
Appendices

A Proof for Theorem 1

Before proceeding, let us define an additional term S̄ =
∑K
k=1 |Sik |, which is the sum over equiv-

alence classes of the number of internal states in a subMDP from each class. Intuitively, S̄ can be
thought of as the number of distinct internal states. Note that trivially, we have S̄ ≤ KM .

For any MDP M̃ consistent with the prior P0 and any policy π : S → A, we use V M̃,π to denote
the expected total reward in M̃ under policy π, with initial state s0. Then by definition, we have

BayesRegret(PSHRL, T ) =

T∑
t=1

E
[
VM,π∗ − VM,πt

]
=

T∑
t=1

E
[
VM,π∗ − VM,π̃

]
+

T∑
t=1

E
[
VM,π̃ − VM,πt

]
=E

[
VM,π∗ − VM,π̃

]
T +

T∑
t=1

E
[
VM,π̃ − VM,πt

]
, (5)

where the last equality follows from the fact that VM,π∗ and VM,π̃ do not depend on t. Let Ht
denote the “history" at the start of episode t, which includes all the observations by the start of
episode t. Notice that conditioning onHt,Mt andM are i.i.d. Since by definition, π̃ = plan(M),
πt = plan(Mt), and plan is a deterministic mapping, thus, conditioning on Ht, (M, π̃) and
(Mt, πt) are also i.i.d. So we have E

[
VM,π̃

∣∣Ht] = E
[
VM

t,πt
∣∣∣Ht], which implies that

E
[
VM,π̃

]
= E

[
E
[
VM,π̃

∣∣Ht]] = E
[
E
[
VM

t,πt
∣∣∣Ht]] = E

[
VM

t,πt
]
.

Thus, we have
T∑
t=1

E
[
VM,π̃ − VM,πt

]
=

T∑
t=1

E
[
VM

t,πt − VM,πt
]
.

For any policy π and any MDP M̃, we use T M̃,π to denote the dynamic programming operator
in M̃ under π. In other words, the Bellman equation in any MDP M̃ under any policy π is
V M̃,π = T M̃,πV M̃,π . Then from Section 5.1 of Osband et al. [2013], we have

E
[
VM

t,πt − VM,πt
∣∣∣Mt,M

]
= E

[
τt−1∑
h=1

(
TM

t,πt − TM,πt
)
VM

t,πt(sth)

∣∣∣∣∣M,Mt

]
,

where sth’s are generated under policy πt in the real MDPM. The above equation decomposes the
per-episode regret into one-step Bellman errors.

We now construct a high-probability confidence set. For any two non-terminal states s, s′ ∈ S, we
say s and s′ are equivalent states if they are internal states in two equivalent subMDPs, and the
bijection between these two subMDPs maps s to s′. Obviously, the notion of equivalent states is
transitive. Let {Xk}k be a partition of S based on equivalent states. That is, each Xk is an equivalent
state class. By definition, we have |{Xk}k| = S̄. For each episode t, let N t(k, a) denote the number
of times action a has been chosen at a state in the equivalent state class k in the first t− 1 episodes.
We also use P̂ t and r̂t to respectively denote the empirical transition model and the empirical average
reward based on observations in the first t− 1 episodes. Specifically,

• P̂ t(·|s, a) and r̂t(s, a) are estimated based on observations of choosing action a at state s
or its equivalent states.

• If N t(s, a) = 0, P̂ t(·|s, a) and r̂t(s, a) are not well defined. In this case, we choose r̂t(s, a)

as an arbitrary number in [0, 1] and P̂ t(·|s, a) as an arbitrary distribution subject to the
constraint that P̂ t(s′|s, a) > 0 only if s′ and s are in the same subMDP.
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Recall that the prior P0, and hence all the posteriors Pt, encodes the hierarchical information about
equivalent subMDPs. Consequently, the PSHRL algorithm will only sample MDPs satisfying this
equivalent subMDP restriction. Thus, we choose the confidence set at episode t as:

Mt =

{
M̃ :

