Appendices

A Proof for Theorem 1

Before proceeding, let us define an additional term $\bar{S}=\sum_{k=1}^{K}\left|\mathcal{S}_{i_{k}}\right|$, which is the sum over equivalence classes of the number of internal states in a subMDP from each class. Intuitively, \bar{S} can be thought of as the number of distinct internal states. Note that trivially, we have $\bar{S} \leq K M$.
For any MDP $\tilde{\mathcal{M}}$ consistent $\underset{\tilde{\mathcal{M}}}{\text { with }}$ the prior \mathcal{P}^{0} and any policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$, we use $V^{\tilde{\mathcal{M}}, \pi}$ to denote the expected total reward in $\tilde{\mathcal{M}}$ under policy π, with initial state s_{0}. Then by definition, we have

$$
\begin{align*}
\text { BayesRegret(PSHRL, } T) & =\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}, \pi^{*}}-V^{\mathcal{M}, \pi^{t}}\right] \\
& =\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}, \pi^{*}}-V^{\mathcal{M}, \tilde{\pi}}\right]+\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}}-V^{\mathcal{M}, \pi^{t}}\right] \\
& =\mathbb{E}\left[V^{\mathcal{M}, \pi^{*}}-V^{\mathcal{M}, \tilde{\pi}}\right] T+\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}}-V^{\mathcal{M}, \pi^{t}}\right] \tag{5}
\end{align*}
$$

where the last equality follows from the fact that $V^{\mathcal{M}, \pi^{*}}$ and $V^{\mathcal{M}, \tilde{\pi}}$ do not depend on t. Let \mathcal{H}_{t} denote the "history" at the start of episode t, which includes all the observations by the start of episode t. Notice that conditioning on $\mathcal{H}_{t}, \mathcal{M}_{t}$ and \mathcal{M} are i.i.d. Since by definition, $\tilde{\pi}=\mathrm{plan}(\mathcal{M})$, $\pi^{t}=\mathrm{plan}\left(\mathcal{M}^{t}\right)$, and plan is a deterministic mapping, thus, conditioning on $\mathcal{H}_{t},(\mathcal{M}, \tilde{\pi})$ and $\left(\mathcal{M}^{t}, \pi^{t}\right)$ are also i.i.d. So we have $\mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}} \mid \mathcal{H}_{t}\right]=\mathbb{E}\left[V^{\mathcal{M}^{t}, \pi^{t}} \mid \mathcal{H}_{t}\right]$, which implies that

$$
\mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}}\right]=\mathbb{E}\left[\mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}} \mid \mathcal{H}_{t}\right]\right]=\mathbb{E}\left[\mathbb{E}\left[V^{\mathcal{M}^{t}, \pi^{t}} \mid \mathcal{H}_{t}\right]\right]=\mathbb{E}\left[V^{\mathcal{M}^{t}, \pi^{t}}\right]
$$

Thus, we have

$$
\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}, \tilde{\pi}}-V^{\mathcal{M}, \pi^{t}}\right]=\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}}\right]
$$

For any policy π and any MDP $\tilde{\mathcal{M}}$, we use $\mathcal{T}^{\tilde{M}, \pi}$ to denote the dynamic programming operator in $\tilde{\mathcal{M}}$ under π. In other words, the Bellman equation in any MDP $\tilde{\mathcal{M}}$ under any policy π is $V^{\tilde{\mathcal{M}}, \pi}=\mathcal{T}^{\tilde{\mathcal{M}}, \pi} V^{\tilde{\mathcal{M}}, \pi}$. Then from Section 5.1 of Osband et al. [2013], we have

$$
\mathbb{E}\left[V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}} \mid \mathcal{M}^{t}, \mathcal{M}\right]=\mathbb{E}\left[\sum_{h=1}^{\tau_{t}-1}\left(\mathcal{T}^{\mathcal{M}^{t}, \pi^{t}}-\mathcal{T}^{\mathcal{M}, \pi^{t}}\right) V^{\mathcal{M}^{t}, \pi_{t}}\left(s_{t h}\right) \mid \mathcal{M}, \mathcal{M}^{t}\right]
$$

