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Abstract

A vital aspect of human intelligence is the ability to compose increasingly complex
concepts out of simpler ideas, enabling both rapid learning and adaptation of
knowledge. In this paper we show that energy-based models can exhibit this
ability by directly combining probability distributions. Samples from the combined
distribution correspond to compositions of concepts. For example, given one
distribution for smiling face images, and another for male faces, we can combine
them to generate smiling male faces. This allows us to generate natural images that
simultaneously satisfy conjunctions, disjunctions, and negations of concepts. We
evaluate compositional generation abilities of our model on the CelebA dataset of
natural faces and synthetic 3D scene images. We showcase the breadth of unique
capabilities of our model, such as the ability to continually learn and incorporate
new concepts, or infer compositions of concept properties underlying an image.

1 Introduction
Humans are able to rapidly learn new concepts and continuously integrate them among prior knowl-
edge. The core component in enabling this is the ability to compose increasingly complex concepts
out of simpler ones as well as recombining and reusing concepts in novel ways [5]. By combining a
finite number of primitive components, humans can create an exponential number of new concepts,
and use them to rapidly explain current and past experiences [16]. We are interested in enabling such
capabilities in machine learning systems, particularly in the context of generative modeling.

Past efforts have attempted to enable compositionality in several ways. One approach decomposes
data into disentangled factors of variation and situate each datapoint in the resulting - typically
continuous - factor vector space [29, 9]. The factors can either be explicitly provided or learned in
an unsupervised manner. In both cases, however, the dimensionality of the factor vector space is
fixed and defined prior to training. This makes it difficult to introduce new factors of variation, which
may be necessary to explain new data, or to taxonomize past data in new ways. Another approach
to incorporate the compositionality is to spatially decompose an image into a collection of objects,
each object slot occupying some pixels of the image defined by a segmentation mask [28, 6]. Such
approaches can generate visual scenes with multiple objects, but may have difficulty in generating
interactions between objects. These two incorporations of compositionality are considered distinct,
with very different underlying implementations.

In this work∗, we propose to implement the compositionality via energy based models (EBMs).
Instead of an explicit vector of factors that is input to a generator function, or object slots that are
blended to form an image, our unified treatment defines factors of variation and object slots via energy
functions. Each factor is represented by an individual scalar energy function that takes as input an
image and outputs a low energy value if the factor is exhibited in the image. Images that exhibit the

∗Code and data available at https://energy-based-model.github.io/
compositional-generation-inference/
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Figure 1: Illustration of logical composition operators over energy functions E1 and E2 (drawn as level sets
where red = valid areas of samples, grey = invalid areas of samples).

factor can then be generated implicitly through an Markov Chain Monte Carlo (MCMC) sampling
process that minimizes the energy. Importantly, it is also possible to run MCMC process on some
combination of energy functions to generate images that exhibit multiple factors or multiple objects,
in a globally coherent manner.

There are several ways to combine energy functions. One can add or multiply distributions as in
mixtures [25, 6] or products [11] of experts. We view these as probabilistic instances of logical
operators over concepts. Instead of using only one, we consider three operators: logical conjunction,
disjunction, and negation (illustrated in Figure 1). We can then flexibly and recursively combine
multiple energy functions via these operators. More complex operators (such as implication) can be
formed out of our base operators.

EBMs with such composition operations enable a breadth of new capabilities - among them is a
unique approach to continual learning. Our formulation defines concepts or factors implicitly via
examples, rather than pre-declaring an explicit latent space ahead of time. For example, we can create
an EBM for concept "black hair" from a dataset of face images that share this concept. New concepts
(or factors), such as hair color can be learned by simply adding a new energy function and can then
be combined with energies for previously trained concepts. This process can repeat continually. This
view of few-shot concept learning and generation is similar to work of [23], with the distinction that
instead of learning to generate holistic images from few examples, we learn factors from examples,
which can be composed with other factors. A related advantage is that finely controllable image
generation can be achieved by specifying the desired image via a collection of logical clauses, with
applications to neural scene rendering [4].

Our contributions are as follows: first, while composition of energy-based models has been proposed
in abstract settings before [11], we show that it can be used to generate plausible natural images.
Second, we propose a principled approach to combine independent trained energy models based
on logical operators which can be chained recursively, allowing controllable generation based on a
collection of logical clauses at test time. Third, by being able to recursively combine independent
models, we show our approach allows us to extrapolate to new concept combinations, continually
incorporate new visual concepts for generation, and infer concept properties compositionally.

2 Related Work
Our work draws on results in energy based models - see [17] for a comprehensive review. A number
of methods have been used for inference and sampling in EBMs, from Gibbs Sampling [12], Langevin
Dynamics [31, 3], Path Integral methods [2] and learned samplers [13, 26]. In this work, we apply
EBMs to the task of compositional generation.