∥∥∥P̂ t(·|s, a)− PM̃k (·|s, a)
∥∥∥
1
≤ β1

(
N t(ks, a), t

)
∀s, a,∣∣∣r̂t(s, a)− r̄M̃(s, a)

∣∣∣ ≤ β2 (N t(ks, a), t
)
∀s, a,

and M̃ satisfies the equivalent subMDP restriction

}
, (6)

where ks is the equivalent state class that state s is in. LetA = |A|, and recall thatM = maxi |Si∪Ei|,
we have the following lemma:

Lemma 1 For any δ ∈ (0, 1), if we choose β1 and β2 as β1(n, t) =

√
14M log( 2AKτmaxt

δ )
max{1,n} and

β2(n, t) =

√
7 log( 2MAKτmaxt

δ )
2max{1,n} , then we have

P (M /∈Mt) = P (Mt /∈Mt) ≤
δ

15t6
.

Proof: This lemma is based on Lemma 17 of Jaksch et al. [2010], which is based on the following
two results:

• L1-deviation of the true distribution and the empirical distribution: Assume p(·) is a
distribution over m distinct events and p̂(·) is an empirical distribution for p from n i.i.d.
samples. From Theorem 2.1 in Weissman et al. [2003], for any ε > 0, we have

P {‖p(·)− p̂(·)‖1 ≥ ε} ≤ (2m − 2) exp

(
−nε

2

2

)
. (7)

• Hoeffding’s inequality: For the deviation between the true mean r̄ and the empirical mean
r̂ from n i.i.d. samples with support in [0, 1], for any ε ≥ 0, we have

P {|r̄ − r̂| ≥ ε} ≤ 2 exp(−2nε2).

Notice that at any state s, under action a, based on the definition of M , the agent might transit to at
most M states. Thus, in this case we can use inequality 7 with m = M . Assume that P̂ t(·|s, a) is an
empirical distribution based on n ≥ 1 i.i.d. samples from the true distribution PM(·|s, a), then from

Lemma 17 of Jaksch et al. [2010], by choosing β1(n, t) =

√
14M log( 2AKτmaxt

δ )
max{1,n} , we have

P
(∥∥∥P̂ t(·|s, a)− PM(·|s, a)

∥∥∥
1
≥ β1(n, t)

∣∣∣M, n i.i.d. samples
)
≤ δ

20t7MAτmaxK
.

On the other hand, based on the Hoeffding’s inequality, if we choose β2(n, t) =

√
7 log( 2MAKτmaxt

δ )
2max{1,n} ,

we have

P
(∣∣r̂tk(s, a, h)− rMk (s, a, h)

∣∣ ≥ β2(n, t)
∣∣M, n i.i.d. samples

)
≤ δ

60t7MAτmaxK
.

Notice that in episode t, N t(s, a) is a random variable that can take values 0, 1, . . . , (t−1)(τmax−1)
(recall that each episode has horizon τ ≤ τmax with probability 1, and the last state is always se).
Based on our definitions of β1 and β2, for n = 0 (the case without observations), the confidence
intervals trivially hold with probability 1. Thus, union bound over possible values of N t(ks, a) gives

P
(∥∥∥P̂ t(·|s, a)− PM(·|s, a)

∥∥∥
1
≥ β1(N t(ks, a), t)

∣∣∣M) ≤ tτmax∑
n=1

δ

20t7MAτmaxK
<

δ

20t6MAK

P
(∣∣r̂t(s, a)− rM(s, a)

∣∣ ≥ β2(N t(ks, a), t)
∣∣M) ≤ tτmax∑

n=1

δ

60t7MAτmaxK
<

δ

60t6MAK
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Notice that there are A actions and at most MK equivalent state classes. Taking a union bound over
actions and equivalent state classes, we have

P (M /∈Mt|M) < MAK

[
δ

60t6MAK
+

δ

20t6MAK

]
=

δ

15t6
.

Since the above result holds for anyM, we have

P (M /∈Mt) =
∑
M

P (M)P (M /∈Mt|M) <
δ

15t6
.