where $s_{t h}$'s are generated under policy π^{t} in the real $\operatorname{MDP} \mathcal{M}$. The above equation decomposes the per-episode regret into one-step Bellman errors.
We now construct a high-probability confidence set. For any two non-terminal states $s, s^{\prime} \in \mathcal{S}$, we say s and s^{\prime} are equivalent states if they are internal states in two equivalent subMDPs, and the bijection between these two subMDPs maps s to s^{\prime}. Obviously, the notion of equivalent states is transitive. Let $\left\{\mathcal{X}_{k}\right\}_{k}$ be a partition of \mathcal{S} based on equivalent states. That is, each \mathcal{X}_{k} is an equivalent state class. By definition, we have $\left|\left\{\mathcal{X}_{k}\right\}_{k}\right|=\bar{S}$. For each episode t, let $N^{t}(k, a)$ denote the number of times action a has been chosen at a state in the equivalent state class k in the first $t-1$ episodes. We also use \hat{P}^{t} and \hat{r}^{t} to respectively denote the empirical transition model and the empirical average reward based on observations in the first $t-1$ episodes. Specifically,

- $\hat{P}^{t}(\cdot \mid s, a)$ and $\hat{r}^{t}(s, a)$ are estimated based on observations of choosing action a at state s or its equivalent states.
- If $N^{t}(s, a)=0, \hat{P}^{t}(\cdot \mid s, a)$ and $\hat{r}^{t}(s, a)$ are not well defined. In this case, we choose $\hat{r}^{t}(s, a)$ as an arbitrary number in $[0,1]$ and $\hat{P}^{t}(\cdot \mid s, a)$ as an arbitrary distribution subject to the constraint that $\hat{P}^{t}\left(s^{\prime} \mid s, a\right)>0$ only if s^{\prime} and s are in the same subMDP.

Recall that the prior \mathcal{P}^{0}, and hence all the posteriors \mathcal{P}^{t}, encodes the hierarchical information about equivalent subMDPs. Consequently, the PSHRL algorithm will only sample MDPs satisfying this equivalent subMDP restriction. Thus, we choose the confidence set at episode t as:

$$
\begin{gather*}
\mathbb{M}_{t}=\left\{\tilde{\mathcal{M}}:\left\|\hat{P}^{t}(\cdot \mid s, a)-P_{k}^{\tilde{\mathcal{M}}}(\cdot \mid s, a)\right\|_{1} \leq \beta_{1}\left(N^{t}\left(k_{s}, a\right), t\right) \quad \forall s, a,\right. \\
\\
\left|\hat{r}^{t}(s, a)-\bar{r}^{\tilde{\mathcal{M}}}(s, a)\right| \leq \beta_{2}\left(N^{t}\left(k_{s}, a\right), t\right) \quad \forall s, a, \tag{6}\\
\text { and } \tilde{\mathcal{M}} \text { satisfies the equivalent subMDP restriction }\},
\end{gather*}
$$

where k_{s} is the equivalent state class that state s is in. Let $A=|\mathcal{A}|$, and recall that $M=\max _{i}\left|\mathcal{S}_{i} \cup \mathcal{E}_{i}\right|$, we have the following lemma:

Lemma 1 For any $\delta \in(0,1)$, if we choose β_{1} and β_{2} as $\beta_{1}(n, t)=\sqrt{\frac{14 M \log \left(\frac{2 A K \tau_{\max } t}{\delta}\right)}{\max \{1, n\}}}$ and $\beta_{2}(n, t)=\sqrt{\frac{7 \log \left(\frac{2 M A K \tau_{\max } t}{\delta}\right)}{2 \max \{1, n\}}}$, then we have

$$
P\left(\mathcal{M} \notin \mathbb{M}_{t}\right)=P\left(\mathcal{M}^{t} \notin \mathbb{M}_{t}\right) \leq \frac{\delta}{15 t^{6}}
$$

Proof: This lemma is based on Lemma 17 of Jaksch et al. [2010], which is based on the following two results:

- L_{1}-deviation of the true distribution and the empirical distribution: Assume $p(\cdot)$ is a distribution over m distinct events and $\hat{p}(\cdot)$ is an empirical distribution for p from n i.i.d. samples. From Theorem 2.1 in Weissman et al. [2003], for any $\epsilon>0$, we have

$$
\begin{equation*}
P\left\{\|p(\cdot)-\hat{p}(\cdot)\|_{1} \geq \epsilon\right\} \leq\left(2^{m}-2\right) \exp \left(-\frac{n \epsilon^{2}}{2}\right) \tag{7}
\end{equation*}
$$

