\max{\{1, N^t(k, a)\}}}} \leq 2\tau_{\max} \bar{S}A + 2\sqrt{2} \sum_{k,a} \sqrt{N^{T+1}(k, a)} \\ \stackrel{(b)}{\leq} 2\tau_{\max} \bar{S}A + 2\sqrt{2} \sqrt{\bar{S}A} \sqrt{\sum_{(k,a)} N^{T+1}(k, a)} \end{split}$$

where (b) follows from the Cauchy-Schwarz inequality. Hence, we have

$$\mathbb{E}\left\{\sum_{t=1}^{T}\sum_{h=1}^{\tau_{t}-1}\sqrt{\frac{1}{\max\{1,N^{t}(k_{th},a_{th})\}}}\right\} \leq 2\tau_{\max}\bar{S}A + 2\sqrt{2}\sqrt{\bar{S}A}\mathbb{E}\left[\sqrt{\sum_{(k,a)}N^{T+1}(k,a)}\right] \\
\leq 2\tau_{\max}\bar{S}A + 2\sqrt{2}\sqrt{\bar{S}A}\sqrt{\mathbb{E}\left[\sum_{(k,a)}N^{T+1}(k,a)\right]} \\
\leq 2\tau_{\max}\bar{S}A + 2\sqrt{2}\sqrt{\bar{S}A}\sqrt{\sum_{t=1}^{T}\mathbb{E}\left[\tau_{t}\right]} \\
\leq 2\tau_{\max}\bar{S}A + 2\sqrt{2}\sqrt{\bar{S}AHT}.$$

Combining the above results, we have

$$\sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M},\tilde{\pi}} - V^{\mathcal{M},\pi^{t}}\right)\right] = \sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t},\pi^{t}} - V^{\mathcal{M},\pi^{t}}\right)\right] \\
\leq O\left(H\sqrt{M\log(AKH\tau_{\max}T)}\left[\tau_{\max}\bar{S}A + \sqrt{\bar{S}AHT}\right]\right) \\
= O\left(H^{\frac{3}{2}}\sqrt{M\bar{S}AT\log(AKH\tau_{\max}T)}\right) \\
= \tilde{O}\left(H^{\frac{3}{2}}\sqrt{M\bar{S}AT}\right) \\
\leq \tilde{O}\left(H^{\frac{3}{2}}M\sqrt{KAT}\right). \tag{13}$$

Hence, we have proved the regret bound. q.e.d.

B Proofs for Propositions in Section 5

B.1 Proof for Proposition 1

Proof: Let V^* be the optimal value function of \mathcal{M} , and $V^*_{\mathcal{S}_G}$ be its restriction to \mathcal{S}_G . Let $\mathcal{V} \subset [0,H]^{|\mathcal{S}_G|}$ be the space of possible value functions $V^*_{\mathcal{S}_G}$. Note that by definition, \mathcal{J}_i is the projection of \mathcal{V} to \mathcal{E}_i , the exit states of \mathcal{M}_i .

Notice that \mathcal{M} can be reduced to an MDP \mathcal{M}_R with the same state space $\mathcal{S}_R = \mathcal{S}_G$ as the induced global MDP \mathcal{M}_G . For each state s in \mathcal{S}_R , assume $s \in \mathcal{S}_i$, then its action space includes all the deterministic policies in subMDP \mathcal{M}_i . The transition and reward models P^R and r^R are defined similarly as P^G and r^G . It is straightforward to see that an optimal policy in \mathcal{M}_R perfectly recovers an optimal policy in \mathcal{M} . Let \mathcal{T} be the dynamic programming operator in \mathcal{M}_R , and \mathcal{T}' be the DP operator in \mathcal{M}_G , then we have

$$\mathcal{T}V - \Delta \mathbf{1} < \mathcal{T}'V < \mathcal{T}V \quad \forall V \in \mathcal{V}.$$

where the first inequality follows from the definition of Δ , and the second inequality follows from the fact that \mathcal{T} has a larger action space.

We now prove Proposition 1 under Assumption 1 and a mild technical assumption that $\mathcal{T}^l \mathbf{0} \in \mathcal{V}$, for $l = 0, \dots, |\mathcal{E}|$.

Let $L = |\mathcal{E}|$. Recall that $\mathcal{S}_G = \mathcal{E} \cup \{s_0\}$, thus \mathcal{S}_G has at most L+1 states, and one of them is the terminal state s_e . Under Assumption 1, with VI with initial $V = \mathbf{0}$, both \mathcal{T} and \mathcal{T}' will compute the value function in L iterations, that is $V^* = \mathcal{T}^L \mathbf{0}$, and $V^{\tilde{\pi}} = (\mathcal{T}')^L \mathbf{0}$. We now prove that $(\mathcal{T}')^l \mathbf{0} \geq \mathcal{T}^l \mathbf{0} - l \Delta \mathbf{1}$ for all $l = 0, 1, \ldots, L$ by induction. Notice that this inequality trivially holds for l = 0. Assume it holds for l, then we have

$$(\mathcal{T}')^{l+1}\mathbf{0} = \mathcal{T}'((\mathcal{T}')^{l}\mathbf{0}) \overset{(a)}{\geq} \mathcal{T}'(\mathcal{T}^{l}\mathbf{0} - \epsilon l\mathbf{1}) \overset{(b)}{=} \mathcal{T}'(\mathcal{T}^{l}\mathbf{0}) - \Delta l\mathbf{1}$$

$$\overset{(c)}{\geq} \mathcal{T}^{l+1}\mathbf{0} - \Delta \mathbf{1} - \Delta l\mathbf{1} = \mathcal{T}^{l+1}\mathbf{0} - \Delta (l+1)\mathbf{1},$$

where (a) follows from the induction hypothesis and the monotonicity of \mathcal{T}' , (b) follows from the "constant-shift" property of DP operator, and (c) follows from $\mathcal{T}^l \mathbf{0} \in \mathcal{V}$ by induction. Thus, we have $V^{\tilde{\pi}} = (\mathcal{T}')^L \mathbf{0} \geq \mathcal{T}^L \mathbf{0} - L\Delta \mathbf{1} = V^* - L\Delta \mathbf{1}$. So we have $V^{\tilde{\pi}}(s_0) \geq V^*(s_0) - L\Delta$.