SinceMt andM are conditionally i.i.d. givenHt, we have

P (Mt /∈Mt) =
∑
Ht

P (Ht)P (Mt /∈Mt|Ht) =
∑
Ht

P (Ht)P (M /∈Mt|Ht) = P (M /∈Mt).

This concludes the proof. q.e.d.

Note that for any M̃ that can be sampled from the prior and any policy π, we have naive
bounds on V M̃,π(s). To see it, recall that we assume E[τ ] ≤ H for any initial state s ∈ S and
the reward support is a subset of [0, 1], thus we have 0 ≤ V M̃,π(s) ≤ H for all s ∈ S . Thus, we have:

T∑
t=1

E
[
VM

t,πt − VM,πt
]
≤

T∑
t=1

E
[(
VM

t,πt − VM,πt
)
1
[
M,Mt ∈Mt

]]
+ 2H

T∑
t=1

P (M /∈Mt), (8)

Notice that by choosing δ = 1
H , we have

2H

T∑
t=1

P (M /∈Mt) < 2H

T∑
t=1

1

15Ht6
=

2

15

T∑
t=1

1

t6
≤ 2

15

∞∑
t=1

1

t2
<

1

3
.

On the other hand, we have
T∑
t=1

E
[(
VM

t,πt − VM,πt
)
1
[
M,Mt ∈Mt

]]
=

T∑
t=1

{
E

[
τt−1∑
h=1

(
TM

t,πt − TM,πt
)
VM

t,πt(sth)

∣∣∣∣∣M,Mt

]
1
[
M,Mt ∈Mt

]}
(9)

Notice that ifM,Mt ∈Mt, we have∣∣∣(TMt,πt − TM,πt
)
VM

t,πt(sth)
∣∣∣ ≤ ∣∣∣r̄Mt (

sth, π
t(sth)

)
− r̄M

(
sth, π

t(sth)
)∣∣∣

+
∥∥PMt(·|sth, πt(sth))− PM(·|sth, πt(sth))

∥∥
1
·
∥∥∥VMt,πt

∥∥∥
∞

≤ 2β2(N t(ksth , ath), t) + 2β1(N tksth , ath), t)H (10)

To simplify the exposition, we use kth to denote ksth . Hence, we have
T∑
t=1

E
[(
VM

t,πt − VM,πt
)
1
[
M,Mt ∈Mt

]]
≤ 2

T∑
t=1

E

{
τt−1∑
h=1

[
β2(N t(ktk, atk), t) + β1(N t(ktk, atk), t)H

]}
.

Notice that t ≤ T always holds, with δ = 1
H , we have

β2(N t(kth, ath), t) + β1(N t(kth, ath), t)H ≤ O

(
H

√
M log (AKHτmaxT )

max {1, N t(kth, ath)}

)
.
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Finally, we provide “self-normalization" bounds for

E

{
T∑
t=1

τt−1∑
h=1

√
1

max {1, N t(kth, ath)}

}
.

Notice that

T∑
t=1

τt−1∑
h=1

√
1

max {1, N t(kth, ath)}
=
∑
(k,a)

T∑
t=1

τt−1∑
h=1

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}

For any (k, a), we have

T∑
t=1

τt−1∑
h

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
=

T∑
t=1

τt−1∑
h

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
1
[
N t(k, a) ≤ τmax

]
+

T∑
t=1

τt−1∑
h

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
1
[
N t(k, a) > τmax

]
(a)
< 2τmax +

NT+1(k,a)∑
n=1

√
2√
n

< 2τmax +

∫ NT+1(k,a)

0

√
2√
n
dn = 2τmax + 2

√
2NT+1(k, a),

(11)

where inequality (a) follows from the following observations:

• Since in each episode has maximum horizon τmax, and Nt(k, a) will be updated at the end
of each episode t, then we have

T∑
t=1

τt−1∑
h

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
1
[
N t(k, a) ≤ τmax

]
≤

T∑
t=1

τt−1∑
h

1[(kth, ath) = (k, a)]1
[
N t(k, a) ≤ τmax

]
≤ 2τmax. (12)