- Hoeffding's inequality: For the deviation between the true mean \bar{r} and the empirical mean \hat{r} from n i.i.d. samples with support in $[0,1]$, for any $\epsilon \geq 0$, we have

$$
P\{|\bar{r}-\hat{r}| \geq \epsilon\} \leq 2 \exp \left(-2 n \epsilon^{2}\right)
$$

Notice that at any state s, under action a, based on the definition of M, the agent might transit to at most M states. Thus, in this case we can use inequality 7 with $m=M$. Assume that $\hat{P}^{t}(\cdot \mid s, a)$ is an empirical distribution based on $n \geq 1$ i.i.d. samples from the true distribution $P^{\mathcal{M}}(\cdot \mid s, a)$, then from Lemma 17 of Jaksch et al. [2010], by choosing $\beta_{1}(n, t)=\sqrt{\frac{14 M \log \left(\frac{2 A K \tau_{\max t}}{\delta}\right)}{\max \{1, n\}}}$, we have

$$
P\left(\left\|\hat{P}^{t}(\cdot \mid s, a)-P^{\mathcal{M}}(\cdot \mid s, a)\right\|_{1} \geq \beta_{1}(n, t) \mid \mathcal{M}, n \text { i.i.d. samples }\right) \leq \frac{\delta}{20 t^{7} M A \tau_{\max } K} .
$$

On the other hand, based on the Hoeffding's inequality, if we choose $\beta_{2}(n, t)=\sqrt{\frac{7 \log \left(\frac{2 M A K \tau_{\max t}}{\delta}\right)}{2 \max \{1, n\}}}$, we have

$$
P\left(\left|\hat{r}_{k}^{t}(s, a, h)-r_{k}^{\mathcal{M}}(s, a, h)\right| \geq \beta_{2}(n, t) \mid \mathcal{M}, n \text { i.i.d. samples }\right) \leq \frac{\delta}{60 t^{7} M A \tau_{\max } K}
$$

Notice that in episode $t, N^{t}(s, a)$ is a random variable that can take values $0,1, \ldots,(t-1)\left(\tau_{\max }-1\right)$ (recall that each episode has horizon $\tau \leq \tau_{\max }$ with probability 1 , and the last state is always s_{e}). Based on our definitions of β_{1} and β_{2}, for $n=0$ (the case without observations), the confidence intervals trivially hold with probability 1 . Thus, union bound over possible values of $N^{t}\left(k_{s}, a\right)$ gives

$$
\begin{array}{r}
P\left(\left\|\hat{P}^{t}(\cdot \mid s, a)-P^{\mathcal{M}}(\cdot \mid s, a)\right\|_{1} \geq \beta_{1}\left(N^{t}\left(k_{s}, a\right), t\right) \mid \mathcal{M}\right) \leq \sum_{n=1}^{t \tau_{\max }} \frac{\delta}{20 t^{7} M A \tau_{\max } K}<\frac{\delta}{20 t^{6} M A K} \\
P\left(\left|\hat{r}^{t}(s, a)-r^{\mathcal{M}}(s, a)\right| \geq \beta_{2}\left(N^{t}\left(k_{s}, a\right), t\right) \mid \mathcal{M}\right) \leq \sum_{n=1}^{t \tau_{\max }} \frac{\delta}{60 t^{7} M A \tau_{\max } K}<\frac{\delta}{60 t^{6} M A K}
\end{array}
$$

Notice that there are A actions and at most $M K$ equivalent state classes. Taking a union bound over actions and equivalent state classes, we have

$$
P\left(\mathcal{M} \notin \mathbb{M}_{t} \mid \mathcal{M}\right)<M A K\left[\frac{\delta}{60 t^{6} M A K}+\frac{\delta}{20 t^{6} M A K}\right]=\frac{\delta}{15 t^{6}}
$$

Since the above result holds for any \mathcal{M}, we have

$$
P\left(\mathcal{M} \notin \mathbb{M}_{t}\right)=\sum_{\mathcal{M}} P(\mathcal{M}) P\left(\mathcal{M} \notin \mathbb{M}_{t} \mid \mathcal{M}\right)<\frac{\delta}{15 t^{6}}
$$