Compositionality has been incorporated in representation learning (see [1] for a summary) and
generative modeling. One approach to compositionality has focused on learning disentangled factors
of variation [8, 15, 29]. Such an approach allows for the combination of existing factors, but does not
allow the addition of new factors. A different approach to compositionality includes learning various
different pixel/segmentation masks for each concept [6, 7]. However such a factorization may have
difficulty capturing the global structure of an image, and in many cases different concepts cannot be
explicitly factored using attention masks.

In contrast, our approach towards compositionality focuses on composing separate learned probability
distribution of concepts. Such an approach allows viewing factors of variation as constraints [19].
In prior work, [10] show that products of EBMs can be used to decompose complex generative
modeling problems to simpler ones. [29] further apply products of distributions over the latent space
of VAE to define compositions. [9] show that additional compositions in VAE latent space. Both
of them rely on joint training to learn compositions of a fixed number of concepts. In contrast,
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Figure 2:Concept conjunction and negation. All the images are generated through the conjunction and negation
of energy functions. For example, the image in the central part is the conjunction of male, black hair, and smiling
energy functions. Equations for composition explained in page 4.

in this work, we show how we can realize concept compositions using completelyindependently
trained probability distributions. Furthermore, we introduce three compositional logical operators of
conjunction, disjunction and negation can be realized and nested together through manipulation of
independent probability distributions of each concept.

Our compositional approach is inspired by the goal of continual lifelong learning - see [20] for a
thorough review. New concepts can be composed with past concepts by combining new independent
probability distributions. Many methods in continual learning are focused on how to overcome
catashtophic forgetting [14, 18], but do not support dynamically growing capacity. Progressive
growing of the models [24] has been considered, but is implemented at the level of the model
architecture, whereas our method composes independent models together.

3 Method
In this section, we �rst give an overview of the Energy-Based Model formulation we use and introduce
three logical operators over these models. We then discuss the unique properties such a form of
compositionality enables.

3.1 Energy Based Models

EBMs represent data by learning an unnormalized probability distribution across the data. For each
data pointx, an energy functionE � (x), parameterized by a neural network, outputs a scalar real
energy such that the model distribution

p� (x) / e� E � (x ) : (1)

To train an EBM on a data distributionpD , we use contrastive divergence [10]. In particular we use
the methodology de�ned in [3], where a Monte Carlo estimate (Equation 2) of maximum likelihood
L is minimized with the following gradient

r � L = Ex + � pD
r � E � (x+ ) � Ex � � p�

r � E � (x � ): (2)

To samplex � from p� for both training and generation, we use MCMC based off Langevin dynamics
[30]. Samples are initialized from uniform random noise and are iteratively re�ned using

~x k = ~x k � 1 �
�
2

r x E � (~x k � 1) + ! k ; ! k � N (0; � ); (3)

wherek is thekth iteration step and� is the step size. We refer to each iteration of Langevin dynamics
as a negative sampling step. We note that this form of sampling allows us to use the gradient of
the combined distribution to generate samples from distributions composed ofp� and the other
distributions. We use this ability to generate from multiple different compositions of distributions.

3.2 Composition of Energy-Based Models

We next present different ways that EBMs can compose. We consider a set of independently trained
EBMs,E(x jc1); E (x jc2); : : : ; E (x jcn ), which are learned conditional distributions on underlying
concept codesci . Latent codes we consider include position, size, color, gender, hair style, and age,
which we also refer to as concepts. Figure 2 shows three concepts and their combinations on the
CelebA face dataset and attributes.
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Concept Conjunction In concept conjunction, given separate independent concepts (such as a
particular gender, hair style, or facial expression), we wish to construct an output with the speci�ed
gender, hair style, and facial expression – the combination of each concept. Since the likelihood of
an output given a set of speci�c concepts is equal to the product of the likelihood of each individual
concept, we have Equation 4, which is also known as the product of experts [11]:

p(xjc1 andc2; : : : ; andci ) =
Y

i

p(xjci ) / e�
P

i E (x jci ) : (4)

We can thus apply Equation 3 to the distribution that is the sum of the energies of each concept.
We sample from this distribution using Equation 5 to sample from the joint concept space with
! k � N (0; � ).

~x k = ~x k � 1 �
�
2

r x

X

i

E � (~x k � 1jci ) + ! k : (5)

Concept Disjunction In concept disjunction, given separate concepts such as the colors red and
blue, we wish to construct an output that is either red or blue. This requires a distribution that has
probability mass when any chosen concept is true. A natural choice of such a distribution is the sum
of the likelihood of each concept:

p(xjc1 or c2; : : : or ci ) /
X

i

p(xjci )=Z(ci ): (6)

whereZ (ci ) denotes the partition function for each concept. A tractable simpli�cation becomes
available if we assume all partition functionsZ (ci ) to be equal

X

i

p(xjci ) /
X

i

e� E (x jci ) = elogsumexp( � E (x jc1 ) ;� E (x jc2 ) ;:::; � E (x jci )) ; (7)

wherelogsumexp(f 1; : : : ; f N ) = log
P

i exp(f i ). We can thus apply Equation 3 to the distribution
that is a negative smooth minimum of the energies of each concept to obtain Equation 8 to sample
from the disjunction concept space:

~x k = ~x k � 1 �
�
2

r x logsumexp(� E (xjc1); � E (xjc2); : : : ; � E (xjci )) + ! k ; (8)

where! k � N (0; � ). While the assumption that leads to Equation 7 is not guaranteed to hold in
general, in our experiments we empirically found the partition functionZ (ci ) estimates to be similar
across partition functions (see Appendix) and also analyze cases in which partitions functions are
different in the Appendix. Furthermore, the resulting generation results do exhibit equal distribution
across disjunction constituents in practice as seen in Table 1.