• Assume N t(k, a) > τmax, and assume that (k, a) has been interacted for jt ≤ τt times in
episode t, then, in episode t we have

τt−1∑
h

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
1
[
N t(k, a) > τmax

]
≤

jt∑
j=1

√
2

N t(k, a) + j
1
[
N t(k, a) > τmax

]
,

which follows from the inequality 1
n ≤

2
n+j for n > τmax ≥ τt and j < τt. Hence, we have

T∑
t=1

τt−1∑
h

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
1
[
N t(k, a) > τmax

]
≤
NT+1(k,a)∑

n=1

√
2

n
.

Thus we have∑
(k,a)

T∑
t=1

T∑
h=1

√
1[(kth, ath) = (k, a)]

max {1, N t(k, a)}
≤ 2τmaxS̄A+ 2

√
2
∑
k,a

√
NT+1(k, a)

(b)

≤ 2τmaxS̄A+ 2
√

2
√
S̄A

√∑
(k,a)

NT+1(k, a)
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where (b) follows from the Cauchy-Schwarz inequality. Hence, we have

E

{
T∑
t=1

τt−1∑
h=1

√
1

max {1, N t(kth, ath)}

}
≤ 2τmaxS̄A+ 2

√
2
√
S̄AE

√∑
(k,a)

NT+1(k, a)



≤ 2τmaxS̄A+ 2
√

2
√
S̄A

√√√√√E

∑
(k,a)

NT+1(k, a)


≤ 2τmaxS̄A+ 2

√
2
√
S̄A

√√√√ T∑
t=1

E [τt]

≤ 2τmaxS̄A+ 2
√

2
√
S̄AHT .

Combining the above results, we have
T∑
t=1

E
[(
VM,π̃ − VM,πt

)]
=

T∑
t=1

E
[(
VM

t,πt − VM,πt
)]

≤O
(
H
√
M log(AKHτmaxT )

[
τmaxS̄A+

√
S̄AHT

])
=O

(
H

3
2

√
MS̄AT log(AKHτmaxT )

)
= Õ

(
H

3
2

√
MS̄AT

)
≤ Õ

(
H

3
2M
√
KAT

)
. (13)

Hence, we have proved the regret bound. q.e.d.

B Proofs for Propositions in Section 5

B.1 Proof for Proposition 1

Proof: Let V ∗ be the optimal value function of M, and V ∗SG be its restriction to SG. Let V ⊂
[0, H]|SG| be the space of possible value functions V ∗SG . Note that by definition, Ji is the projection
of V to Ei, the exit states ofMi.

Notice thatM can be reduced to an MDPMR with the same state space SR = SG as the induced
global MDP MG. For each state s in SR, assume s ∈ Si, then its action space includes all the
deterministic policies in subMDPMi. The transition and reward models PR and rR are defined
similarly as PG and rG. It is straightforward to see that an optimal policy inMR perfectly recovers
an optimal policy inM. Let T be the dynamic programming operator inMR, and T ′ be the DP
operator inMG, then we have

T V −∆1 ≤ T ′V ≤ T V ∀V ∈ V,
where the first inequality follows from the definition of ∆, and the second inequality follows from
the fact that T has a larger action space.

We now prove Proposition 1 under Assumption 1 and a mild technical assumption that T l0 ∈ V , for
l = 0, . . . , |E|.
Let L = |E|. Recall that SG = E ∪ {s0}, thus SG has at most L+ 1 states, and one of them is the
terminal state se. Under Assumption 1, with VI with initial V = 0, both T and T ′ will compute
the value function in L iterations, that is V ∗ = T L0, and V π̃ = (T ′)L0. We now prove that
(T ′)l0 ≥ T l0− l∆1 for all l = 0, 1, . . . , L by induction. Notice that this inequality trivially holds
for l = 0. Assume it holds for l, then we have

(T ′)l+10 = T ′((T ′)l0)
(a)

≥ T ′(T l0− εl1)
(b)
= T ′(T l0)−∆l1

(c)

≥ T l+10−∆1−∆l1 = T l+10−∆(l + 1)1,

16



where (a) follows from the induction hypothesis and the monotonicity of T ′, (b) follows from the
“constant-shift" property of DP operator, and (c) follows from T l0 ∈ V by induction. Thus, we have
V π̃ = (T ′)L0 ≥ T L0− L∆1 = V ∗ − L∆1. So we have V π̃(s0) ≥ V ∗(s0)− L∆.