Since \mathcal{M}^{t} and \mathcal{M} are conditionally i.i.d. given \mathcal{H}_{t}, we have

$$
P\left(\mathcal{M}^{t} \notin \mathbb{M}_{t}\right)=\sum_{\mathcal{H}_{t}} P\left(\mathcal{H}_{t}\right) P\left(\mathcal{M}^{t} \notin \mathbb{M}_{t} \mid \mathcal{H}_{t}\right)=\sum_{\mathcal{H}_{t}} P\left(\mathcal{H}_{t}\right) P\left(\mathcal{M} \notin \mathbb{M}_{t} \mid \mathcal{H}_{t}\right)=P\left(\mathcal{M} \notin \mathbb{M}_{t}\right)
$$

This concludes the proof. q.e.d.
Note that for any \tilde{M} that can be sampled from the prior and any policy π, we have naive bounds on $V^{\tilde{\mathcal{M}}, \pi}(s)$. To see it, recall that we assume $\mathbb{E}[\tau] \leq H$ for any initial state $s \in \mathcal{S}$ and the reward support is a subset of $[0,1]$, thus we have $0 \leq V^{\tilde{\mathcal{M}}, \pi}(s) \leq H$ for all $s \in \mathcal{S}$. Thus, we have:

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}\left[V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}}\right] & \leq \sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}}\right) \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right] \\
& +2 H \sum_{t=1}^{T} P\left(\mathcal{M} \notin \mathbb{M}_{t}\right) \tag{8}
\end{align*}
$$

Notice that by choosing $\delta=\frac{1}{H}$, we have

$$
2 H \sum_{t=1}^{T} P\left(\mathcal{M} \notin \mathbb{M}_{t}\right)<2 H \sum_{t=1}^{T} \frac{1}{15 H t^{6}}=\frac{2}{15} \sum_{t=1}^{T} \frac{1}{t^{6}} \leq \frac{2}{15} \sum_{t=1}^{\infty} \frac{1}{t^{2}}<\frac{1}{3}
$$

On the other hand, we have

$$
\begin{align*}
& \sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}}\right) \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right] \\
= & \sum_{t=1}^{T}\left\{\mathbb{E}\left[\sum_{h=1}^{\tau_{t}-1}\left(\mathcal{T}^{\mathcal{M}^{t}, \pi^{t}}-\mathcal{T}^{\mathcal{M}, \pi^{t}}\right) V^{\mathcal{M}^{t}, \pi_{t}}\left(s_{t h}\right) \mid \mathcal{M}, \mathcal{M}^{t}\right] \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right\} \tag{9}
\end{align*}
$$

Notice that if $\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}$, we have

$$
\begin{align*}
\left|\left(\mathcal{T}^{\mathcal{M}^{t}, \pi^{t}}-\mathcal{T}^{\mathcal{M}, \pi^{t}}\right) V^{\mathcal{M}^{t}, \pi_{t}}\left(s_{t h}\right)\right| & \leq\left|\bar{r}^{\mathcal{M}^{t}}\left(s_{t h}, \pi^{t}\left(s_{t h}\right)\right)-\bar{r}^{\mathcal{M}}\left(s_{t h}, \pi^{t}\left(s_{t h}\right)\right)\right| \\
& +\left\|P^{\mathcal{M}_{t}}\left(\cdot \mid s_{t h}, \pi^{t}\left(s_{t h}\right)\right)-P^{\mathcal{M}}\left(\cdot \mid s_{t h}, \pi^{t}\left(s_{t h}\right)\right)\right\|_{1} \cdot\left\|V^{\mathcal{M}^{t}, \pi_{t}}\right\|_{\infty} \\
& \left.\leq 2 \beta_{2}\left(N^{t}\left(k_{s_{t h}}, a_{t h}\right), t\right)+2 \beta_{1}\left(N^{t} k_{s_{t h}}, a_{t h}\right), t\right) H \tag{10}
\end{align*}
$$