Finally, we justify that the technical assumption $\mathcal{T}^l \mathbf{0} \in \mathcal{V}$, for $l = 0, \dots, |\cup_i \mathcal{E}_i|$ is mild. Notice that we have $\mathbf{0} \leq \mathcal{T} \mathbf{0}$ since the rewards are non-negative. Thus, from the monotonicity of \mathcal{T} , we have

$$0 < T0 < T^20 < \ldots < T^L0 = V^*$$
.

Define $\mathbb{V} = \{V : \mathcal{S}_G \to \Re^+ \text{ s.t. } 0 \leq V(s) \leq V^*(s) \, \forall s \in \mathcal{S}_G \}$. Thus, if $\mathbb{V} \subseteq \mathcal{V}$, then this technical assumption holds. **q.e.d.**

B.2 Proof for Proposition 2

Proof: Recall that for any policy π , any exit value profile J and any possible start state s, we have $V_J^\pi(s) = V_0^\pi(s) + \rho^\pi(s)J$, where $\rho^\pi(s)$ is a row vector encoding the probability distribution over the exit states when the start state is s and policy π is applied. Thus, for any exit values J and J', we have

$$\begin{aligned} V_J^{\pi}(s) &= V_0^{\pi}(s) + \rho^{\pi}(s)J = V_0^{\pi}(s) + \rho^{\pi}(s)J' + \rho^{\pi}(s)[J - J'] \\ &= V_{J'}^{\pi}(s) + \rho^{\pi}(s)[J - J'] \le V_{J'}^{\pi}(s) + \|J - J'\|_{\infty}, \end{aligned}$$

where the last inequality follows from $\rho^{\pi}(s)[J-J'] \leq |\rho^{\pi}(s)[J-J']| \leq \|\rho^{\pi}(s)\|_1 \|J-J'\|_{\infty} = \|J-J'\|_{\infty}$.

Thus, if $\tilde{\mathcal{J}}_k$ is an ϵ -cover for \mathcal{J}_i , then by definition, there exists $\tilde{J} \in \tilde{\mathcal{J}}_k$ s.t. $\|J - \tilde{J}\|_{\infty} \leq \epsilon$. So we have

$$V_{J}^{*}(s) = V_{J}^{\pi_{J}}(s) \stackrel{(a)}{\leq} V_{\tilde{J}}^{\pi_{J}}(s) + \epsilon \stackrel{(b)}{\leq} V_{\tilde{J}}^{\pi_{\tilde{J}}}(s) + \epsilon \stackrel{(c)}{\leq} V_{J}^{\pi_{\tilde{J}}}(s) + 2\epsilon, \tag{14}$$

where (a) and (c) follow from the inequality above and $||J - \tilde{J}||_{\infty} \le \epsilon$, and (b) follows from that $\pi_{\tilde{J}}$ is an optimal policy with exit value \tilde{J} . Hence, we have $\Delta_i(\tilde{J}_k) \le 2\epsilon$. **q.e.d.**

B.3 Proof for Proposition 3

Proof: Consider an arbitrary exit profile J and an arbitrary start state s. Due to the deterministic exit assumption, under the deterministic optimal policy π_J , the agent will deterministically exit at an exit state $e \in J_i$.

One key observation is that under the policy π_{J_e} , the agent will also exit at e. To see it, notice that the fact that the agent exits at e under π_J implies that there exist policies under which the agent exits at e from the start state s. Moreover, under J_e , for any deterministic policy π that does not exit at s_e , we have $V_{J_e}^{\pi}(s) \leq H$. On the other hand, for any deterministic policy π that exits at e, we have

$$V_{J_e}^{\pi}(s) = V_0^{\pi}(s) + H + 1 \ge H + 1.$$

Thus, π_{J_e} , the optimal policy under the exit value J_e , must exit at state e.

Hence we have:

$$V_{J}^{*}(s) \stackrel{(a)}{=} V_{J}^{\pi_{J}}(s) \stackrel{(b)}{=} V_{J_{e}}^{\pi_{J}}(s) + J(e) - J_{e}(e) \stackrel{(c)}{\leq} V_{J_{e}}^{\pi_{J_{e}}}(s) + J(e) - J_{e}(e)$$

$$\stackrel{(d)}{=} V_{J}^{\pi_{J_{e}}}(s) \leq V_{J}^{*}(s), \tag{15}$$

where (a) follows from the definition of π_J , (b) follows from the fact that under π_J , the agent exits at e, and (c) follows from the fact that π_{J_e} is optimal under the exit value J_e , and (d) follows from the fact that under π_{J_e} , the agent exits at e. Consequently, π_{J_e} is an optimal policy under the exit value J, and hence $\tilde{\mathcal{J}}_k = \{J_e : e \in \mathcal{E}_i\}$ satisfies $\Delta_i(\tilde{\mathcal{J}}_k) = 0$. **q.e.d.**