Finally, we justify that the technical assumption T l0 ∈ V , for l = 0, . . . , | ∪i Ei| is mild. Notice that
we have 0 ≤ T 0 since the rewards are non-negative. Thus, from the monotonicity of T , we have

0 ≤ T 0 ≤ T 20 ≤ . . . ≤ T L0 = V ∗.

Define V = {V : SG → <+ s.t. 0 ≤ V (s) ≤ V ∗(s)∀s ∈ SG}. Thus, if V ⊆ V , then this technical
assumption holds. q.e.d.

B.2 Proof for Proposition 2

Proof: Recall that for any policy π, any exit value profile J and any possible start state s, we have
V πJ (s) = V π0 (s) + ρπ(s)J , where ρπ(s) is a row vector encoding the probability distribution over
the exit states when the start state is s and policy π is applied. Thus, for any exit values J and J ′, we
have

V πJ (s) =V π0 (s) + ρπ(s)J = V π0 (s) + ρπ(s)J ′ + ρπ(s)[J − J ′]
=V πJ′(s) + ρπ(s)[J − J ′] ≤ V πJ′(s) + ‖J − J ′‖∞,

where the last inequality follows from ρπ(s)[J − J ′] ≤ |ρπ(s)[J − J ′]| ≤ ‖ρπ(s)‖1‖J − J ′‖∞ =
‖J − J ′‖∞.

Thus, if J̃k is an ε-cover for Ji, then by definition, there exists J̃ ∈ J̃k s.t. ‖J − J̃‖∞ ≤ ε. So we
have

V ∗J (s) = V πJJ (s)
(a)

≤ V πJ
J̃

(s) + ε
(b)

≤ V
πJ̃
J̃

(s) + ε
(c)

≤ V
πJ̃
J (s) + 2ε, (14)

where (a) and (c) follow from the inequality above and ‖J − J̃‖∞ ≤ ε, and (b) follows from that πJ̃
is an optimal policy with exit value J̃ . Hence, we have ∆i(J̃k) ≤ 2ε. q.e.d.

B.3 Proof for Proposition 3

Proof: Consider an arbitrary exit profile J and an arbitrary start state s. Due to the deterministic exit
assumption, under the deterministic optimal policy πJ , the agent will deterministically exit at an exit
state e ∈ Ji.
One key observation is that under the policy πJe , the agent will also exit at e. To see it, notice that
the fact that the agent exits at e under πJ implies that there exist policies under which the agent exits
at e from the start state s. Moreover, under Je, for any deterministic policy π that does not exit at se,
we have V πJe(s) ≤ H . On the other hand, for any deterministic policy π that exits at e, we have

V πJe(s) = V π0 (s) +H + 1 ≥ H + 1.

Thus, πJe , the optimal policy under the exit value Je, must exit at state e.

Hence we have:

V ∗J (s)
(a)
= V πJJ (s)

(b)
= V πJJe (s) + J(e)− Je(e)

(c)

≤ V
πJe
Je

(s) + J(e)− Je(e)
(d)
= V

πJe
J (s) ≤ V ∗J (s), (15)

where (a) follows from the definition of πJ , (b) follows from the fact that under πJ , the agent exits at
e, and (c) follows from the fact that πJe is optimal under the exit value Je, and (d) follows from the
fact that under πJe , the agent exits at e. Consequently, πJe is an optimal policy under the exit value
J , and hence J̃k = {Je : e ∈ Ei} satisfies ∆i(J̃k) = 0. q.e.d.
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