To simplify the exposition, we use $k_{t h}$ to denote $k_{s_{t h}}$. Hence, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}}\right) \mathbf{1}\left[\mathcal{M}, \mathcal{M}^{t} \in \mathbb{M}_{t}\right]\right] \\
\leq & 2 \sum_{t=1}^{T} \mathbb{E}\left\{\sum_{h=1}^{\tau_{t}-1}\left[\beta_{2}\left(N^{t}\left(k_{t k}, a_{t k}\right), t\right)+\beta_{1}\left(N^{t}\left(k_{t k}, a_{t k}\right), t\right) H\right]\right\} .
\end{aligned}
$$

Notice that $t \leq T$ always holds, with $\delta=\frac{1}{H}$, we have

$$
\beta_{2}\left(N^{t}\left(k_{t h}, a_{t h}\right), t\right)+\beta_{1}\left(N^{t}\left(k_{t h}, a_{t h}\right), t\right) H \leq O\left(H \sqrt{\frac{M \log \left(A K H \tau_{\max } T\right)}{\max \left\{1, N^{t}\left(k_{t h}, a_{t h}\right)\right\}}}\right)
$$

Finally, we provide "self-normalization" bounds for

$$
\mathbb{E}\left\{\sum_{t=1}^{T} \sum_{h=1}^{\tau_{t}-1} \sqrt{\frac{1}{\max \left\{1, N^{t}\left(k_{t h}, a_{t h}\right)\right\}}}\right\}
$$

Notice that

$$
\sum_{t=1}^{T} \sum_{h=1}^{\tau_{t}-1} \sqrt{\frac{1}{\max \left\{1, N^{t}\left(k_{t h}, a_{t h}\right)\right\}}}=\sum_{(k, a)} \sum_{t=1}^{T} \sum_{h=1}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}}
$$

For any (k, a), we have

$$
\begin{align*}
\sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}} & =\sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}} \mathbf{1}\left[N^{t}(k, a) \leq \tau_{\max }\right] \\
& +\sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}} \mathbf{1}\left[N^{t}(k, a)>\tau_{\max }\right] \\
\stackrel{(a)}{<} & 2 \tau_{\max }+\sum_{n=1}^{N^{T+1}(k, a)} \frac{\sqrt{2}}{\sqrt{n}} \\
& <2 \tau_{\max }+\int_{0}^{N^{T+1}(k, a)} \frac{\sqrt{2}}{\sqrt{n}} d n=2 \tau_{\max }+2 \sqrt{2 N^{T+1}(k, a)} \tag{11}
\end{align*}
$$

where inequality (a) follows from the following observations:

- Since in each episode has maximum horizon $\tau_{\max }$, and $N_{t}(k, a)$ will be updated at the end of each episode t, then we have

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}} \mathbf{1}\left[N^{t}(k, a) \leq \tau_{\max }\right] \\
\leq & \sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right] \mathbf{1}\left[N^{t}(k, a) \leq \tau_{\max }\right] \leq 2 \tau_{\max } \tag{12}
\end{align*}
$$

- Assume $N^{t}(k, a)>\tau_{\text {max }}$, and assume that (k, a) has been interacted for $j_{t} \leq \tau_{t}$ times in episode t, then, in episode t we have

$$
\sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}} \mathbf{1}\left[N^{t}(k, a)>\tau_{\max }\right] \leq \sum_{j=1}^{j_{t}} \sqrt{\frac{2}{N^{t}(k, a)+j}} \mathbf{1}\left[N^{t}(k, a)>\tau_{\max }\right]
$$

which follows from the inequality $\frac{1}{n} \leq \frac{2}{n+j}$ for $n>\tau_{\max } \geq \tau_{t}$ and $j<\tau_{t}$. Hence, we have

$$
\sum_{t=1}^{T} \sum_{h}^{\tau_{t}-1} \sqrt{\frac{\mathbf{1}\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}} \mathbf{1}\left[N^{t}(k, a)>\tau_{\max }\right] \leq \sum_{n=1}^{N^{T+1}(k, a)} \sqrt{\frac{2}{n}}}
$$