Concept Negation In concept negation, we wish to generate an output that does not contain the
concept. Given a color red, we want an output that is of a different color, such as blue. Thus, we want
to construct a distribution that places high likelihood to data that is outside a given concept. One
choice is a distribution inversely proportional to the concept. Importantly, negation must be de�ned
with respect to another concept to be useful. The opposite of alive may be dead, but not inanimate.
Negation without a data distribution is not integrable and leads to a generation of chaotic textures
which, while satisfying absence of a concept, is not desirable. Thus in our experiments with negation
we combine it with another concept to ground the negation and obtain an integrable distribution:

p(xjnot(c1); c2) /
p(xjc2)

p(xjc1) � / e�E (x jc1 ) � E (x jc2 ) : (9)

We found the smoothing parameter� to be a useful regularizer (when� = 0 we arrive at uniform
distribution) and we use� = 0 :01 in our experiments. The above equation allows us to apply
Langevin dynamics to obtain Equation 10 to sample concept negations.

~x k = ~x k � 1 �
�
2

r x (�E (xjc1) � E (xjc2)) + ! k ; (10)

where! k � N (0; � ).

Recursive Concept Combinations We have de�ned the three classical symbolic operators for
concept combinations. These symbolic operators can further be recursively chained on top of each
to specify more complex logical operators at test time. To our knowledge, our approach is the only
approach enabling such compositionality across independently trained models.

4



Figure 3: Combinations of different attributes on
CelebA via concept conjunction. Each row adds an
additional energy function. Images on the �rst row are
conditioned on young, while images on the last row
are conditioned on young, female, smiling, and wavy
hair.

Figure 4: Combinations of different attributes on
MuJoCo via concept conjunction. Each row adds an
additional energy function. Images on the �rst row
are only conditioned on shape, while images on the
last row are conditioned on shape, position, size, and
color. The left part is the generation of a sphere shape
and the right is a cylinder.

4 Experiments

We perform empirical studies to answer the following questions: (1) Can EBMs exhibit concept
compositionality (such as concept negation, conjunction, and disjunction) in generating images? (2)
Can we take advantage of concept combinations to learn new concepts in a continual manner? (3)
Does explicit factor decomposition enable generalization to novel combinations of factors? (4) Can
we perform concept inference across multiple inputs?

In the appendix, we further show that approach enables better generalization to novel combinations
of factors by learning explicit factor decompositions.

4.1 Setup

We perform experiments on 64x64 object scenes rendered in MuJoCo [27] (MuJoCo Scenes) and
the 128x128 CelebA dataset. For MuJoCo Scene images, we generate a central object of shape
either sphere, cylinder, or box of varying size and color at different positions, with some number of
(speci�ed) additional background objects. Images are generated with varying lighting and objects.

We use the ImageNet32x32 architecture and ImageNet128x128 architecture from [3] with the Swish
activation [22] on MuJoCo and CelebA datasets. Models are trained on MuJoCo datasets for up to 1
day on 1 GPU and for 1 day on 8 GPUs for CelebA. More training details and model architecture can
be found in the appendix.

Figure 5:Examples of recursive composi-
tions of disjunction, conjunction, and nega-
tion on the CelebA dataset.

Model Pos Acc Color Acc

Color 0.128 0.997
Pos 0.984 0.201
Pos& Color 0.801 0.8125
Pos& (: Color) 0.872 0.096
(: Pos)& Color 0.033 0.971
Color [29] 0.132 0.333
Pos [29] 0.146 0.202
Pos& Color [29] 0.151 0.342

Model Pos 1 Acc Position 2 Acc

Pos 1 0.875 0.0
Pos 2 0.0 0.817
Pos 1j Pos 2 0.432 0.413

Model Pos/Color 1 Acc Pos 2/Color 2 Acc

Pos 1& Color 1 0.460 0.0
Pos 2& Color 2 0.0 0.577
(Pos 1& Color 1)j (Pos 2& Color 2) 0.210 0.217

Table 1:Quantitative evaluation of conjunction (& ), disjunc-
tion (j) and negation (: ) generations on the Mujoco Scenes
dataset using an EBM or the approach in [29]. Position = Pos.
Each individual attribute (Color or Position ) generation is a
individual EBM. (Acc: accuracy) Standard error is close to
0.01 for all models.
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