Thus we have

$$
\begin{aligned}
\sum_{(k, a)} \sum_{t=1}^{T} \sum_{h=1}^{T} \sqrt{\frac{1\left[\left(k_{t h}, a_{t h}\right)=(k, a)\right]}{\max \left\{1, N^{t}(k, a)\right\}}} & \leq 2 \tau_{\max } \bar{S} A+2 \sqrt{2} \sum_{k, a} \sqrt{N^{T+1}(k, a)} \\
& \stackrel{(b)}{\leq} 2 \tau_{\max } \bar{S} A+2 \sqrt{2} \sqrt{\bar{S} A} \sqrt{\sum_{(k, a)} N^{T+1}(k, a)}
\end{aligned}
$$

where (b) follows from the Cauchy-Schwarz inequality. Hence, we have

$$
\begin{aligned}
\mathbb{E}\left\{\sum_{t=1}^{T} \sum_{h=1}^{\tau_{t}-1} \sqrt{\left.\frac{1}{\max \left\{1, N^{t}\left(k_{t h}, a_{t h}\right)\right\}}\right\}}\right. & \leq 2 \tau_{\max } \bar{S} A+2 \sqrt{2} \sqrt{\bar{S} A} \mathbb{E}\left[\sqrt{\sum_{(k, a)} N^{T+1}(k, a)}\right] \\
& \leq 2 \tau_{\max } \bar{S} A+2 \sqrt{2} \sqrt{\bar{S} A} \sqrt{\mathbb{E}\left[\sum_{(k, a)} N^{T+1}(k, a)\right]} \\
& \leq 2 \tau_{\max } \bar{S} A+2 \sqrt{2} \sqrt{\bar{S} A} \sqrt{\sum_{t=1}^{T} \mathbb{E}\left[\tau_{t}\right]} \\
& \leq 2 \tau_{\max } \bar{S} A+2 \sqrt{2} \sqrt{\bar{S} A H T} .
\end{aligned}
$$

Combining the above results, we have

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}, \tilde{\pi}}-V^{\mathcal{M}, \pi^{t}}\right)\right] & =\sum_{t=1}^{T} \mathbb{E}\left[\left(V^{\mathcal{M}^{t}, \pi^{t}}-V^{\mathcal{M}, \pi^{t}}\right)\right] \\
& \leq O\left(H \sqrt{M \log \left(A K H \tau_{\max } T\right)}\left[\tau_{\max } \bar{S} A+\sqrt{\bar{S} A H T}\right]\right) \\
& =O\left(H^{\frac{3}{2}} \sqrt{M \bar{S} A T \log \left(A K H \tau_{\max } T\right)}\right) \\
& =\tilde{O}\left(H^{\frac{3}{2}} \sqrt{M \bar{S} A T}\right) \\
& \leq \tilde{O}\left(H^{\frac{3}{2}} M \sqrt{K A T}\right) \tag{13}
\end{align*}
$$

Hence, we have proved the regret bound. q.e.d.

B Proofs for Propositions in Section 5

B. 1 Proof for Proposition 1

Proof: Let V^{*} be the optimal value function of \mathcal{M}, and $V_{\mathcal{S}_{G}}^{*}$ be its restriction to \mathcal{S}_{G}. Let $\mathcal{V} \subset$ $[0, H]^{\left|\mathcal{S}_{G}\right|}$ be the space of possible value functions $V_{\mathcal{S}_{G}}^{*}$. Note that by definition, \mathcal{J}_{i} is the projection of \mathcal{V} to \mathcal{E}_{i}, the exit states of \mathcal{M}_{i}.
Notice that \mathcal{M} can be reduced to an MDP \mathcal{M}_{R} with the same state space $\mathcal{S}_{R}=\mathcal{S}_{G}$ as the induced global MDP \mathcal{M}_{G}. For each state s in \mathcal{S}_{R}, assume $s \in \mathcal{S}_{i}$, then its action space includes all the deterministic policies in subMDP \mathcal{M}_{i}. The transition and reward models P^{R} and r^{R} are defined similarly as P^{G} and r^{G}. It is straightforward to see that an optimal policy in \mathcal{M}_{R} perfectly recovers an optimal policy in \mathcal{M}. Let \mathcal{T} be the dynamic programming operator in \mathcal{M}_{R}, and \mathcal{T}^{\prime} be the DP operator in \mathcal{M}_{G}, then we have

$$
\mathcal{T} V-\Delta \mathbf{1} \leq \mathcal{T}^{\prime} V \leq \mathcal{T} V \quad \forall V \in \mathcal{V}
$$

where the first inequality follows from the definition of Δ, and the second inequality follows from the fact that \mathcal{T} has a larger action space.
We now prove Proposition 1 under Assumption 1 and a mild technical assumption that $\mathcal{T}^{l} \mathbf{0} \in \mathcal{V}$, for $l=0, \ldots,|\mathcal{E}|$.
Let $L=|\mathcal{E}|$. Recall that $\mathcal{S}_{G}=\mathcal{E} \cup\left\{s_{0}\right\}$, thus \mathcal{S}_{G} has at most $L+1$ states, and one of them is the terminal state s_{e}. Under Assumption 1, with VI with initial $V=\mathbf{0}$, both \mathcal{T} and \mathcal{T}^{\prime} will compute the value function in L iterations, that is $V^{*}=\mathcal{T}^{L} \mathbf{0}$, and $V^{\tilde{\pi}}=\left(\mathcal{T}^{\prime}\right)^{L} \mathbf{0}$. We now prove that $\left(\mathcal{T}^{\prime}\right)^{l} \mathbf{0} \geq \mathcal{T}^{l} \mathbf{0}-l \Delta \mathbf{1}$ for all $l=0,1, \ldots, L$ by induction. Notice that this inequality trivially holds for $l=0$. Assume it holds for l, then we have

$$
\begin{aligned}
\left(\mathcal{T}^{\prime}\right)^{l+1} \mathbf{0}=\mathcal{T}^{\prime}\left(\left(\mathcal{T}^{\prime}\right)^{l} \mathbf{0}\right) & \stackrel{(a)}{\geq} \mathcal{T}^{\prime}\left(\mathcal{T}^{l} \mathbf{0}-\epsilon l \mathbf{1}\right) \stackrel{(b)}{=} \mathcal{T}^{\prime}\left(\mathcal{T}^{l} \mathbf{0}\right)-\Delta l \mathbf{1} \\
& \stackrel{(c)}{\geq} \mathcal{T}^{l+1} \mathbf{0}-\Delta \mathbf{1}-\Delta l \mathbf{1}=\mathcal{T}^{l+1} \mathbf{0}-\Delta(l+1) \mathbf{1}
\end{aligned}
$$

where (a) follows from the induction hypothesis and the monotonicity of \mathcal{T}^{\prime}, (b) follows from the "constant-shift" property of DP operator, and (c) follows from $\mathcal{T}^{l} \mathbf{0} \in \mathcal{V}$ by induction. Thus, we have $V^{\tilde{\pi}}=\left(\mathcal{T}^{\prime}\right)^{L} \mathbf{0} \geq \mathcal{T}^{L} \mathbf{0}-L \Delta \mathbf{1}=V^{*}-L \Delta \mathbf{1}$. So we have $V^{\tilde{\pi}}\left(s_{0}\right) \geq V^{*}\left(s_{0}\right)-L \Delta$.

Finally, we justify that the technical assumption $\mathcal{T}^{l} \mathbf{0} \in \mathcal{V}$, for $l=0, \ldots,\left|\cup_{i} \mathcal{E}_{i}\right|$ is mild. Notice that we have $\mathbf{0} \leq \mathcal{T} 0$ since the rewards are non-negative. Thus, from the monotonicity of \mathcal{T}, we have

$$
\mathbf{0} \leq \mathcal{T} \mathbf{0} \leq \mathcal{T}^{2} \mathbf{0} \leq \ldots \leq \mathcal{T}^{L} \mathbf{0}=V^{*}
$$

Define $\mathbb{V}=\left\{V: \mathcal{S}_{G} \rightarrow \Re^{+}\right.$s.t. $\left.0 \leq V(s) \leq V^{*}(s) \forall s \in \mathcal{S}_{G}\right\}$. Thus, if $\mathbb{V} \subseteq \mathcal{V}$, then this technical assumption holds. q.e.d.

B. 2 Proof for Proposition 2

Proof: Recall that for any policy π, any exit value profile J and any possible start state s, we have $V_{J}^{\pi}(s)=V_{0}^{\pi}(s)+\rho^{\pi}(s) J$, where $\rho^{\pi}(s)$ is a row vector encoding the probability distribution over the exit states when the start state is s and policy π is applied. Thus, for any exit values J and J^{\prime}, we have

$$
\begin{aligned}
V_{J}^{\pi}(s) & =V_{0}^{\pi}(s)+\rho^{\pi}(s) J=V_{0}^{\pi}(s)+\rho^{\pi}(s) J^{\prime}+\rho^{\pi}(s)\left[J-J^{\prime}\right] \\
& =V_{J^{\prime}}^{\pi}(s)+\rho^{\pi}(s)\left[J-J^{\prime}\right] \leq V_{J^{\prime}}^{\pi}(s)+\left\|J-J^{\prime}\right\|_{\infty},
\end{aligned}
$$

where the last inequality follows from $\rho^{\pi}(s)\left[J-J^{\prime}\right] \leq\left|\rho^{\pi}(s)\left[J-J^{\prime}\right]\right| \leq\left\|\rho^{\pi}(s)\right\|_{1}\left\|J-J^{\prime}\right\|_{\infty}=$ $\left\|J-J^{\prime}\right\|_{\infty}$.
Thus, if $\tilde{\mathcal{J}}_{k}$ is an ϵ-cover for \mathcal{J}_{i}, then by definition, there exists $\tilde{J} \in \tilde{\mathcal{J}}_{k}$ s.t. $\|J-\tilde{J}\|_{\infty} \leq \epsilon$. So we have

$$
\begin{equation*}
V_{J}^{*}(s)=V_{J}^{\pi_{J}}(s) \stackrel{(a)}{\leq} V_{\tilde{J}}^{\pi_{J}}(s)+\epsilon \stackrel{(b)}{\leq} V_{\tilde{J}}^{\pi_{\tilde{J}}}(s)+\epsilon \stackrel{(c)}{\leq} V_{J}^{\pi_{\tilde{J}}}(s)+2 \epsilon, \tag{14}
\end{equation*}
$$

where (a) and (c) follow from the inequality above and $\|J-\tilde{J}\|_{\infty} \leq \epsilon$, and (b) follows from that $\pi_{\tilde{J}}$ is an optimal policy with exit value \tilde{J}. Hence, we have $\Delta_{i}\left(\tilde{\mathcal{J}}_{k}\right) \leq 2 \epsilon$. q.e.d.

B. 3 Proof for Proposition 3

Proof: Consider an arbitrary exit profile J and an arbitrary start state s. Due to the deterministic exit assumption, under the deterministic optimal policy π_{J}, the agent will deterministically exit at an exit state $e \in J_{i}$.

One key observation is that under the policy $\pi_{J_{e}}$, the agent will also exit at e. To see it, notice that the fact that the agent exits at e under π_{J} implies that there exist policies under which the agent exits at e from the start state s. Moreover, under J_{e}, for any deterministic policy π that does not exit at s_{e}, we have $V_{J_{e}}^{\pi}(s) \leq H$. On the other hand, for any deterministic policy π that exits at e, we have

$$
V_{J_{e}}^{\pi}(s)=V_{0}^{\pi}(s)+H+1 \geq H+1
$$

Thus, $\pi_{J_{e}}$, the optimal policy under the exit value J_{e}, must exit at state e.
Hence we have:

$$
\begin{align*}
V_{J}^{*}(s) & \stackrel{(a)}{=} V_{J}^{\pi_{J}}(s) \stackrel{(b)}{=} V_{J_{e}}^{\pi_{J}}(s)+J(e)-J_{e}(e) \stackrel{(c)}{\leq} V_{J_{e}}^{\pi_{J_{e}}}(s)+J(e)-J_{e}(e) \\
& \stackrel{(d)}{=} V_{J}^{\pi_{J_{e}}}(s) \leq V_{J}^{*}(s), \tag{15}
\end{align*}
$$

where (a) follows from the definition of π_{J}, (b) follows from the fact that under π_{J}, the agent exits at e, and (c) follows from the fact that $\pi_{J_{e}}$ is optimal under the exit value J_{e}, and (d) follows from the fact that under $\pi_{J_{e}}$, the agent exits at e. Consequently, $\pi_{J_{e}}$ is an optimal policy under the exit value J, and hence $\tilde{\mathcal{J}}_{k}=\left\{J_{e}: e \in \mathcal{E}_{i}\right\}$ satisfies $\Delta_{i}\left(\tilde{\mathcal{J}}_{k}\right)=0$. q.e.d.

